
Kaltofen’s division-free determinant algorithm

differentiated for matrix adjoint computation

Gilles Villard

CNRS, Université de Lyon, INRIA

Laboratoire LIP, ENSL, 46, Allée d’Italie, 69364 Lyon Cedex 07, France

Abstract

Kaltofen has proposed a new approach in (Kaltofen, 1992) for computing matrix determinants
without divisions. The algorithm is based on a baby steps/giant steps construction of Krylov
subspaces, and computes the determinant as the constant term of a characteristic polynomial.
For matrices over an abstract ring, by the results of Baur and Strassen (1983), the determinant
algorithm, actually a straight-line program, leads to an algorithm with the same complexity
for computing the adjoint of a matrix. However, the latter adjoint algorithm is obtained by
the reverse mode of automatic differentiation, hence somehow is not “explicit”. We present an
alternative (still closely related) algorithm for the adjoint that can be implemented directly, we
mean without resorting to an automatic transformation. The algorithm is deduced by applying
program differentiation techniques “by hand” to Kaltofen’s method, and is completely decribed.
As subproblem, we study the differentiation of programs that compute minimum polynomials of
lineraly generated sequences, and we use a lazy polynomial evaluation mechanism for reducing
the cost of Strassen’s avoidance of divisions in our case.

Key words: matrix determinant, matrix adjoint, matrix inverse, characteristic polynomial,
exact algorithm, division-free complexity, Wiedemann algorithm, automatic differentiation.

1. Introduction

Kaltofen has proposed in (Kaltofen, 1992) a new approach for computing matrix de-
terminants. This approach has brought breakthrough ideas for improving the complexity
estimate for the problem of computing the determinant without divisions over an abstract
ring (see (Kaltofen, 1992; Kaltofen and Villard, 2004)). With these foundations, the al-
gorithm of Kaltofen and Villard (2004) computes the determinant in O(n2.7) additions,

⋆ This research was partly supported by the French National Research Agency, ANR Gecko.

Email address: Gilles.Villard@ens-lyon.fr (Gilles Villard).

URL: http://perso.ens-lyon.fr/gilles.villard (Gilles Villard).

subtractions, and multiplications. The same ideas also lead to the currently best known
bit complexity estimate of Kaltofen and Villard (2004) for the problem of computing the
characteristic polynomial.

We consider the straigth-line programs of Kaltofen (1992) for computing the determi-
nant over abstract fields or rings (with or without divisions). Using the reverse mode of
automatic differentiation (see Linnainmaa (1970, 1976), and (Ostrowski et al., 1971)), a
straight-line program for computing the determinant of a matrixA can be (automatically)
transformed into a program for computing the adjoint matrix A∗ of A. This principle,
stated by Baur and Strassen (1983, Cor. 5), is also applied by Kaltofen (1992, Sec. 1.2)
for computing A∗. Since the adjoint program is derived by an automatic process, few is
known about the way it computes the adjoint. The only available information seems to
be the determinant program itself, and the knowledge we have on the differentiation pro-
cess. Neither the adjoint program can be described, or implemented, without resorting
to an automatic differentiation tool.

In this paper, by studying the differentiation of Kaltofen’s determinant algorithm step
by step, we produce an “explicit” adjoint algorithm. The determinant algorithm, that
we first recall in Section 2 over an abstract field K, uses a Krylov subspace construction,
hence mainly reduces to vector times matrix, and matrix times matrix products. An-
other operation involved is computing the minimum polynomial of a linearly generated
sequence. We apply the program differentiation mechanism, reviewed in Section 3, to the
different steps of the determinant program in Section 4. This leads us to the description
of a corresponding new adjoint program over a field, in Section 5. The algorithm we
obtain somehow calls to mind the matrix factorization of Eberly (1997, (3.4)). We note
that our objectives are similar to Eberly’s ones, whose question was to give an explicit
inversion algorithm from the parallel determinant algorithm of Kaltofen and Pan (1991).

Our motivation for studying the differentiation and resulting adjoint algorithm, is the
importance of the determinant approach of Kaltofen (1992), and Kaltofen and Villard
(2004), for various complexity estimates. Recent advances around the determinant of
polynomial or integer matrices (see Eberly et al. (2000); Kaltofen and Villard (2004);
Storjohann (2003, 2005)), and matrix inversion (see Jeannerod and Villard (2006), and
Storjohann (2008)) also justify the study of the general adjoint problem.

For computing the determinant without divisions over a ring R, Kaltofen applies the
avoidance of divisions of Strassen (1973) to his determinant algorithm over a field. We
apply the same strategy for the adjoint. From the algorithm of Section 5 over a field,
we deduce an adjoint algorithm over an arbitrary ring R in Section 6. The avoidance of
divisions involves computations with truncated power series. A crucial point in Kaltofen’s
approach is a “baby steps/giant steps” scheme for reducing the corresponding power
series arithmetic cost. However, since we use the reverse mode of differentiation, the flow
of computation is modified, and the benefit of the baby steps/giant steps is partly lost for
the adjoint. This asks us to introduce an early, and lazy polynomial evaluation strategy
for not increasing the complexity estimate.

The division-free determinant algorithm of Kaltofen (1992) uses O (̃n3.5) operations in
R. The adjoint algorithm we propose has essentially the same cost. Our study may be seen
as a first step for the differentiation of the more efficient algorithm of Kaltofen and Villard
(2004). The latter would require, in particular, to consider asymptotically fast matrix
multiplication algorithms that are not discussed in what follows.

2

Especially in our matrix context, we note that interpreting programs obtained by

automatic differentiation, may have connections with the interpretation of programs de-

rived using the transposition principle. We refer for instance to the discussion of Kaltofen

(2000, Sec. 6).

Cost functions. We let M(n) be such that two univariate polynomials of degree n

over an arbitrary ring R can be multiplied using M(n) operations in R. The algorithm

of Cantor and Kaltofen (1991) allows M(n) = O(n log n log logn). The function O(M(n))

also measures the cost of truncated power series arithmetic over R. For bounding the cost

of polynomial gcd-type computations over a commutative field K we define the function

G. Let G(n) be such that the extended gcd problem (see (von zur Gathen and Gerhard,

1999, Chap. 11)) can be solved with G(n) operations in K for polynomials of degree 2n in

K[x]. The recursive Knuth/Schönhage half-Gcd algorithm (see (Knuth, 1970; Schönhage,

1971; Moenck, 1973)) allows G(n) = O(M(n) log n). The minimum polynomial of de-

gree n, of a linearly generated sequence given by its first 2n terms, can be computed in

G(n) + O(n) operations (see (von zur Gathen and Gerhard, 1999, Algorithm 12.9)). We

will often use the notation O˜ that indicates missing factors of the form α(log n)β , for

two positive real numbers α and β.

2. Kaltofen’s determinant algorithm over a field

Kaltofen’s determinant algorithm extends the Krylov-based method of Wiedemann

(1986). The latter approach is successful in various situations. We refer especially to the

algorithms of Kaltofen and Pan (1991) and Kaltofen and Saunders (1991) around exact

linear system solution that has served as basis for subsequent works. We may also point

out the various questions investigated by Chen et al. (2002), and references therein.

Let K be a commutative field. We consider A ∈ Kn×n, u ∈ K1×n, and v ∈ Kn×1. We

introduce the Hankel matrix H =
(

uAi+j−2v
)

1≤i,j≤n
∈ Kn×n, and let hk = uAkv for

0 ≤ k ≤ 2n− 1. We also assume that H is non-singular:

detH = det

uv uAv . . . uAn−1v

uAv uA2v . . . uAnv
...

. . .
...

...

uAn−1v uA2n−2v

6= 0. (1)

In the applications, (1) is ensured either by construction of A, u, and v, as in (Kaltofen,

1992; Kaltofen and Villard, 2004), or by randomization (see the above cited references

around Wiedemann’s approach, and (Kaltofen, 1992; Kaltofen and Villard, 2004)).

One of the key ideas of Kaltofen (1992) for reducing the division-free complexity esti-

mate for computing the determinant, is to introduce a “baby steps/giant steps” behaviour

in the Krylov subspace construction. With baby steps/giant steps parameters r = ⌈2n/s⌉
and s = ⌈√n⌉ (rs ≥ 2n) we consider the following algorithm.

3

Algorithm Det

Input: A ∈ Kn×n, u ∈ K1×n, v ∈ Kn×1

step i. v0 := v; For i = 1, . . . , r − 1 do vi := Avi−1

step ii. B := Ar

step iii. u0 := u; For j = 1, . . . , s− 1 do uj := uj−1B

step iv. For i = 0, 1, . . . , r − 1 do

For j = 0, 1, . . . , s− 1 do hi+jr := ujvi

step v. f := the minimum polynomial of {hk}0≤k≤2n−1

Output: detA := (−1)nf(0).

We ommit the proof of next theorem that establishes the correctness and the cost of
Algorithm Det, and refer to Kaltofen (1992). We may simply note that the sequence
{hk}0≤k≤2n−1 is linearly generated. In addition, if (1) is true, then the minimum polyno-
mial f of {hk}0≤k≤2n−1, the minimum polynomial of A, and the characteristic (monic)
polynomial of A coincide. Hence (−1)nf(0) is equal to the determinant of A. Via an
algorithm that can multiply two matrices of Kn×n in O(nω) we have:

Theorem 1. If A ∈ Kn×n, u ∈ K1×n, and v ∈ Kn×1 satisfy (1), then Algorithm Det

computes the determinant of A in O(nω logn) operations in K.

For the matrix product we may set ω = 3, or ω = 2.376 using the algorithm of Coppersmith and Winograd
(1990). In the rest of the paper we work with a cubic matrix multiplication algorithm.
Our study has to be generalized if fast matrix multiplication is introduced.

3. Backward automatic differentiation

The determinant of A ∈ K
n×n is a polynomial ∆ in K[a1,1, . . . , ai,j , . . . , an,n] of the

entries of A. We denote the adjoint matrix by A∗ such that AA∗ = A∗A = (detA)I. As
noticed by Baur and Strassen (1983), the entries of A∗ satisfy

a∗j,i =
∂∆

∂ai,j

, 1 ≤ i, j ≤ n. (2)

The reverse mode of automatic differentiation allows to transform a program which
computes ∆ into a program which computes all the partial derivatives in (2). Among the
rich literature about the reverse mode of automatic differentiation we may refer to the
seminal works of Linnainmaa (1970, 1976) and Ostrowski et al. (1971). For deriving the
adjoint program from the determinant program we follow the lines of Baur and Strassen
(1983) and Morgenstern (1985).

Algorithm Det is a straight-line program over K. For a comprehensive study of
straight-line programs for instance see (Bürgisser et al., 1997, Chapter 4). We assume
that the entries of A are stored initially in n2 variables δi, −n2 < i ≤ 0. Then we as-
sume that the algorithm is a sequence of arithmetic operations in K, or assignments to
constants of K. Let L be the number of such operations. We assume that the result of

4

each instruction is stored in a new variable δi, hence the algorithm is seen as a sequence
of instructions

δi := δj op δk, op ∈ {+,−,×,÷}, − n2 < j, k < i, (3)

or

δi := c, c ∈ K, (4)

for 1 ≤ i ≤ L. Note that a binary arithmetic operation (3) where one of the operands is a
constant of K can be implemented with the aid of (4). For any 0 ≤ i ≤ L, the determinant
maybe be seen as a rational function ∆i of δ−n2+1, . . . , δi, such that

∆0(δ−n2+1, . . . , δ0) = ∆(a1,1, . . . , an,n), (5)

and such that the last instruction gives the result:

detA = δL = ∆L(δ−n2+1, . . . , δL). (6)

The reverse mode of automatic differentiation computes the derivatives (2) in a back-
ward recursive way, from the derivatives of (6) to those of (5). Using (6) we start the
recursion with

∂∆L

∂δL
= 1,

∂∆L

∂δl
= 0, − n2 < l ≤ L− 1.

Then, writing

∆i−1(δ−n2+1, . . . , δi−1) = ∆i(δ−n2+1, . . . , δi) = ∆i(δ−n2+1, . . . , g(δj , δk)), (7)

where g is given by (3) or (4), we have

∂∆i−1

∂δl
=
∂∆i

∂δl
+
∂∆i

∂δi

∂g

∂δl
, − n2 < l ≤ i− 1, (8)

for 1 ≤ i ≤ L. Depending on g several cases may be examined. For instance, for an
addition δi := g(δk, δj) = δk + δj , (8) becomes

∂∆i−1

∂δk
=
∂∆i

∂δk
+
∂∆i

∂δi
,

∂∆i−1

∂δj
=
∂∆i

∂δj
+
∂∆i

∂δi
, (9)

with the other derivatives (l 6= k or j) remaining unchanged. In the case of a multipli-
cation δi := g(δk, δj) = δk × δj , (8) gives that the only derivatives that are modified are

∂∆i−1

∂δk
=
∂∆i

∂δk
+
∂∆i

∂δi
δj ,

∂∆i−1

∂δj
=
∂∆i

∂δj
+
∂∆i

∂δi
δk. (10)

We see for instance in (10), where δj is used for updating the derivative with respect
to δk, that the recursion uses intermediary results of the determinant algorithm. For the
adjoint algorithm, we will assume that the determinant algorithm has been executed
once, and that the δi’s are stored in n2 + L memory locations.

Recursion (8) gives a practical mean, and a program, for computing the N = n2

derivatives of ∆ with respect to the ai,j ’s. For any rational function Q in N variables
δ−N+1, . . . , δ0 the corresponding general statement is:

Theorem 2. [Baur and Strassen (1983)] Let P be a straight-line program computing Q
in L operations in K. One can derive an algorithm ∂P that computes Q and the N partial
derivatives ∂Q/∂δl in less than 5L operations in K.

5

Combining Theorem 2 with Theorem 1 gives the construction of an algorithm ∂Det

for computing the adjoint matrix A∗ (see (Baur and Strassen, 1983, Corollary 5)). The
algorithm can be generated automatically via an automatic differentiation tool 1 . How-
ever, it seems unclear how it could be programmed directly, and, to our knowledge, it
has no interpretation of its own.

4. Differentiating the determinant algorithm over a field

We apply the backward recursion (8) to Algorithm Det of Section 2 for deriving
the algorithm ∂Det. We assume that A is non-singular, hence A∗ is non-trivial. By
construction, the flow of computation for the adjoint is reversed compared to the flow of
Algorithm Det, therefore we start with the differentiation of step v.

4.1. Differentiation of the minimum polynomial constant term computation

At step v, Algorithm Det computes the minimum polynomial f of the linearly
generated sequence {hk}0≤k≤2n−1. Let λ be the first instruction index at which all the
hk’s are known. We apply the recursion until step λ, globally, we mean that we compute
the derivatives of ∆λ. After the instruction λ, the determinant is viewed as a function
∆v of the hk’s only. Following (7) we have

det(A) = ∆λ(δ−n2+1, . . . , δλ) = ∆v(h1, . . . , h2n−1).

Hence we may focus on the derivatives ∂∆v/∂hk, 0 ≤ k ≤ 2n − 1, the remaining ones
are zero.

Using assumption (1) we know that the minimum polynomial f of {hk}0≤k≤2n−1 has
degree n, and if f(x) = f0 + f1x+ . . .+ fn−1x

n−1 + xn, then f satisfies

H

f0

f1
...

fn−1

=

h0 h1 . . . hn−1

h1 h2 . . . hn

...
. . .

...
...

hn−1 h2n−2

f0

f1
...

fn−1

= −

hn

hn+1

...

h2n−1

(11)

see, e.g., (Kaltofen, 1992), or (von zur Gathen and Gerhard, 1999, Algorithm 12.9) to-
gether with (Brent et al., 1980). Applying Cramer’s rule we see that

f0 = (−1)n det

h1 h2 . . . hn

h2 h3 . . . hn+1

...
. . .

...
...

hn h2n−1

/ detH,

hence, defining HA =
(

uAi+j−1v
)

1≤i,j≤n
= (hi+j−1)1≤i,j≤n

∈ Kn×n, we obtain

∆v =
detHA

detH
. (12)

1 We refer for instance to http://www.autodiff.org

6

http://www.autodiff.org

Let K̃u and Kv be the Krylov matrices

K̃u = [uT , ATuT , . . . , (AT)n−1uT]T ∈ K
n×n, (13)

and
Kv = [v,Av, . . . , An−1v] ∈ K

n×n. (14)

Since H = K̃uKv, assumption (1) implies that both K̃u and Kv are non-singular. Hence,
using that A is non-singular, we note that HA = K̃uAKv also is non-singular.

For differentiating (12), let us first specialize (2) to Hankel matrices. We denote by
(∂∆/∂ai,j)(H) the substitution of the ai,j ’s for the entries of H in ∂∆/∂ai,j , for 1 ≤
i, j ≤ n. From (2) we have

h∗j,i =
∂∆

∂ai,j

(H), 1 ≤ i, j ≤ n.

Since the entries of H are constant along the anti-diagonals, we deduce that

∂ detH

∂hk

=
∑

i+j−2=k

∂∆

∂ai,j

(H) =
∑

i+j−2=k

h∗j,i =
∑

i+j−2=k

h∗i,j , 0 ≤ k ≤ 2n− 2.

In other words, we may write

∂ detH

∂hk

= σk(H∗), 0 ≤ k ≤ 2n− 1, (15)

where, for a matrix M = (mij), we define

σk(M) = 0 +
∑

i+j−2=k

mij , 1 ≤ i, j ≤ n.

The function σk(M) is the sum of the entries in the anti-diagonal of M starting with
m1,k+1 if 0 ≤ k ≤ n− 1, and mk−n+2,n if n ≤ k ≤ 2n− 2. Shifting the entries of H for
obtaining HA we also have

∂ detHA

∂hk

= σk−1(H
∗
A), 0 ≤ k ≤ 2n− 1. (16)

Now, differentiating (12), together with (15) and (16), leads to

∂∆v

∂hk

=
(∂ detHA/∂hk)

detH
− (∂ detH/∂hk)

detH

detHA

detH
=

(∂ detHA/∂hk)

detHA

detHA

detH
−σk(H−1)∆v

and, consequently, to

∂∆v

∂hk

=
(

σk−1(H
−1
A) − σk(H−1)

)

∆v, 0 ≤ k ≤ 2n− 1. (17)

With (17) we identify the problem solved by the first step of the ∂Det algorithm,
and provide first informations for interpreting or implementing the adjoint program.
Various algorithms may be used for computing the minimum polynomial (for instance see
(von zur Gathen and Gerhard, 1999, Algorithm 12.9)), that will lead to corresponding
algorithms for computing the left sides in (17). However, we will not discuss these aspects,
since the associated costs are not dominant in the overall complexity.

We have recalled, in the introduction, that the minimum polynomial f (its constant
term f(0)) can be computed from the hk’s in G(n) + O(n) operations in K. Hence The-
orem 2 gives an algorithm for computing the derivatives using 5G(n) +O(n) operations.

7

Alternatively, in the Appendix we propose a direct approach that takes advantage of (17).
Proposition 4 shows that if f , H , and HA are given, then the ∂∆v/∂hk’s can be computed
in G(n) +O(M(n)) operations in K.

4.2. Differentiation of the dot products

For differentiating step iv, ∆ is seen as a function ∆iv of the uj ’s and vi’s. The entries
of uj are used for computing the r scalars hjr , h1+jr, . . . , h(r−1)+jr for 0 ≤ j ≤ s − 1.
The entries of vi are involved in the computation of the s scalars hi, hi+r, . . . , hi+(s−1)r

for 0 ≤ i ≤ r − 1.
In (8), the new derivative ∂∆i−1/∂δl is obtained by adding the current instruction

contribution to the previously computed derivative ∂∆i/∂δl. Since all the hi+jr’s are
computed independently according to

hi+jr =
n

∑

l=0

(uj)l(vi)l,

it follows that the derivative of ∆iv with respect to an entry (uj)l or (vi)l is obtained by
summing up the contributions of the multiplications (uj)l(vi)l. We obtain

∂∆iv

∂(uj)l

=
r−1
∑

i=0

∂∆v

∂hi+jr

(vi)l, 0 ≤ j ≤ s− 1, 1 ≤ l ≤ n, (18)

and
∂∆iv

∂(vi)l

=

s−1
∑

i=0

∂∆v

∂hi+jr

(uj)l, 0 ≤ i ≤ r − 1, 1 ≤ l ≤ n. (19)

By abuse of notations (of the sign ∂), we let ∂uj be the n × 1 vector, respectively
∂vi be the 1 × n vector, whose entries are the derivatives of ∆iv with respect to the
entries of uj , respectively vi. Note that because of the index transposition in (2), it is
convenient, here and in the following, to take the transpose form (column versus row)
for the derivative vectors. Defining also

∂H =

(

∂∆v

∂hi+jr

)

0≤i≤r−1, 0≤j≤s−1

∈ K
r×s,

we deduce, from (18) and (19), that

[∂u0, ∂u1, . . . , ∂us−1] = [v0, v1, . . . , vr−1] ∂H ∈ K
n×s. (20)

and

∂v0

∂v1
...

∂vr−1

= ∂H

u0

u1

...

us−1

∈ K
r×n. (21)

Identities (20) and (21) give the second step of the adjoint algorithm. In Algorithm Det,
step iv costs essentially 2rsn additions and multiplications in K. Here we have essen-
tially 4rsn additions and multiplications using basic loops (as in step iv) for calculating
the matrix products, we mean without an asymptotically fast matrix multiplication al-
gorithm.

8

4.3. Differentiation of the matrix times vector and matrix products

The recursive process for differentiating step iii to step i may be written in terms

of the differentiation of the basic operation (or its transposed operation)

q := p ·M ∈ K
1×n, (22)

where p and q are row vectors of dimension n, and M is an n× n matrix. We assume at

this point (by construction of the recursion) that column vectors ∂p and ∂q of derivatives

of the determinant with respect to the entries of p and q, are available. For instance, for

differentiating step iii, we will consider the ∂uj ’s. We also assume that an n×n matrix

∂M , whose transpose gives the derivatives with respect to the mij ’s, has been computed.

Initially, for step iii, we will take ∂B = 0.

Following the lines of previous section for obtaining (20) and (21), we see that differ-

entiating (22) amounts to updating ∂p and ∂M according to

∂p := ∂p+M · ∂q ∈ Kn,

∂M := ∂M + ∂q · p ∈ Kn×n.
(23)

Starting from the values of the ∂uj’s computed with (20), and from ∂B = 0, for the

differentiation of step iii, (23) gives

∂uj−1 := ∂uj−1 +B · ∂uj ,

∂B := ∂B + ∂uj · uj−1, j = s− 1, . . . , 1.
(24)

For step ii, we mean B := Ar, we show that the backward recursion leads to

∂A :=

r
∑

k=1

Ar−k · ∂B · Ak−1. (25)

Here, the notation ∂A stands for the n× n matrix whose transpose gives the derivatives

∂∆ii/∂ai,j . We may show (25) by induction on r. For r = 1, ∂A = ∂B is true. If (25) is

true for r− 1, then let C = Ar−1 and B = CA. Using (23), and overloading the notation

∂A, we have

∂C = A · ∂B ∈ Kn×n,

∂A = ∂B · C ∈ Kn×n.

Hence, using (25) for r − 1, we establish that

∂A = ∂A+
∑r−1

k=1A
r−k−1 · ∂C · Ak−1,

= ∂B · C +
∑r−1

k=1 A
r−k−1 · (A · ∂B) · Ak−1

= ∂B ·Ar−1 +
∑r−1

k=1A
r−k · ∂B · Ak−1 =

∑r
k=1 A

r−k · ∂B ·Ak−1.

Any specific approach for computing Ar will lead to an associated program for com-

puting ∂A. Let us look, in particular, at the case where step ii of Algorithm Det is

implemented by repeated squaring, in essentially log2 r matrix products. Consider the

9

recursion

A0 := A

For k = 1, . . . , log2 r do A2k := A2k−1 ·A2k−1

B := Ar

that computes B := Ar. The associated program for computing the derivatives is

∂Ar := ∂B

For k = log2 r, . . . , 1 do ∂A2k−1 := A2k−1 · ∂A2k + ∂A2k · A2k−1

∂A := ∂A0,

(26)

and costs essentially 2 log2 r matrix products.

From the values of the ∂vi’s computed with (21), we finally differentiate step i, and

update ∂A according to

∂vi−1 := ∂vi−1 + ∂vi · A,
∂A := ∂A+ vi−1 · ∂vi, i = r − 1, . . . , 1.

(27)

Now, ∂A is the n × n matrix whose transpose gives the derivatives ∂∆i/∂ai,j =

∂∆/∂ai,j, hence from (2) we know that A∗ = ∂A.

step iii and step i both cost essentially r (≈ s) matrix times vector products. From

(24) and (27) the differentiated steps both require r matrix times vector products, and

2rn2 +O(rn) additional operations in K.

5. The adjoint algorithm over a field

We call Adjoint the algorithm obtained from the successive differentiations of Sec-

tion 4. Algorithm Adjoint is detailed below. We keep the notations of previous sections.

We use in addition U ∈ Ks×n and V ∈ Kn×r (resp. ∂U ∈ Kn×s and ∂V ∈ Kr×n) for the

right sides (resp. the left sides) of (20) and (21).

The cost of Adjoint is dominated by step iv∗, which is the differentiation of the ma-

trix power computation. As we have seen with (26), the number of operation is essentially

twice as much as for Algorithm Det. The code we give allows an easy implementation.

We note that if the product by detA is avoided in step i∗, then the algorithm computes

the matrix inverse A−1. We may put this into perspective with the algorithm given

by Eberly (1997). With K̃u and Kv the Krylov matrices of (13) and (14), Eberly has

proposed a processor-efficient inversion algorithm based on

A−1 = KvH
−1
A K̃u. (28)

To see whether a baby steps/giant steps version of (28) would lead to an algorithm similar

to Adjoint deserves further investigations.

10

Algorithm Adjoint (∂Det)

Input: A ∈ Kn×n non-singular, and the intermediary data of Algorithm Det

All the derivatives are initialized to zero

step i∗. /* Requires the Hankel matrices H and HA, see (17) */

∂∆v/∂hk :=
(

σk−1(H
−1
A) − σk(H−1)

)

detA, 0 ≤ k ≤ 2n− 1

step ii∗. /* Requires the uj’s and vi’s, see (20) and (21) */

∂U := V · ∂H
∂V := ∂H · U

step iii∗. /* Requires B = Ar, see (24) */

For j = s− 1, . . . , 1 do

∂uj−1 := ∂uj−1 +B · ∂uj

∂B := ∂B + ∂uj · uj−1

step iv∗. /* Requires the powers of A, see (25) or (26) */

A∗ :=
∑r

k=1A
r−k · ∂B · Ak−1

step v∗. /* See (27) */

For i = r − 1, . . . , 1 do

∂vi−1 := ∂vi−1 + ∂vi · A
A∗ := A∗ + vi−1 · ∂vi

Output: The adjoint matrix A∗ ∈ Kn×n.

6. Application to computing the adjoint without divisions

Now let A be an n × n matrix over an abstract ring R. Kaltofen’s algorithm for

computing the determinant of A without divisions applies Algorithm Det on a well

chosen univariate polynomial matrix Z(z) = C + z(A − C) where C ∈ Z
n×n, with

a dedicated choice of projections u = ϕ ∈ Z
1×n and v = ψ ∈ Z

n×1. The algorithm

uses Strassen’s avoidance of divisions (see (Strassen, 1973; Kaltofen, 1992)). Since the

determinant of Z is a polynomial of degree n in z, the arithmetic operations over K in

Det may be replaced by operations on power series in R[[z]] modulo zn+1. Once the

determinant of Z(z) is computed, the evaluation (detZ)(1) = det(C + 1 × (A − C))

gives the determinant of A. The choice of C,ϕ and ψ is such that, whenever a division

by a truncated power series is performed the constant coefficients are ±1. Therefore the

algorithm necessitates no divisions. Note that, by construction of Z(z), the constant

terms of the power series involved when Det is called with inputs Z(z), ϕ and ψ, are the

intermediary values computed by Det with inputs C,ϕ and ψ.

The cost for computing the determinant of A without divisions is then deduced as

follows. In step i and step ii of Algorithm Det applied to Z(z), the vector and ma-

trix entries are polynomials of degree O(
√
n). The cost of step ii dominates, and is

11

O(n3M(
√
n) logn) = O (̃n3√n) operations in R. step iii, iv, and v cost O(n2√n) op-

erations on power series modulo zn+1, that is O(n2M(n)
√
n) operations in R. Hence

detZ(z) is computed in O (̃n3
√
n) operations in R, and detA is obtained with the same

cost bound.

An main property of Kaltofen’s approach (which also holds for the improved blocked

version of Kaltofen and Villard (2004)), is that the scalar value detA is obtained via

the computation of the polynomial value detZ(z). This property seems to be lost with

the adjoint computation. We are going to see how Algorithm Adjoint applied to Z(z)

allows to compute A∗ ∈ Rn×n in time O (̃n3√n) operations in R, but does not seem to

allow the computation of Z∗(z) ∈ R[z]n×n with the same complexity estimate. Indeed,

a key point in Kaltofen’s approach for reducing the overall complexity estimate, is to

compute with small degree polynomials (degree O(
√
n)) in step i and step ii. However,

since the adjoint algorithm has a reversed flow, this point does not seem to be relevant

for Adjoint, where polynomials of degree n are involved from the beginning.

Our approach for computing A∗ over R keeps the idea of running Algorithm Adjoint

with input Z(z) = C + z(A − C), such that Z∗(z) has degree less than n, and gives

A∗ = Z∗(1). In Section 6.1, we verify that the implementation using Proposition 4, needs

no divisions. We then show in Section 6.2 how to establish the cost estimate O (̃n3
√
n).

The principle we follow is to start evaluating polynomials at z = 1 as soon as computing

with the entire polynomials is prohibitive.

6.1. Division-free Hankel matrix inversion and anti-diagonal sums

In Algorithm Adjoint, divisions may only occur during the anti-diagonal sums com-

putation. We verify here that with the matrix Z(z), and the special projections ϕ ∈
Z

1×n, ψ ∈ Z
n×1, the approach described in the Appendix for computing the anti-diagonal

sums requires no divisions. Equivalently, since we use Strassen’s avoidance of divisions,

we verify that with the matrix C and the projections ϕ, ψ, the approach necessitates no

divisions. As we are going to see, this a direct consequence of the construction of Kaltofen

(1992).

Here we let hk = ϕCkψ for 0 ≤ k ≤ 2n − 1, a(x) = x2n, and b(x) = h0x
2n−1 +

h1x
2n−2 + . . . + h2n−1. The extended Euclidean scheme with inputs a and b leads to a

normal sequence, and after n−1 and n steps of the scheme, we get (see (Kaltofen, 1992,

Sec. 2)):

s(x)a(x) + t(x)b(x) = c(x),with deg s = n− 2, deg t = n− 1, deg c = n, (29)

and

s̄(x)a(x) + t̄(x)b(x) = c̄(x),with deg s̄ = n− 1, deg t̄ = n, deg c̄ = n− 1. (30)

The polynomial t̄ is such that

t̄ = ±xn + intermediate monomials + 1 = ±f, (31)

with f the minimum polynomial of {hk}0≤k≤2n−1. One may check, in particular, that

the n equations obtained by identifying the coefficients of degree 2n− 1 ≥ k ≥ n in (30)

12

give the linear system (11), that defines f . The polynomial c also has leading coefficient
±1. By identifying the coefficients of degree 2n− 1 ≥ k ≥ n in (29), we obtain:

H

t0

t1
...

tn−1

=

h0 h1 . . . hn−1

h1 h2 . . . hn

...
. . .

...
...

hn−1 h2n−2

t0

t1
...

tn−1

= ±

0

0
...

1

. (32)

Therefore t = ±g with g the polynomial needed for computing (44)-(47), in addition
to f . Since C,ϕ, and ψ are such that the extended Euclidean scheme necessitates no
divisions (see (Kaltofen, 1992, Sec. 2)), we see that both f and g may be computed with
no divisions. The only remaining division in the algorithm for Proposition 4 is at (38).
From (31), this division is by f0 = 1.

6.2. Lazy polynomial evaluation and division-free adjoint computation

We run Algorithm Adjoint with input Z(z) ∈ R[z]n×n, and start with operations on
truncated power series modulo zn+1. We assume that Algorithm Det has been executed,
and that its intermediary results have been stored.

Using Proposition 4 and previous section, step i∗ requires O(G(n)M(n)) = O (̃n2)
operations in R for computing ∂H(z) of degree n in R[z]r×s. step ii∗, step iii∗, and v∗

cost O(n2√n) operations in K, hence, taking into account the power series operations,
this gives O(n2M(n)

√
n) = O (̃n3

√
n) operations in R for the division-free version. The

cost analysis of step iv
∗, using (26) over power series modulo zn, leads to log2 r matrix

products, hence to the time bound O (̃n4), greater than the target estimate O (̃n3
√
n).

As noticed previously, step iii of Algorithm Det only involves polynomials of degree
O(

√
n), while the reversed program for step iv∗ of Algorithm Adjoint, relies on ∂B(z)

whose degree is n.
Since only Z∗(1) = A∗ is needed, our solution, for restricting the cost to O (̃n3

√
n), is to

start evaluating at z = 1 during step iv∗. However, since power series multiplications are
done modulo zn, this evaluation must be lazy. The fact that matrices Zk(z), 1 ≤ k ≤ r−1,
of degree at most r−1 are involved, enables the following. Let a and c be two polynomials
such that deg a+deg c = r−1 in R[z], and let b be of degree n ≥ r−2 in R[z]. Considering
the highest degree part of b, and evaluating the lowest degree part at z = 1, we define
bH(z) = bnz

r−2 + . . .+ bn−r+2 ∈ R[z] and bL = bn−r+1 + . . .+ b0 ∈ R. We then remark
that

(

a(z)b(z)c(z) mod zn+1
)

(1) =
(

a(z)(bH(z)zn−r+2 + bL)c(z) mod zn+1
)

(1),

=
(

a(z)bH(z)c(z) mod zr−1
)

(1) + (a(z)bLc(z)) (1).
(33)

For modifying step iv∗, we follow the definition of bH and bL, and first compute
∂BH(z) ∈ R[z]n×n of degree r−2, and ∂BL ∈ Rn×n. Applying (33), the sum

∑r

k=1 Z
r−k(z)·

∂B(z) · Zk−1(z) may then be evaluated at z = 1 by the program

Modified step iv
∗. Z∗ :=

(
∑r

k=1 Z
r−k(z) · ∂BH(z) · Zk−1(z) mod zr−1

)

(1)

Z∗ := Z∗ +
(
∑r

k=1 Z
r−k(z) · ∂BL · Zk−1(z)

)

(1),
(34)

13

in O (̃n3M(r)) = O (̃n3√n) operations in R. This leads to an intermediary value Z∗ ∈
Rn×n before step v∗. The value is updated at step v∗ with power series operations,
and a final evaluation at z = 1 in time O (̃n2rM(n)) = O (̃n3

√
n). Since only step iv∗

has been modified, we obtain the following result.

Theorem 3. Let A ∈ Rn×n. If Algorithm Adjoint, modified according to (34), is ex-
ecuted with input Z(z) = C + z(A − C), power series operations modulo zn+1, and a
final evaluation at z = 1, then the matrix adjoint A∗ is computed in O (̃n3

√
n) operations

in R.

7. Concluding remarks

We have developed an explicit algorithm for computing the matrix adjoint using only
ring arithmetic operations. The algorithm has complexity estimate O (̃n3.5). It repre-
sents a practical alternative to previously existing solutions for the problem, that rely on
automatic differentiation of a determinant algorithm. Our description of the algorithm
allows direct implementations. It should help understanding how the adjoint is computed
using Kaltofen’s baby steps/giant steps construction. Still, a full mathematical explana-
tion deserves to be investigated. Our work has to be generalized to the block algorithm
of Kaltofen and Villard (2004) (with the use of fast matrix multiplication algorithms)
whose complexity estimate is currently the best known for computing the determinant,
and the adjoint without divisions.

Acknowledgements. We thank Erich Kaltofen who has brought reference Ostrowski et al.
(1971) to our attention.

Appendix: Hankel matrix inversion and anti-diagonal sums

For implementing (17), we study the computation of the anti-diagonal sums σk of H−1

and H−1
A .

We first use the formula of Labahn et al. (1990) for Hankel matrices inversion. The
minimum polynomial f of {hk}0≤k≤2n−1 is f(x) = f0 + f1x+ . . .+ fn−1x

n−1 + xn, and
satisfies (11). Let the last column of H−1 be given by

H [g0, g1, . . . , gn−1]
T = [0, . . . , 0, 1]T ∈ K

n. (35)

Applying (Labahn et al., 1990, Theorem3.1) with (11) and (35), we know that

H−1 =

f1 . . . fn−1 1
... . .

.
. .

.

fn−1 . .
.

0

1

g0 . . . gn−1

. . .
...

0 g0

−

g1 . . . gn−1 0
... . .

.
. .

.

gn−1 . .
.

0

0

f0 . . . fn−1

. . .
...

0 f0

. (36)

For deriving an analogous formula for H−1
A , using the notations of Section 4.1, we first

recall that H = K̃uKv and HA = K̃uAKv. Multiplying (11) on the left by K̃uAK̃−1
u gives

HA [f0, f1, . . . , fn−1]
T = −[hn+1, hn+2, . . . , h2n]T . (37)

14

We also notice that
HAH

−1 =
(

K−1
u ATKu

)T
,

and, using the action of AT on the vectors uT , . . . , (AT)n−2uT , we check that HAH
−1 is

the companion matrix

HAH
−1 =

0 1 0
...

. . .

0 . . . 0 1

−f0 −f1 . . . −fn−1

.

Hence the last column [g∗0 , g
∗
1 , . . . , g

∗
n−1] of H−1

A is the first column of H−1 divided by
−f0. Using (36) for determining the first column of H−1, we get

[g∗0 , g
∗
1 , . . . , g

∗
n−1]

T = −g0
f0

[f1, . . . , fn−1, 1]T + [g1, . . . , gn−1, 0]T . (38)

Applying (Labahn et al., 1990, Theorem3.1), now with (37) and (38), we obtain

H−1
A =

f1 . . . fn−1 1
... . .

.
. .

.

fn−1 . .
.

0

1

g∗0 . . . g
∗
n−1

. . .
...

0 g∗0

−

g∗1 . . . g∗n−1 0
... . .

.
. .

.

g∗n−1 . .
.

0

0

f0 . . . fn−1

. . .
...

0 f0

. (39)

From (36) and (39) we see that computing σk(H−1) and σk−1(H
−1
A), for 0 ≤ k ≤ 2n−1,

reduces to computing the anti-diagonal sums for a product of triangular Hankel times
triangular Toeplitz matrices. Let

M = LR =

l0 l1 . . . ln−1

l1 . .
.

. .
.

... . .
.

0

ln−1

r0 r1 . . . rn−1

. . .
. . . rn−2

0
. . .

...

r0

.

We have

mi,j =

i+j−2
∑

s=i−1

lsri+j−s−2, 1 ≤ i+ j − 1 ≤ n, (40)

and

mi,j =

n−1
∑

s=i−1

lsri+j−s−2, n ≤ i+ j − 1 ≤ 2n− 1. (41)

For 0 ≤ k ≤ 2n − 2, σk(M) is defined by summing the mi,j ’s such that i + j − 2 = k.
Using (40) we obtain

σk(M) =
∑k+1

i=1 mi,k−i+2 =
∑k+1

i=1

∑k

s=i−1 lsrk−s,

=
∑k

s=0(s+ 1)lsrk−s, 0 ≤ k ≤ n− 1,

15

hence

(
n−1
∑

s=0

lsx
s+1)′(

n−1
∑

s=0

rsx
s) mod xn =

n−1
∑

k=0

σk(M)xk. (42)

In the same way, using (41) with k̄ = k − n+ 2, we have

σk(M) =
∑n−k̄+1

i=1 mi+k̄−1,n−i+1 =
∑n−k̄+1

i=1

∑n−k̄+1
s=i ls+k̄−2rn−s,

=
∑n−1

s=k̄−1(s+ n− k) lsrk−s, n− 1 ≤ k ≤ 2n− 2,

and

(

n
∑

s=1

rn−sx
s)′(

n−1
∑

s=0

ln−s−1x
s) mod xn =

n−1
∑

k=0

σ2n−k−2(M)xk. (43)

It remains to apply (42) and (43) to the structured matrix products in (36) and (39),
for computing the σk(H−1) and σk(H−1

A)’s. Together with the minimum polynomial f =
f0+. . .+fn−1x

n−1+xn, let g = g0+. . .+gn−1x
n−1 (see (35)), and g∗ = g∗0 . . .+g

∗
n−1x

n−1

(see (38)). We may now combine, respectively (36) and (39), with (42), for obtaining

f ′g − g′f mod xn =

n−1
∑

k=0

σk(H−1)xk, (44)

and

f ′g∗ − (g∗)′f mod xn =

n−1
∑

k=0

σk(H−1
A)xk. (45)

Defining also rev(f) = 1+fn−1x+ . . .+f0x
n, rev(g) = gn−1x+ . . .+g0x

n, and rev(g∗) =
g∗n−1x+ . . .+ g∗0x

n, the combination of, respectively, (36) and (39), with (43), leads to

rev(g)′rev(f) − rev(f)′rev(g) mod xn =
n−1
∑

k=0

σ2n−k−2(H)xk, (46)

and

rev(g∗)′rev(f) − rev(f)′rev(g∗) mod xn =

n−1
∑

k=0

σ2n−k−2(HA)xk. (47)

Proposition 4. Assume that the minimum polynomial f and the Hankel matrices H
and HA are given. The anti-diagonal sums σk(H−1) and σk(H−1

A), for 0 ≤ k ≤ 2n− 1,
can be computed in G(n) +O(M(n)) operations in K.

Using the approach of Brent et al. (1980) we know that computing the last column
of H−1 reduces to an extended Euclidean problem of degree 2n. Hence the polynomial
g is computed in G(n) +O(n) operations. From there, g∗ is computed using (38). Then,
applying (44)-(47) leads to the cost O(M(n)).

References

Baur, W., Strassen, V., 1983. The complexity of partial derivatives. Theor. Comp. Sc.
22, 317–330.

Brent, R., Gustavson, F., Yun, D., 1980. Fast solution of Toeplitz systems of equations
and computation of Padé approximations. Journal of Algorithms 1, 259–295.

16

Bürgisser, P., Clausen, M., Shokrollahi, M., 1997. Algebraic Complexity Theory. Volume
315, Grundlehren der mathematischen Wissenschaften. Springer-Verlag.

Cantor, D., Kaltofen, E., 1991. On fast multiplication of polynomials over arbitrary
algebras. Acta Informatica 28 (7), 693–701.

Chen, L., Eberly, W., Kaltofen, E., Saunders, B., Turner, W., Villard, G., 2002. Efficient
matrix preconditioners for black box linear algebra. Linear Algebra and its Applications
343-344, 119–146.

Coppersmith, D., Winograd, S., 1990. Matrix multiplication via arithmetic progressions.
J. of Symbolic Computation 9 (3), 251–280.

Eberly, W., Jul 1997. Processor-efficient parallel matrix inversion over abstract fields:
two extensions. In: Proc. Second International Symposium on Parallel Symbolic Com-
putation, Maui, Hawaii, USA. ACM Press, pp. 38–45.

Eberly, W., Giesbrecht, M., Villard, G., Nov. 2000. Computing the determinant and
Smith form of an integer matrix. In: The 41st Annual IEEE Symposium on Foundations
of Computer Science, Redondo Beach, CA. IEEE Computer Society Press, pp. 675–685.

von zur Gathen, J., Gerhard, J., 1999. Modern Computer Algebra. Cambridge University
Press.

Jeannerod, C., Villard, G., 2006. Asymptotically fast polynomial matrix algorithms for
multivariable systems. Int. J. Control 79 (11), 1359–1367.

Kaltofen, E., Jul. 1992. On computing determinants without divisions. In: International
Symposium on Symbolic and Algebraic Computation, Berkeley, California USA. ACM
Press, pp. 342–349.

Kaltofen, E., 2000. Challenges of symbolic computation: my favorite open problems. J.
of Symbolic Computation 29 (6), 891–919.

Kaltofen, E., Pan, V., 1991. Processor efficient parallel solution of linear systems over
an abstract field. In: Proc. 3rd Annual ACM Symposium on Parallel Algorithms and
Architecture. ACM-Press, pp. 180–191.

Kaltofen, E., Saunders, B., 1991. On Wiedemann’s method of solving sparse linear sys-
tems. In: Proc. AAECC-9. LNCS 539, Springer Verlag. pp. 29–38.

Kaltofen, E., Villard, G., 2004. On the complexity of computing determinants. Compu-
tational Complexity 13, 91–130.

Knuth, D., 1970. The analysis of algorithms. In: Proc. International Congress of Mathe-
maticians, Nice, France. Vol. 3. pp. 269–274.

Labahn, G., Choi, D., Cabay, S., 1990. The inverses of block Hankel and block Toeplitz
matrices. SIAM J. Comput. 19 (1), 98–123.

Linnainmaa, S., 1970. The representation of the cumulative rounding error of an algo-
rithm as a Taylor expansion of the local rounding errors (in Finnish). Master’s thesis,
University of Helsinki, Dpt of Computer Science.

Linnainmaa, S., 1976. Taylor expansion of the accumulated rounding errors. BIT 16,
146–160.

Moenck, R., 1973. Fast computation of Gcds. In: 5 th. ACM Symp. Theory Comp. pp.
142–151.

Morgenstern, J., 1985. How to compute fast a function and all its derivatives, a variation
on the theorem of Baur-Strassen. ACM SIGACT News 16, 60–62.

Ostrowski, G. M., Wolin, J. M., Borisow, W. W., 1971. Über die Berechnung von
Ableitungen (in German). Wissenschaftliche Zeitschrift der Technischen Hochschule
für Chemie, Leuna-Merseburg 13 (4), 382–384.

17

Schönhage, A., 1971. Schnelle Berechnung von Kettenbruchenwicklungen. Acta Infor-
matica 1, 139–144.

Storjohann, A., 2003. High-order lifting and integrality certification. Journal of Symbolic
Computation 36 (3-4), 613–648, special issue International Symposium on Symbolic
and Algebraic Computation (ISSAC’2002). Guest editors: M. Giusti & L. M. Pardo.

Storjohann, A., 2005. The shifted number system for fast linear algebra on integer ma-
trices. Journal of Complexity 21 (4), 609–650.

Storjohann, A., Jul. 2008. On the complexity of inverting integer and polynomial ma-
trices. Preprint D.R. Cheriton School of Computer Science, U. Waterloo, Ontario,
Canada.

Strassen, V., 1973. Vermeidung von Divisionen. J. Reine Angew. Math. 264, 182–202.
Wiedemann, D., 1986. Solving sparse linear equations over finite fields. IEEE Transf.

Inform. Theory IT-32, 54–62.

18

	Introduction
	Kaltofen's determinant algorithm over a field
	Backward automatic differentiation
	Differentiating the determinant algorithm over a field
	Differentiation of the minimum polynomial constant term computation
	Differentiation of the dot products
	Differentiation of the matrix times vector and matrix products

	The adjoint algorithm over a field
	Application to computing the adjoint without divisions
	Division-free Hankel matrix inversion and anti-diagonal sums
	Lazy polynomial evaluation and division-free adjoint computation

	Concluding remarks

