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Abstract. Altenbernd, Thomas and Wöhrle have considered acceptanceof languages of infinite
two-dimensional words (infinite pictures) by finite tiling systems, with usual acceptance conditions,
such as the Büchi and Muller ones, in [1]. It was proved in [9]that it is undecidable whether a Büchi-
recognizable language of infinite pictures is E-recognizable (respectively, A-recognizable). We show
here that these two decision problems are actuallyΠ1

2
-complete, hence located at the second level

of the analytical hierarchy, and “highly undecidable”. We give the exact degree of numerous other
undecidable problems for Büchi-recognizable languages of infinite pictures. In particular, the non-
emptiness and the infiniteness problems areΣ1

1
-complete, and the universality problem, the inclusion

problem, the equivalence problem, the determinizability problem, the complementability problem,
are allΠ1

2
-complete. It is alsoΠ1

2
-complete to determine whether a given Büchi recognizablelan-

guage of infinite pictures can be accepted row by row using an automaton model over ordinal words
of lengthω2.

Keywords: Languages of infinite pictures; recognizability by tiling systems; decision problems;
highly undecidable problems; analytical hierarchy.

1. Introduction

Languages of infinite words accepted by finite automata were first studied by Büchi to prove the de-
cidability of the monadic second order theory of one successor over the integers. Since then regular
ω-languages have been much studied and many applications have been found for specification and veri-
fication of non-terminating systems, see [24, 23, 19] for many results and references.

Address for correspondence: E Mail: Olivier.Finkel@ens-lyon.fr
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In a recent paper, Altenbernd, Thomas and Wöhrle have considered acceptance of languages of infinite
two-dimensional words (infinite pictures) by finite tiling systems, with the usual acceptance conditions,
such as the Büchi and Muller ones, firstly used for infinite words. This way they extended both the clas-
sical theory ofω-regular languages and the classical theory of recognizable languages of finite pictures,
[11], to the case of infinite pictures.

Many classical decision problems are studied in formal language theory and in automata theory and arise
now naturally about recognizable languages of infinite pictures. We proved in [9] that many decision
problems for Büchi-recognizable languages of infinite pictures are undecidable. In particular, we showed,
using topological arguments, that it is undecidable whether a Büchi-recognizable language of infinite
pictures is E-recognizable (respectively, A-recognizable), giving the answer to two questions raised in
[1]. We proved also several other undecidability results asthe following ones: one cannot decide whether
a Büchi-recognizable language of infinite pictures can be recognized by adeterministicBüchi or Muller
tiling system, or whether it can be accepted row by row using an automaton model over ordinal words of
lengthω2.

Using theΠ1
2-completeness of the universality problem forω-languages of non deterministic Turing

machines which was proved by Castro and Cucker in [3], and some topological arguments, we show in
this paper that the above decision problems are actuallyΠ1

2-complete, hence located at the second level
of the analytical hierarchy, and “highly undecidable”. Using other results of [3], we give also the exact
degree of numerous other undecidable problems for Büchi-recognizable languages of infinite pictures.
In particular, the non-emptiness and the infiniteness problems areΣ1

1-complete, and the universality
problem, the inclusion problem, the equivalence problem, the complementability problem, are allΠ1

2-
complete. This gives new natural examples of decision problems located at the first or at the second level
of the analytical hierarchy. We show also that topological properties of Büchi-recognizable languages of
infinite pictures are highly undecidable.

The paper is organized as follows. In Section 2 we recall definitions for pictures and tiling systems.
The definition and properties of the analytical hierarchy are introduced in Section 3. We recall in Sec-
tion 4 some notions of topology, including the definitions ofBorel and analytic sets. We prove high
undecidability results in Section 5. Concluding remarks are given in Section 6.

2. Tiling Systems

We assume the reader to be familiar with the theory of formal (ω)-languages [24, 23]. We recall usual
notations of formal language theory.
WhenΣ is a finite alphabet, anon-empty finite wordoverΣ is any sequencex = a1 . . . ak, whereai ∈ Σ
for i = 1, . . . , k , andk is an integer≥ 1. The lengthof x is k, denoted by|x|. Theempty wordhas no
letter and is denoted byλ; its length is0. Σ⋆ is theset of finite words(including the empty word) overΣ.
Thefirst infinite ordinal is ω. An ω-word overΣ is anω -sequencea1 . . . an . . ., where for all integers
i ≥ 1, ai ∈ Σ. Whenσ is anω-word overΣ, we writeσ = σ(1)σ(2) . . . σ(n) . . ., where for all
i, σ(i) ∈ Σ, andσ[n] = σ(1)σ(2) . . . σ(n) for all n ≥ 1 andσ[0] = λ.
The usual concatenation product of two finite wordsu andv is denotedu.v (and sometimes justuv).
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This product is extended to the product of a finite wordu and anω-word v: the infinite wordu.v is then
theω-word such that:
(u.v)(k) = u(k) if k ≤ |u| , and(u.v)(k) = v(k − |u|) if k > |u|.
Theset ofω-words over the alphabetΣ is denoted byΣω. An ω-languageover an alphabetΣ is a subset
of Σω.

We now define two-dimensional words, i.e. pictures.
LetΣ be a finite alphabet and# be a letter not inΣ and letΣ̂ = Σ∪{#}. If m andn are two integers> 0
or if m = n = 0, a picture of size(m,n) overΣ is a functionp from {0, 1, . . . ,m+1}×{0, 1, . . . , n+1}
into Σ̂ such thatp(0, i) = p(m + 1, i) = # for all integersi ∈ {0, 1, . . . , n + 1} and p(i, 0) =
p(i, n+1) = # for all integersi ∈ {0, 1, . . . ,m+1} andp(i, j) ∈ Σ if i /∈ {0,m+1} andj /∈ {0, n+1}.
The empty picture is the only picture of size(0, 0) and is denoted byλ. Pictures of size(n, 0) or (0, n),
for n > 0, are not defined.Σ⋆,⋆ is the set of pictures overΣ. A picture languageL is a subset ofΣ⋆,⋆.

An ω-picture overΣ is a functionp from ω × ω into Σ̂ such thatp(i, 0) = p(0, i) = # for all i ≥ 0 and
p(i, j) ∈ Σ for i, j > 0. Σω,ω is the set ofω-pictures overΣ. An ω-picture languageL is a subset of
Σω,ω.
ForΣ a finite alphabet we callΣω2

the set of functions fromω× ω into Σ. So the setΣω,ω of ω-pictures
overΣ is a strict subset of̂Σω2

.

We shall say that, for each integerj ≥ 1, the jth row of anω-picturep ∈ Σω,ω is the infinite word
p(1, j).p(2, j).p(3, j) . . . over Σ and thejth column ofp is the infinite wordp(j, 1).p(j, 2).p(j, 3) . . .
overΣ.
As usual, one can imagine that, for integersj > k ≥ 1, thejth column ofp is on the right of thekth

column ofp and that thejth row of p is “above” thekth row of p.

We introduce now tiling systems as in the paper [1].
A tiling system is a tupleA=(Q,Σ,∆), whereQ is a finite set of states,Σ is a finite alphabet,∆ ⊆
(Σ̂ ×Q)4 is a finite set of tiles.
A Büchi tiling system is a pair(A,F ) whereA=(Q,Σ,∆) is a tiling system andF ⊆ Q is the set of
accepting states.
A Muller tiling system is a pair(A,F) whereA=(Q,Σ,∆) is a tiling system andF⊆ 2Q is the set of
accepting sets of states.

Tiles are denoted by

(

(a3, q3) (a4, q4)

(a1, q1) (a2, q2)

)

with ai ∈ Σ̂ andqi ∈ Q,

and in general, over an alphabetΓ, by

(

b3 b4

b1 b2

)

with bi ∈ Γ.

A combination of tiles is defined by:

(

b3 b4

b1 b2

)

◦

(

b′3 b′4
b′1 b′2

)

=

(

(b3, b
′
3) (b4, b

′
4)

(b1, b
′
1) (b2, b

′
2)

)
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A run of a tiling systemA=(Q,Σ,∆) over a (finite) picturep of size(m,n) overΣ is a mappingρ from
{0, 1, . . . ,m+1}×{0, 1, . . . , n+1} intoQ such that for all(i, j) ∈ {0, 1, . . . ,m}×{0, 1, . . . , n} with
p(i, j) = ai,j andρ(i, j) = qi,j we have

(

ai,j+1 ai+1,j+1

ai,j ai+1,j

)

◦

(

qi,j+1 qi+1,j+1

qi,j qi+1,j

)

∈ ∆.

A run of a tiling systemA=(Q,Σ,∆) over anω-picturep ∈ Σω,ω is a mappingρ from ω × ω into Q
such that for all(i, j) ∈ ω × ω with p(i, j) = ai,j andρ(i, j) = qi,j we have

(

ai,j+1 ai+1,j+1

ai,j ai+1,j

)

◦

(

qi,j+1 qi+1,j+1

qi,j qi+1,j

)

∈ ∆.

We now recall acceptance of finite or infinite pictures by tiling systems:

Definition 2.1. LetA=(Q,Σ,∆) be a tiling system,F ⊆ Q andF⊆ 2Q.

• The picture language recognized byA is the set of picturesp ∈ Σ⋆,⋆ such that there is some runρ
of A onp.

• Theω-picture language A-recognized (respectively, E-recognized, Büchi-recognized) by(A,F ) is
the set ofω-picturesp ∈ Σω,ω such that there is some runρ of A on p andρ(v) ∈ F for all (re-
spectively, for at least one, for infinitely many)v ∈ ω2. It is denoted byLA((A,F )) (respectively,
LE((A,F )), LB((A,F ))).

• Theω-picture language Muller-recognized by(A,F) is the set ofω-picturesp ∈ Σω,ω such that
there is some runρ of A onp andInf(ρ) ∈ F whereInf(ρ) is the set of states occurring infinitely
often inρ. It is denoted byLM ((A,F)).

Notice that anω-picture languageL ⊆ Σω,ω is recognized by a Büchi tiling system if and only if it is
recognized by a Muller tiling system, [1].
We shall denoteTS(Σω,ω) the class of languagesL ⊆ Σω,ω which are recognized by some Büchi (or
Muller) tiling system.

We recall now an interesting variation of the above defined acceptance conditions for infinite pictures,
introduced in [1]. This variation uses the diagonal of anω-picture.

The diagonal of anω-picturep is the set of verticesDi(p) = {(i, i) | i ∈ ω}.

Theω-picture language A-recognized (respectively, E-recognized, Büchi-recognized) by(A,F ) on the
diagonal is the set ofω-picturesp ∈ Σω,ω such that there is some runρ of A on p andρ(v) ∈ F for all
(respectively, for at least one, for infinitely many)v ∈ Di(p).
We define similarly the notion ofω-picture language Muller-recognizedon the diagonalby (A,F),
replacingInf(ρ) by the set of statesInf(Di(ρ)) occurring infinitely oftenon the diagonal ofρ.

The following result was stated in [1].
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Theorem 2.2. An ω-picture languageL ⊆ Σω,ω is A-recognized (respectively, E-recognized, Büchi-
recognized, Muller-recognized) by a tiling system if and only if it is A-recognized (respectively, E-
recognized, Büchi-recognized, Muller-recognized)on the diagonalby a tiling system.

We wish now to see links with classical notions of tiling of the (quarter of the) plane, see for instance
[2].

We denoteΓ = Σ̂ × Q whereΣ is the alphabet of pictures andQ is the set of states of a tiling system
A=(Q,Σ,∆). We consider configurations which are elements ofΓω×ω. One can imagine that each cell
of the quarter of the plane contains a letter of the alphabetΓ.
Let ∆ ⊆ (Σ̂×Q)4 = Γ4 be a finite set of tiles. We denote its complement by∆− = Γ4 −∆. A tiling of
the (quarter of the) plane with∆− as set of forbidden patterns is simply a configurationc ∈ Γω×ω such
that for all integersi, j ∈ ω:

(

c(i, j + 1) c(i+ 1, j + 1)

c(i, j) c(i+ 1, j)

)

∈ ∆.

Then theω-picture languageL ⊆ Σω,ω which is A-recognized (respectively, E-recognized, Büchi-
recognized)on the diagonalby the tiling system(A,F ) is simply the set ofω-picturesp ∈ Σω,ω which
are projections of configurationsc ∈ Γω×ω which are tilings of the (quarter of the) plane with∆− as
set of forbidden patterns such that for all (respectively, for at least one, for infinitely many)i ∈ ω the
second component ofc(i, i) is in F . A similar characterization can be given for the Muller acceptance
condition.
We can also easily state similar characterizations forglobal recognizability, i.e. noton the diagonal, by
tiling systems.

3. The Analytical Hierarchy

The set of natural numbers is denoted byN and the set of all mappings fromN into N will be denoted by
F .

We assume the reader to be familiar with the arithmetical hierarchy on subsets ofN. We now recall the
notions of analytical hierarchy and of complete sets for classes of this hierarchy which may be found in
[21].

Definition 3.1. Let k, l > 0 be some integers.Φ is a partial recursive function ofk function variables
andl number variables if there existsz ∈ N such that for any(f1, . . . , fk, x1, . . . , xl) ∈ Fk × Nl, we
have

Φ(f1, . . . , fk, x1, . . . , xl) = τ f1,...,fk
z (x1, . . . , xl),

where the right hand side is the output of the Turing machine with index z and oraclesf1, . . . , fk over
the input(x1, . . . , xl). Fork > 0 andl = 0, Φ is a partial recursive function if, for somez,

Φ(f1, . . . , fk) = τ f1,...,fk
z (0).

The valuez is called the Gödel number or index forΦ.
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Definition 3.2. Let k, l > 0 be some integers andR ⊆ Fk ×Nl. The relationR is said to be a recursive
relation ofk function variables andl number variables if its characteristic function is recursive.

We now define analytical subsets ofNl.

Definition 3.3. A subsetR of Nl is analytical if it is recursive or if there exists a recursive setS ⊆
Fm × Nn, withm ≥ 0 andn ≥ l, such that

R = {(x1, . . . , xl) | (Q1s1)(Q2s2) . . . (Qm+n−lsm+n−l)S(f1, . . . , fm, x1, . . . , xn)},

whereQi is either∀ or ∃ for 1 ≤ i ≤ m+n− l, and wheres1, . . . , sm+n−l aref1, . . . , fm, xl+1, . . . , xn

in some order.
The expression(Q1s1)(Q2s2) . . . (Qm+n−lsm+n−l)S(f1, . . . , fm, x1, . . . , xn) is called a predicate form
for R. A quantifier applying over a function variable is of type1, otherwise it is of type0. In a predicate
form the (possibly empty) sequence of quantifiers, indexed by their type, is called the prefix of the form.
The reduced prefix is the sequence of quantifiers obtained by suppressing the quantifiers of type0 from
the prefix.

The levels of the analytical hierarchy are distinguished byconsidering the number of alternations in the
reduced prefix.

Definition 3.4. For n > 0, a Σ1
n-prefix is one whose reduced prefix begins with∃1 and hasn − 1

alternations of quantifiers. AΣ1
0-prefix is one whose reduced prefix is empty. Forn > 0, aΠ1

n-prefix is
one whose reduced prefix begins with∀1 and hasn − 1 alternations of quantifiers. AΠ1

0-prefix is one
whose reduced prefix is empty.
A predicate form is aΣ1

n (Π1
n)-form if it has aΣ1

n (Π1
n)-prefix. The class of sets in someNl which can

be expressed inΣ1
n-form (respectively,Π1

n-form) is denoted byΣ1
n (respectively,Π1

n).
The classΣ1

0 = Π1
0 is the class of arithmetical sets.

We now recall some well known results about the analytical hierarchy.

Proposition 3.5. Let R ⊆ Nl for some integerl. ThenR is an analytical set iff there is some integer
n ≥ 0 such thatR ∈ Σ1

n orR ∈ Π1
n.

Theorem 3.6. For each integern ≥ 1,

(a) Σ1
n ∪ Π1

n ( Σ1
n+1 ∩ Π1

n+1.

(b) A setR ⊆ Nl is in the classΣ1
n iff its complement is in the classΠ1

n.

(c) Σ1
n − Π1

n 6= ∅ andΠ1
n − Σ1

n 6= ∅.

Transformations of prefixes are often used, following the rules given by the next theorem.

Theorem 3.7. For any predicate form with the given prefix, an equivalent predicate form with the new
one can be obtained, following the allowed prefix transformations given below :

(a) . . . ∃0∃0 . . .→ . . . ∃0 . . . , . . . ∀0∀0 . . .→ . . . ∀0 . . . ;
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(b) . . . ∃1∃1 . . .→ . . . ∃1 . . . , . . . ∀1∀1 . . . → . . . ∀1 . . . ;

(c) . . . ∃0 . . . → . . . ∃1 . . . , . . . ∀0 . . .→ . . . ∀1 . . . ;

(d) . . . ∃0∀1 . . .→ . . . ∀1∃0 . . . , . . . ∀0∃1 . . .→ . . . ∃1∀0 . . . ;

We can now define the notion of 1-reduction and ofΣ1
n-complete (respectively,Π1

n-complete) sets. No-
tice that we give the definition for subsets ofN but one can easily extend this definition to the case of
subsets ofNl for some integerl.

Definition 3.8. Given two setsA,B ⊆ N we say A is 1-reducible to B and writeA ≤1 B if there exists
a total computable injective function f fromN to N such thatA = f−1[B].

Definition 3.9. A setA ⊆ N is said to beΣ1
n-complete (respectively,Π1

n-complete) iffA is a Σ1
n-set

(respectively,Π1
n-set) and for eachΣ1

n-set (respectively,Π1
n-set)B ⊆ N it holds thatB ≤1 A.

For each integern ≥ 1 there exist someΣ1
n-complete setEn ⊆ N. The complementE−

n = N − En is a
Π1

n-complete set. These sets are precisely defined in [21] or [3].

4. Borel Hierarchy and Analytic Sets

We assume now the reader to be familiar with basic notions of topology which may be found in [18, 17,
15, 23, 19].

There is a natural metric on the setΣω of infinite words over a finite alphabetΣ containing at least
two letters which is called theprefix metricand defined as follows. Foru, v ∈ Σω andu 6= v let
δ(u, v) = 2−lpref(u,v) wherelpref(u,v) is the first integern such that the(n + 1)st letter ofu is different
from the (n + 1)st letter of v. This metric induces onΣω the usual Cantor topology for whichopen
subsetsof Σω are in the formW.Σω, whereW ⊆ Σ⋆. A setL ⊆ Σω is aclosed setiff its complement
Σω − L is an open set. Define now theBorel Hierarchyof subsets ofΣω:

Definition 4.1. For a non-null countable ordinalα, the classesΣ0
α andΠ

0
α of the Borel Hierarchy on

the topological spaceΣω are defined as follows:
Σ

0
1 is the class of open subsets ofΣω, Π0

1 is the class of closed subsets ofΣω,
and for any countable ordinalα ≥ 2:
Σ

0
α is the class of countable unions of subsets ofΣω in

⋃

γ<α Π
0
γ .

Π
0
α is the class of countable intersections of subsets ofΣω in

⋃

γ<α Σ
0
γ .

For a countable ordinalα, a subset ofΣω is a Borel set ofrank α iff it is in Σ
0
α ∪ Π

0
α but not in

⋃

γ<α(Σ0
γ ∪ Π

0
γ).

There are also some subsets ofΣω which are not Borel. Indeed there exists another hierarchy beyond
the Borel hierarchy, which is called the projective hierarchy and which is obtained from the Borel hier-
archy by successive applications of operations of projection and complementation. The first level of the
projective hierarchy is formed by the class ofanalytic setsand the class ofco-analytic setswhich are
complements of analytic sets. In particular the class of Borel subsets ofΣω is strictly included into the
classΣ1

1 of analytic setswhich are obtained by projection of Borel sets.
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Definition 4.2. A subsetA of Σω is in the classΣ1
1 of analytic sets iff there exists another finite setY

and a Borel subsetB of (Σ × Y )ω such thatx ∈ A ↔ ∃y ∈ Y ω such that(x, y) ∈ B, where(x, y) is
the infinite word over the alphabetΣ × Y such that(x, y)(i) = (x(i), y(i)) for each integeri ≥ 1.

We now define completeness with regard to reduction by continuous functions. For a countable ordinal
α ≥ 1, a setF ⊆ Σω is said to be aΣ0

α (respectively,Π0
α, Σ1

1)-complete setiff for any setE ⊆ Y ω (with
Y a finite alphabet):E ∈ Σ

0
α (respectively,E ∈ Π

0
α, E ∈ Σ

1
1) iff there exists a continuous function

f : Y ω → Σω such thatE = f−1(F ). Σ
0
n (respectivelyΠ0

n)-complete sets, withn an integer≥ 1, are
thoroughly characterized in [22].

In particularR = (0⋆.1)ω is a well known example ofΠ0
2-complete subset of{0, 1}ω . It is the set of

ω-words over{0, 1} having infinitely many occurrences of the letter1. Its complement{0, 1}ω−(0⋆.1)ω

is aΣ
0
2-complete subset of{0, 1}ω .

ForΓ a finite alphabet having at least two letters, the setΓω×ω of functions fromω × ω into Γ is usually
equipped with the product topology of the discrete topologyon Γ. This topology may be defined by the
following distanced. Letx andy in Γω×ω such thatx 6= y, then

d(x, y) =
1

2n
where

n = min{p ≥ 0 | ∃(i, j) x(i, j) 6= y(i, j) andi+ j = p}.

Then the topological spaceΓω×ω is homeomorphic to the topological spaceΓω, equipped with the Can-
tor topology. Borel subsets ofΓω×ω are defined from open subsets as in the case of the topologicalspace
Γω. Analytic subsets ofΓω×ω are obtained as projections onΓω×ω of Borel subsets of the product space
Γω×ω × Γω.
The setΣω,ω of ω-pictures overΣ, viewed as a topological subspace ofΣ̂ω×ω, is easily seen to be home-
omorphic to the topological spaceΣω×ω, via the mappingϕ : Σω,ω → Σω×ω defined byϕ(p)(i, j) =
p(i+ 1, j + 1) for all p ∈ Σω,ω andi, j ∈ ω.

5. Highly Undecidable Problems

We are now going to study decision problems about recognizable languages of infinite pictures. We
shall use some results of Castro and Cucker who studied degrees of decision problems forω-languages
accepted by Turing machines and proved that many of them are highly undecidable, [3].
So we now recall the notion of acceptance of infinite words by Turing machines considered by Castro
and Cucker in [3].

Definition 5.1. A non deterministic Turing machineM is a5-tupleM = (Q,Σ,Γ, δ, q0), whereQ is a
finite set of states,Σ is a finite input alphabet,Γ is a finite tape alphabet satisfyingΣ ⊆ Γ, q0 is the initial
state, andδ is a mapping fromQ×Γ to subsets ofQ×Γ×{L,R, S}. A configuration ofM is a3-tuple
(q, σ, i), whereq ∈ Q, σ ∈ Γω andi ∈ N. An infinite sequence of configurationsr = (qi, αi, ji)i≥1 is
called a run ofM onw ∈ Σω iff:

(a) (q1, α1, j1) = (q0, w, 1), and
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(b) for eachi ≥ 1, (qi, αi, ji) ⊢ (qi+1, αi+1, ji+1),

where⊢ is the transition relation ofM defined as usual. The runr is said to be complete if the limsup
of the head positions is infinity, i.e. if(∀n ≥ 1)(∃k ≥ 1)(jk ≥ n). The runr is said to be oscillating if
the liminf of the head positions is bounded, i.e. if(∃k ≥ 1)(∀n ≥ 1)(∃m ≥ n)(jm = k).

Definition 5.2. Let M = (Q,Σ,Γ, δ, q0) be a non deterministic Turing machine andF ⊆ Q. The
ω-language accepted by(M, F ) is the set ofω-wordsσ ∈ Σω such that there exists a complete non
oscillating runr = (qi, αi, ji)i≥1 of M onσ such that, for alli, qi ∈ F.

The above acceptance condition is denoted1′-acceptance in [4]. Another usual acceptance condition is
the now called Büchi acceptance condition which is also denoted2-acceptance in [4]. We now recall its
definition.

Definition 5.3. Let M = (Q,Σ,Γ, δ, q0) be a non deterministic Turing machine andF ⊆ Q. Theω-
language Büchi accepted by(M, F ) is the set ofω-wordsσ ∈ Σω such that there exists a complete non
oscillating runr = (qi, αi, ji)i≥1 of M onσ and infinitely many integersi such thatqi ∈ F.

Recall that Cohen and Gold proved in [4, Theorem 8.6] that onecan effectively construct, from a given
non deterministic Turing machine, another equivalent non deterministic Turing machine, equipped with
the same kind of acceptance condition, and in which every runis complete non oscillating. Cohen
and Gold proved also in [4, Theorem 8.2] that anω-language is accepted by a non deterministic Turing
machine with1′-acceptance condition iff it is accepted by a non deterministic Turing machine with Büchi
acceptance condition.

From now on, we shall denoteMz the non deterministic Turing machine of indexz, (accepting words
over Σ = {a, b}), equipped with a1′-acceptance condition. In a similar way we shall denoteTz the
non deterministic tiling system of indexz, (accepting pictures overΣ = {a, b}), equipped with a Büchi
acceptance condition.

For σ ∈ Σω = {a, b}ω we denoteσa theω-picture whose first row is theω-word σ and whose other
rows are labelled with the lettera. For an ω-languageL ⊆ Σω = {a, b}ω we denoteLa the language
of infinite pictures{σa | σ ∈ L}.

We can now recall a result proved in [9] which will be useful later.

Lemma 5.4. ([9])
If L ⊆ Σω is accepted by some Turing machine (in which every run is complete non oscillating) with a
Büchi acceptance condition, thenLa is Büchi recognizable by a finite tiling system.

Proof. Let L ⊆ Σω be an ω-language accepted by some Turing machineM = (Q,Σ,Γ, δ, q0) with a
Büchi acceptance condition, whereF ⊆ Q is the set of accepting states.
We assume that the Turing machine has a single semi-infinite tape, with one reading head which may
also write on the tape.
Cohen and Gold proved that one can consider only such a restricted model of Turing machines [4].
An instantaneous configuration ofM is given by an infinite wordu.q.v whereu ∈ Γ⋆, q ∈ Q, v ∈ Γω,
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and the first letter ofv is the one scanned by the head ofM.
The initial configuration ofM reading the infinite wordσ ∈ Σω is q0.σ.
A computation ofM readingσ ∈ Σω is an infinite sequence of configurationsα0, α1, α2, . . . , αi, . . . ,
whereα0 = q0.σ is the initial configuration and for all integersi ≥ 0, αi = ui.qi.vi is the(i + 1)th

configuration.
The computation is successful if and only if there exists a final stateqf ∈ F and infinitely many integers
i such thatqi = qf .

Using a similar reasoning as in the classical proof of the undecidability of the emptiness problem for
recognizable languages of finite pictures, [11, p. 34], we can define a set of tiles∆ in such a way that for
σ ∈ Σω, a runρ of the tiling systemT =(Σ,Γ ∪Q,∆, F ) over the infinite pictureσa satifies:

for each integeri ≥ 0 ρ(0, i).ρ(1, i).ρ(2, i) . . . = αi = ui.qi.vi

i.e. ρ(0, i).ρ(1, i).ρ(2, i) . . . is the(i+ 1)th configuration ofM reading theω-wordσ ∈ Σω.
Thus the Büchi tiling system(T ,F ) recognizes the languageLa. �

Notice that the above cited constructions of [4] and of the proof of Lemma 5.4 are effective and that they
can be achieved in an injective way. This is expressed by the following lemma.

Lemma 5.5. There is an injective computable functionK from N into N satisfying the following prop-
erty.
If Mz is the non deterministic Turing machine (equipped with a1′-acceptance condition) of indexz, and
if TK(z) is the tiling system (equipped with a Büchi acceptance condition) of indexK(z), then

L(Mz)
a = LB(TK(z))

Recall that Castro and Cucker proved in [3] that the non-emptiness problem and the infiniteness problem
for ω-languages of Turing machines are bothΣ1

1-complete. We can now easily infer from Lemma 5.5 a
similar result for recognizable languages of infinite pictures.

Theorem 5.6. The non-emptiness problem and the infiniteness problem for Büchi-recognizable lan-
guages of infinite pictures areΣ1

1-complete, i.e. :

1. {z ∈ N | LB(Tz) 6= ∅} is Σ1
1-complete.

2. {z ∈ N | LB(Tz) is infinite} is Σ1
1-complete.

Proof. We first show that these two decision problems are in the classΣ1
1.

Notice first that, using a recursive bijectionb : (N−{0})2 → N−{0}, one can associate to eachω-word
σ ∈ Σω a uniqueω-picturepσ ∈ Σω,ω which is simply defined bypσ(i, j) = σ(b(i, j)) for all integers
i, j ≥ 1.
On the other hand a run of a tiling systemA=(Q,Σ,∆) over anω-picturep ∈ Σω,ω is a mappingρ from
ω × ω into Q, i.e. an element ofQω×ω. Using again a recursive bijection between(N)2 andN, we can
identify a runρ with an element ofQω and finally with a coding of this element over the alphabet{0, 1}.
So the runρ can be identified with its codēρ ∈ {0, 1}ω .
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Assume now that the tiling systemA=(Q,Σ,∆) is equipped with a set of accepting statesF ⊆ Q. It
is then easy to see that forσ ∈ Σω andρ ∈ {0, 1}ω , “ρ is a Büchi accepting run of(A, F ) over the
ω-picturepσ” can be expressed by an arithmetical formula, see also [1, Section 2.4].

We can now express “LB(Tz) 6= ∅” by “∃σ ∈ Σω ∃ρ ∈ {0, 1}ω [ ρ is a Büchi accepting run ofTz over
theω-picturepσ ]” which is aΣ1

1-formula.

In order to show that “LB(Tz) is infinite ” can be also expressed by aΣ1
1-formula, we shall use again the

bijectionb : (N − {0})2 → N − {0}.
We can consider an infinite wordσ ∈ Σω as a countably infinite family of infinite words overΣ : the
family of ω-words(σi) such that for eachi ≥ 1, σi is defined byσi(j) = σ(b(i, j)) for eachj ≥ 1. In a
similar manner anω-wordρ ∈ {0, 1}ω can be considered as a countably infinite family of infinite words
(ρi) defined, for eachi ≥ 1, by ρi(j) = ρ(b(i, j)) for eachj ≥ 1.
We can now express “LB(Tz) is infinite ” by the formula “∃σ ∈ Σω ∃ρ ∈ {0, 1}ω [ ( all ω-wordsσi

are distinct ) and (for each integeri ≥ 1, ρi is a Büchi accepting run ofTz over theω-picturepσi) ]” .
This is aΣ1

1-formula because “allω-wordsσi are distinct” can be expressed by the arithmetical formula:
“(∀j > k ≥ 1)(∃i ≥ 1) σj(i) 6= σk(i)”.

Using the reductionK given by Lemma 5.5 we can easily see thatL(Mz) is empty (respectively, infinite)
if and only ifLB(TK(z)) = L(Mz)

a is empty (respectively, infinite). This proves that

{z ∈ N | L(Mz) 6= ∅} ≤1 {z ∈ N | LB(Tz) 6= ∅}

{z ∈ N | L(Mz) is infinite} ≤1 {z ∈ N | LB(Tz) is infinite}

and then the completeness result follows from theΣ1
1-completeness of the non-emptiness problem and

of the infiniteness problem forω-languages of Turing machines. �

On the other hand it is easy to see that the languageΣω,ω − (Σω)a of ω-pictures is Büchi recognizable.
But the classTS(Σω,ω) is closed under finite union, so we get the following result.

Lemma 5.7. If L ⊆ Σω is accepted by some Turing machine with a Büchi acceptance condition, then
La ∪ [Σω,ω − (Σω)a] is Büchi recognizable by a finite tiling system.

Notice that the constructions are effective and that they can be achieved in an injective way, so we can
now state the following lemma, asserting the existence of a computable functionH which will be often
used in the sequel.

Lemma 5.8. There is an injective computable functionH from N into N satisfying the following prop-
erty.
If Mz is the non deterministic Turing machine (equipped with a1′-acceptance condition) of indexz, and
if TH(z) is the tiling system (equipped with a Büchi acceptance condition) of indexH(z), then

L(Mz)
a ∪ [Σω,ω − (Σω)a] = LB(TH(z))
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We can now prove that the universality problem for Büchi-recognizable languages of infinite pictures is
highly undecidable and give its exact degree.

Theorem 5.9. The universality problem for Büchi-recognizable languages of infinite pictures isΠ1
2-

complete, i.e. : {z ∈ N | LB(Tz) = Σω,ω} is Π1
2-complete.

Proof. We first check that the set{z ∈ N | LB(Tz) = Σω,ω} is in the classΠ1
2. We can write that

LB(Tz) = Σω,ω if and only if “∀ σ ∈ Σω ∃ρ ∈ {0, 1}ω ( ρ is a Büchi-accepting run ofTz overpσ )”. The
two quantifiers of type 1 are followed by an arithmetical formula. Thus the set{z ∈ N | LB(Tz) = Σω,ω}
is in the classΠ1

2.

In order to prove completeness we use the corresponding result for Turing machines proved in [3]: the
set {z ∈ N | L(Mz) = Σω} is Π1

2-complete. Consider now the injective computable functionH
from N into N given in Lemma 5.8. It is easy to see that for any Turing machine Mz it holds that
L(Mz) = Σω if and only if L(Mz)

a ∪ [Σω,ω − (Σω)a] = LB(TH(z)) = Σω,ω. This proves that
{z ∈ N | L(Mz) = Σω} ≤1 {z ∈ N | LB(Tz) = Σω,ω}, thus this latter set isΠ1

2-complete. �

We now consider the inclusion and the equivalence problems for Büchi-recognizable languages of infinite
pictures.

Theorem 5.10. The inclusion and the equivalence problems for Büchi-recognizable languages of infinite
pictures areΠ1

2-complete, i.e. :

1. {(y, z) ∈ N2 | LB(Ty) ⊆ LB(Tz)} is Π1
2-complete.

2. {(y, z) ∈ N2 | LB(Ty) = LB(Tz)} is Π1
2-complete.

Proof. We first prove that the set{(y, z) ∈ N2 | LB(Ty) ⊆ LB(Tz)} is aΠ1
2-set. It suffices to remark

that “LB(Ty) ⊆ LB(Tz)” can be expressed by theΠ1
2-formula : “∀ σ ∈ Σω ∀ρ ∈ {0, 1}ω ∃ρ′ ∈ {0, 1}ω

[if ( ρ is a Büchi accepting run ofTy overpσ), then (ρ′ is a Büchi accepting run ofTz overpσ)]”.
Then the set{(y, z) ∈ N2 | LB(Ty) = LB(Tz)} which is the intersection of the two sets{(y, z) ∈ N2 |
LB(Ty) ⊆ LB(Tz)} and{(y, z) ∈ N2 | LB(Tz) ⊆ LB(Ty)} is also aΠ1

2-set.

On the other hand it is easy to check that for all integersy, z, it holds thatL(My) ⊆ L(Mz) iff
LB(TH(y)) ⊆ LB(TH(z)) and thatL(My) = L(Mz) iff LB(TH(y)) = LB(TH(z)). Thus using the
reductionH we see that

{(y, z) ∈ N2 | L(My) ⊆ L(Mz)} ≤1 {(y, z) ∈ N2 | LB(Ty) ⊆ LB(Tz)}

{(y, z) ∈ N2 | L(My) = L(Mz)} ≤1 {(y, z) ∈ N2 | LB(Ty) = LB(Tz)}

TheΠ1
2-completeness follows then from theΠ1

2-completeness of the inclusion and the equivalence prob-
lems forω-languages of Turing machines proved in [3]. �

We are going to consider now the decision problems studied in[9]. Using topological arguments, we
gave in [9] the answer to two questions raised in [1], showingthat it is undecidable whether a Büchi
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recognizable language of infinite pictures is E-recognizable (respectively, A-recognizable). We are going
to show that these problems are actuallyΠ1

2-complete, using again some topological arguments.

Theorem 5.11. The problem to determine whether a given Büchi-recognizable language of infinite pic-
tures is E-recognizable (respectively, A-recognizable) isΠ1

2-complete, i.e. :

1. {z ∈ N | LB(Tz) is E-recognizable} is Π1
2-complete.

2. {z ∈ N | LB(Tz) is A-recognizable} is Π1
2-complete.

Proof. We first prove that the set{z ∈ N | LB(Tz) is E-recognizable} is a Π1
2-set. The sentence

“LB(Tz) is E-recognizable” can be expressed by “∃y LB(Tz) = LE(Ty)”. The assertion “LB(Tz) =
LE(Ty)” can be expressed by aΠ1

2-formula in a very similar manner as “LB(Tz) = LB(Ty)” was (see
the proof of Theorem 5.10), because forσ ∈ Σω andρ ∈ {0, 1}ω the sentence “(ρ is a E-accepting run
of Tz over theω-picturepσ)” can be expressed by an arithmetical formula. Moreover thequantifier∃y is
of type0 thus “LB(Tz) is E-recognizable” can be expressed by aΠ1

2-formula.
We prove in a very similar manner that “LB(Tz) is A-recognizable” can be expressed by aΠ1

2-formula.
Details are here left to the reader.

We now prove the completeness part of the result. We first define a simple operation overω-languages.
For twoω-wordsx, x′ ∈ Σω theω-wordx⊗ x′ is just the shuffle of the twoω-wordsx andx′ which is
simply defined by : for every integern ≥ 1 (x⊗x′)(2n−1) = x(n) and(x⊗x′)(2n) = x′(n). For two
ω-languagesL,L′ ⊆ Σω, theω-languageL⊗ L′ is defined byL⊗ L′ = {x⊗ x′ | x ∈ L andx′ ∈ L′}.

We shall use the following construction. We know that there is a simple example ofΣ1
1-complete set

L ⊆ Σω accepted by a1-counter automaton, hence by a Turing machine with1′ acceptance condition,
see [8]. Then it is easy to define an injective computable function θ from N into N such that, for every
integerz ∈ N, it holds thatL(Mθ(z)) = (L⊗ Σω) ∪ (Σω ⊗ L(Mz)).

We are going to use now the reductionH already considered above. We have seen that

L(Mz) = Σω if and only ifL(TH(z)) = Σω,ω

and we can easily see that

L(Mθ(z)) = Σω if and only ifL(Mz) = Σω

becauseL 6= Σω.

The reductionH ◦ θ is an injective computable function fromN into N.
We consider now two cases.
First case.L(Mz) = Σω. ThenL(Mθ(z)) = Σω andLB(TH◦θ(z)) = Σω,ω. In particularLB(TH◦θ(z))
is E-recognized (respectively, A-recognized) by a tiling system.
Second case.L(Mz) 6= Σω. Then there is anω-wordx ∈ Σω such thatx /∈ L(Mz). ButL(Mθ(z)) =
(L ⊗ Σω) ∪ (Σω ⊗ L(Mz)) thus{σ ∈ Σω | σ ⊗ x ∈ L(Mθ(z))} = L is a Σ

1
1-complete set. The

functionψx : σ → σ⊗ x is continuous. This implies thatL(Mθ(z)) is not a Borel set because otherwise
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L = {σ ∈ Σω | σ ⊗ x ∈ L(Mθ(z))} = ψ−1
x (L(Mθ(z))) would be also Borel as the inverse image of a

Borel set by a continuous function [15].
Then it is easy to see thatLB(TH◦θ(z)) = L(Mθ(z))

a ∪ [Σω,ω − (Σω)a] is not a Borel set. But it was
proved in [9, Lemma 5.2] that every E-recognized language ofinfinite pictures is aΣ0

2-set and in [9,
Lemma 5.3] that every A-recognized language of infinite pictures is a closed set.
Thus in that case theω-picture languageLB(TH◦θ(z)) is neither E-recognizable nor A-recognizable.

Finally, using the reductionH ◦ θ, we have proved that :

{z ∈ N | L(Mz) = Σω} ≤1 {z ∈ N | LB(Tz) is E-recognizable}

{z ∈ N | L(Mz) = Σω} ≤1 {z ∈ N | LB(Tz) is A-recognizable}

and this ends the proof. �

As in [9] we are going to infer from the proof of (high) undecidability of E-recognizability (respectively,
A-recognizability) some other (high) undecidability results.

It was proved in [9] that for any Borel classΣ0

α or Π
0

α, it is undecidable whether a given Büchi-
recognizable language ofω-pictures is inΣ0

α (respectively, is inΠ0

α, is a Borel set). We can deduce
from the above proof that the topological complexity of recognizable languages of infinite pictures is in
fact highly undecidable.

Theorem 5.12. Let α be a non-null countable ordinal. Then

1. {z ∈ N | LB(Tz) is in the Borel classΣ0
α} is Π1

2-hard.

2. {z ∈ N | LB(Tz) is in the Borel classΠ0
α} is Π1

2-hard.

3. {z ∈ N | LB(Tz) is a Borel set} is Π1
2-hard.

Proof. We can use the same reductionH ◦ θ as in the proof of Theorem 5.11. We have seen that there
are two cases.
First case.L(Mz) = Σω. ThenL(Mθ(z)) = Σω andLB(TH◦θ(z)) = Σω,ω. In particularLB(TH◦θ(z)) =
Σω,ω is an open and closed subset ofΣω,ω and it belongs to all Borel classesΣ0

α andΠ
0
α.

Second case.L(Mz) 6= Σω. Then we have seen thatLB(TH◦θ(z)) is not a Borel set.
Finally, using the reductionH ◦ θ, the result follows from theΠ1

2-completeness of the universality prob-
lem forω-languages of Turing machines. �

We now come to the complementability problem. The class of B¨uchi-recognizable languages of infinite
pictures is not closed under complement [1]. Thus the question naturally arises: “can we decide whether
the complement of a Büchi-recognizable language of infinite pictures is Büchi-recognizable?”. It has
been proved in [9] that this problem is undecidable. We are going to prove that it is in factΠ1

2-complete.

Another classical problem is the determinizability problem: “can we decide whether a given recogniz-
able language of infinite pictures is recognized by a deterministic tiling system?”. Again this problem
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has been proved to be undecidable in [9] and we shall prove it is in factΠ1
2-complete.

Recall that a tiling system is called deterministic if on anypicture it allows at most one tile covering
the origin, the state assigned to position(i + 1, j + 1) is uniquely determined by the states at positions
(i, j), (i + 1, j), (i, j + 1) and the states at the border positions(0, j + 1) and(i + 1, 0) are determined
by the state(0, j), respectively(i, 0), [1].
As remarked in [1], the hierarchy proofs of the classical Landweber hierarchy defined using determin-
istic ω-automata “carry over without essential changes to pictures”. In particular it is easy to see that
a language ofω-pictures which is Büchi-recognized by a deterministic tiling system is aΠ0

2-set and
that a language ofω-pictures which is Muller-recognized by a deterministic tiling system is a boolean
combination ofΠ0

2-sets, hence a∆0
3-set.

We can now state the following results.

Theorem 5.13. The determinizability problem and the complementability problem for Büchi-recognizable
languages of infinite pictures areΠ1

2-complete, i.e. :

1. {z ∈ N | LB(Tz) is Büchi-recognizable by a deterministic tiling system} is Π1
2-complete.

2. {z ∈ N | LB(Tz) is Muller-recognizable by a deterministic tiling system} is Π1
2-complete.

3. {z ∈ N | ∃y Σω,ω − LB(Tz) = LB(Ty)} is Π1
2-complete.

Proof. It is easy to see that the setD of indices of deterministic tiling systems equipped with a Büchi
acceptance condition is recursive. The formula∃y ∈ D LB(Tz) = LB(Ty) can be written : “∃y[y ∈
D andLB(Tz) = LB(Ty)]” and it can be expressed by aΠ1

2-formula because the quantifier∃y is of type
0 and “LB(Tz) = LB(Ty)” can be expressed by aΠ1

2-formula. Thus the set{z ∈ N | ∃y ∈ D LB(Tz) =
LB(Ty)} is in the classΠ1

2.
The case of deterministic tiling systems withMuller acceptance condition is very similar. Details are
here left to the reader.
On the other hand “Σω,ω − LB(Tz) = LB(Ty)” can be expressed by aΠ1

2-formula so “∃y Σω,ω −
LB(Tz) = LB(Ty)” can be expressed by aΠ1

2-formula because the quantifier∃y is of type0. Thus the
set{z ∈ N | ∃y Σω,ω − LB(Tz) = LB(Ty)} is in the classΠ1

2.

To prove completeness, we use the same reductionH ◦ θ as in the proof of Theorem 5.11. We have seen
that there are two cases.
First case.L(Mz) = Σω and thenLB(TH◦θ(z)) = Σω,ω. In particularLB(TH◦θ(z)) = Σω,ω is accepted
by a Büchi deterministic tiling system and also by a Muller deterministic tiling system. Morever its
complement is empty so it is Büchi (or Muller) recognized bya tiling system.
Second case.L(Mz) 6= Σω. Then we have seen thatLB(TH◦θ(z)) is not a Borel set. Thus in that
caseLB(TH◦θ(z)) cannot be accepted by any deterministic tiling system with Büchi or Muller accep-
tance condition. Moreover its complementΣω,ω − LB(TH◦θ(z)) is not aΣ

1
1-subset ofΣω,ω because

otherwiseLB(TH◦θ(z)) would be in∆
1
1 = Σ

1
1 ∩ Π

1
1 which is the class of Borel sets by Suslin’s Theo-

rem. ThusΣω,ω −LB(TH◦θ(z)) cannot be Büchi-recognizable because it is not aΣ
1
1-subset ofΣω,ω and

TS(Σω,ω) ⊆ Σ1
1 ⊆ Σ

1
1, see [1].

Finally, using the reductionH ◦ θ, the result follows from theΠ1
2-completeness of the universality prob-

lem forω-languages of Turing machines. �
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We gave in [9] a solution to a question of [1], showing that alllanguages of infinite pictures which are
accepted row by row by Büchi or Choueka automata reading words of lengthω2 are Büchi recognized
by a finite tiling system, but the converse is not true. Then weshowed that one cannot decide whether
a given Büchi-recognizable language of infinite pictures is accepted row by row by a Büchi or Choueka
automaton reading words of lengthω2. We are going to show now that this decision problem is actually
alsoΠ1

2-complete.

Recall that anω2-wordx over the alphabetΣ is a sequence of lengthω2 of letters inΣ. It is denoted by
(x(i))0≤i<ω2 = x(0).x(1).x(2) . . . x(i) . . . , where for alli, 0 ≤ i < ω2, x(i) is a letter inΣ.

The set ofω2-words overΣ is denoted byΣω2
. An ω2-language overΣ is a subset ofΣω2

.
To define a notion of acceptance row by row of anω-picture we first associate, to an infinite picture
p ∈ Σω,ω, anω2-word p̄ ∈ Σω2

which is defined bȳp(ω.n + m) = p(m + 1, n + 1) for all integers
n,m ≥ 0.
This can be extended to languages of infinite pictures: forL ⊆ Σω,ω we denotēL = {p̄ | p ∈ L} soL̄ is
anω2-language overΣ.

We refer the reader to [9] for a precise definition of generalized Büchi automaton acceptings words of
ordinal length. We recall now the following definition.

Definition 5.14. A language of infinite picturesL ⊆ Σω,ω is accepted row by row by an ordinal Büchi
automaton if and only if theω2-languageL̄ is regular, i.e. is accepted by an ordinal Büchi automaton.
We denoteBA(Σω,ω) the set of languagesL ∈ Σω,ω such that̄L is regular.

We can now state the following result.

Theorem 5.15. The problem to determine whether a given Büchi-recognizable language of infinite pic-
tures is accepted row by row by an ordinal Büchi automaton, isΠ1

2-complete, i.e. :

{z ∈ N | L̄B(Tz) is regular} is Π1
2-complete.

Proof. Recall that, for each language of infinite pictures which is accepted row by row by a Büchi
automaton reading words of lengthω2, it was constructed in [9] a Muller tiling system accepting it.
Then, using [1, Theorem 1], one can effectively construct a Büchi tiling system accepting the same
language. The setTR of indices of Büchi tiling systems constructed from the proof of [9, Theorem 4.1]
and [1, Theorem 1] is easily seen to be recursive. Notice thatTR does not contain all indices of Büchi
tiling systems accepting languages inBA(Σω,ω). But for each languageL inBA(Σω,ω) there is an index
z ∈ TR such thatL = LB(Tz).
We can then express “L̄B(Tz) is regular ” by the formula “∃y[( y ∈ TR ) andLB(Tz) = LB(Ty)”. This
is aΠ1

2-formula because “LB(Tz) = LB(Ty)” can be expressed by aΠ1
2-formula and the quantifier∃y is

of type0.

To prove completeness we can use the same reductionH ◦ θ as in the proof of Theorem 5.11. We have
seen that there are two cases.
First case.L(Mz) = Σω and thenLB(TH◦θ(z)) = Σω,ω. In particular,LB(TH◦θ(z)) = Σω,ω is accepted
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row by row by an ordinal Büchi automaton.
Second case.L(Mz) 6= Σω. Then we have seen thatLB(TH◦θ(z)) is not a Borel set. Thus in that case
L̄B(TH◦θ(z)) is not a regularω2-language because otherwiseLB(TH◦θ(z)) would be a Borel set (of rank
smaller than or equal to 5), see [9, Proposition 4.2].

Finally, using the reductionH ◦ θ, the completeness result follows from theΠ1
2-completeness of the

universality problem forω-languages of Turing machines.
�

6. Concluding Remarks

We have given in this paper the exact degree of numerous natural decision problems for recognizable
languages of infinite pictures. This way we have given examples of natural highly undecidable problems
which are complete at the first or at the second level of the analytical hierarchy. Notice that many
examples ofΣ1

1-complete problems are already known, such as the recurringtiling problem, see for
instance [12, 13, 14]. But it seems that very few natural problems, except some problems aboutω-
languages of Turing machines, are known to beΠ1

2-complete. One of the motivation of Castro and
Cucker in [3] was actually to “give natural complete problems for the lowest levels of the analytical
hierarchy which constitute an analog of the classical complete problems given in recursion theory for the
arithmetical hierarchy”. So we have added in this paper manynew examples which complete the work
of [3].

Notice that in another paper we have also given many naturalΠ1
2-complete problems about the infinite

behaviour of very simple finite machines like1-counter automata or2-tape automata, [10].

We hope also that our results could be useful in other connected areas, for instance in the study of the
infinite behaviour of cellular automata, [25, 6].
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