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Abstract. Altenbernd, Thomas and Wohrle have considered accep@ileaguages of infinite
two-dimensional words (infinite pictures) by finite tilingstems, with usual acceptance conditions,
such as the Buichi and Muller ones, [h [1]. Itwas provecﬂirﬂt@}l it is undecidable whether a Buchi-
recognizable language of infinite pictures is E-recogrizédespectively, A-recognizable). We show
here that these two decision problems are actuajycomplete, hence located at the second level
of the analytical hierarchy, and “highly undecidable”. Weegthe exact degree of numerous other
undecidable problems for Biichi-recognizable languadésfinite pictures. In particular, the non-
emptiness and the infiniteness problemsareomplete, and the universality problem, the inclusion
problem, the equivalence problem, the determinizabiligbem, the complementability problem,
are alllli-complete. It is alsdli-complete to determine whether a given Biichi recogniztzsie
guage of infinite pictures can be accepted row by row usingigon@aton model over ordinal words
of lengthw?.

Keywords: Languages of infinite pictures; recognizability by tilingsseems; decision problems;
highly undecidable problems; analytical hierarchy.

1. Introduction

Languages of infinite words accepted by finite automata wese dtudied by Bichi to prove the de-
cidability of the monadic second order theory of one suamesser the integers. Since then regular
w-languages have been much studied and many applicatiorsbleawn found for specification and veri-
fication of non-terminating systems, s¢€ [P4,[23, 19] for ymasults and references.
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In a recent paper, Altenbernd, Thomas and Wohrle have deresl acceptance of languages of infinite
two-dimensional words (infinite pictures) by finite tilingsgems, with the usual acceptance conditions,
such as the Biichi and Muller ones, firstly used for infiniterdgo This way they extended both the clas-
sical theory ofu-regular languages and the classical theory of recogrézablguages of finite pictures,
[L], to the case of infinite pictures.

Many classical decision problems are studied in formaluagg theory and in automata theory and arise
now naturally about recognizable languages of infiniteypet. We proved in[J9] that many decision
problems for Biichi-recognizable languages of infiniteypies are undecidable. In particular, we showed,
using topological arguments, that it is undecidable wheghBuchi-recognizable language of infinite
pictures is E-recognizable (respectively, A-recognieabjiving the answer to two questions raised in
[[]. wWe proved also several other undecidability resulthagollowing ones: one cannot decide whether
a Buichi-recognizable language of infinite pictures candeegnized by aeterministic Buchi or Muller
tiling system, or whether it can be accepted row by row usmgwomaton model over ordinal words of
lengthw?.

Using thell}-completeness of the universality problem foanguages of non deterministic Turing
machines which was proved by Castro and Cuckef]in [3], andedopplogical arguments, we show in
this paper that the above decision problems are actligfigomplete, hence located at the second level
of the analytical hierarchy, and “highly undecidable”. kfgiother results of{]3], we give also the exact
degree of numerous other undecidable problems for Bigdugnizable languages of infinite pictures.
In particular, the non-emptiness and the infiniteness problareXi-complete, and the universality
problem, the inclusion problem, the equivalence probldra,domplementability problem, are all-
complete. This gives new natural examples of decision probllocated at the first or at the second level
of the analytical hierarchy. We show also that topologicalerties of Biichi-recognizable languages of
infinite pictures are highly undecidable.

The paper is organized as follows. In Section 2 we recall difins for pictures and tiling systems.
The definition and properties of the analytical hierarchy iatroduced in Section 3. We recall in Sec-
tion 4 some notions of topology, including the definitionsBufrel and analytic sets. We prove high
undecidability results in Section 5. Concluding remarlesgiven in Section 6.

2. Tiling Systems

We assume the reader to be familiar with the theory of formllgnguages[[24, 23]. We recall usual
notations of formal language theory.

WhenX is a finite alphabet, aon-empty finite wordverX is any sequence = a4 ... ag, wherea; € X
fori =1,...,k,andk is an integer> 1. Thelengthof x is k, denoted byz|. Theempty worchas no
letter and is denoted by its length is0. >* is theset of finite wordgincluding the empty word) ovex.
Thefirst infinite ordinalis w. An w-word over X is anw -sequence:; . ..a, ..., where for all integers
i > 1, a; € ¥. Wheno is anw-word overX, we writeoc = o(1)o(2)...0(n)..., where for all
i, o(i) € ¥,ando[n] = o(1)o(2)...0(n) foralln > 1 ando[0] = A.

The usual concatenation product of two finite wotdandv is denotedu.v (and sometimes justv).
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This product is extended to the product of a finite wardnd anv-word v: the infinite wordu.v is then
thew-word such that:

(uv)(k) = u(k) if k < |u|,and(u.v)(k) = v(k — |u|) if & > |ul.

Theset of w-words over the alphabet is denoted by=“. An w-languageover an alphabeX is a subset
of ¥v,

We now define two-dimensional words, i.e. pictures.

Let X be a finite alphabet an# be a letter not irt and lets> = Y U{#}. If m andn are two integers- 0
orif m = n = 0, a picture of sizém, n) overX is a functionp from {0, 1, ... ,m+1} x{0,1,... ,n+1}
into 3 such thatp(0,7) = p(m + 1,i) = # for all integersi € {0,1,...,n + 1} andp(i,0) =
p(i,n+1) = # forallintegersi € {0,1,...,m+1}andp(i,j) € Xif i ¢ {0,m+1}andj ¢ {0,n+1}.
The empty picture is the only picture of sigg 0) and is denoted by. Pictures of siz¢n, 0) or (0, n),
for n > 0, are not definedx** is the set of pictures oveét. A picture languagd. is a subset oE**.

An w-picture overs is a functionp from w x w into . such thap(i,0) = p(0,7) = # for all « > 0 and

p(i,j) € X fori,j > 0. X% is the set ofu-pictures overx. An w-picture languagé. is a subset of
Y,

For X afinite alphabet we call“’ the set of functions from x w into ¥. So the seE“ of w-pictures

overY is a strict subset af+”.

We shall say that, for each integgr> 1, the j* row of anw-picturep € £« is the infinite word
p(1,5).p(2,7).p(3,7) ... overX and thej?* column ofp is the infinite wordp(j,1).p(4,2).p(4,3) . ..

overy.

As usual, one can imagine that, for integgrs- k£ > 1, the j** column ofp is on the right of the:!"

column ofp and that thej*" row of p is “above” thek! row of p.

We introduce now tiling systems as in the pagér [1].

A tiling system is a tupled=(Q, X, A), where@ is a finite set of states; is a finite alphabetA C
(2 x Q)*is afinite set of tiles.

A Buchi tiling system is a paif.A,F’) where A=(Q, X, A) is a tiling system and” C @ is the set of
accepting states.

A Muller tiling system is a pai(.A, F) where A=(Q, X, A) is a tiling system andFC 2¢ is the set of
accepting sets of states.

Tiles are denoted b (a3,43) ~(a4,4) with a; € 3 andg; € Q,
ath) (@#12)

bs b
and in general, over an alphaligtby b3 b4 ) with b; € T'.
1 2

A combination of tiles is defined by:

bs by \ [ V5 by \ _f (bs,05) (ba)bh)
br by by by (b1, 07) (b2, bh)
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A run of a tiling systemA=(Q, X, A) over a (finite) picturey of size(m,n) overX is a mapping from
{0,1,...,m+1} x{0,1,...,n+1} into @ such that for all(z, ) € {0,1,...,m} x{0,1,...,n} with
p(i,j) = ai; andp(i, j) = ¢;,; we have

R e I I B A S
Qg5 QAi+1,5 qi.j qi+1,5
A run of a tiling systemA=(Q, X, A) over anw-picturep € ¥*¢ is a mapping from w x w into @
such that for al(4, j) € w x w with p(i, j) = a; ; andp(i, j) = ¢; ; we have

s Wit . o
i,j4+1 i+1,5+1 ° Qij+1  qi+1,5+1 c A.
ai,j Qi+1,5 qi,j qi+1,5
We now recall acceptance of finite or infinite pictures byglisystems:

Definition 2.1. Let A=(Q, X, A) be a tiling systemF' C Q andFC 2%.

e The picture language recognized Hyis the set of picturep € >** such that there is some ryn
of Aonp.

e Thew-picture language A-recognized (respectively, E-recoephi Buchi-recognized) biyAd,F') is
the set ofw-picturesp € X such that there is some rynof .4 onp andp(v) € F for all (re-
spectively, for at least one, for infinitely many) w?. It is denoted byL“((A,F)) (respectively,
LP((AF)), LP((AF))).

e Thew-picture language Muller-recognized byl, F) is the set ofv-picturesp € ¥** such that
there is some rup of Aonp andinf(p) € F wherelnf(p) is the set of states occurring infinitely
often inp. Itis denoted byl ™ ((A,F)).

Notice that arw-picture languagd. C ¥ is recognized by a Buchi tiling system if and only if it is
recognized by a Muller tiling systend,] [1].

We shall denotd’S(X+) the class of languages C >« which are recognized by some Biichi (or
Muller) tiling system.

We recall now an interesting variation of the above definegpiance conditions for infinite pictures,
introduced in[[IL]. This variation uses the diagonal otapicture.

The diagonal of an-picturep is the set of vertice®i(p) = {(i,7) | i € w}.

Thew-picture language A-recognized (respectively, E-recogphi Buchi-recognized) byA,F') on the
diagonalis the set ofu-picturesp € ¢ such that there is some ryrnof A onp andp(v) € F for all
(respectively, for at least one, for infinitely manyg Di(p).

We define similarly the notion ab-picture language Muller-recognizezh the diagonaby (A, F),
replacingIn f(p) by the set of statesn f(Di(p)) occurring infinitely ofteron the diagonal op.

The following result was stated iff [1].
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Theorem 2.2. An w-picture languagd. C X“* is A-recognized (respectively, E-recognized, Biichi-
recognized, Muller-recognized) by a tiling system if andyoifi it is A-recognized (respectively, E-
recognized, Bichi-recognized, Muller-recognized)the diagonaby a tiling system.

We wish now to see links with classical notions of tiling oétfquarter of the) plane, see for instance

(2.

We denotdl’ = ¥ x @ whereY is the alphabet of pictures ar@ is the set of states of a tiling system
A=(Q, %, A). We consider configurations which are element§of«. One can imagine that each cell
of the quarter of the plane contains a letter of the alphBbet

Let A C (3 x Q)* = I'* be afinite set of tiles. We denote its complementby = I'* — A. A tiling of
the (quarter of the) plane with— as set of forbidden patterns is simply a configuratian I'“*“ such
that for all integers, j € w:

(c(i,j+1) cli+1,j+1) ) A
c(i, 5) c(i+1,5) '

Then thew-picture languagel, C ¥ which is A-recognized (respectively, E-recognized, Biich
recognizedpn the diagonaby the tiling system(.A, F’) is simply the set ofv-picturesp € ¥“* which
are projections of configurationse I'“*“ which are tilings of the (quarter of the) plane witti- as
set of forbidden patterns such that for all (respectivaly,dt least one, for infinitely many) € w the
second component @fi, ) is in F'. A similar characterization can be given for the Muller gateace
condition.

We can also easily state similar characterizationggfobal recognizability, i.e. nobn the diagonalby
tiling systems.

3. The Analytical Hierarchy

The set of natural numbers is denoted¥gnd the set of all mappings frolinto N will be denoted by
F.

We assume the reader to be familiar with the arithmeticabhofty on subsets &f. We now recall the
notions of analytical hierarchy and of complete sets foss#a of this hierarchy which may be found in

[B11.

Definition 3.1. Let k,7 > 0 be some integersd is a partial recursive function df function variables

and! number variables if there existsc N such that for any(fi,..., fx,z1,...,2;) € F* x N/, we
have

(I)(fl, . ,fk,l'l, . ,1‘[) = Tzfl""’fk(l'l, . ,1’[),
where the right hand side is the output of the Turing machiitk index z and oraclesfy, ..., fi over
the input(z1,...,x;). Fork > 0 andl = 0, ® is a partial recursive function if, for somg

O(f1,..., fx) = tiT(0).
The valuez is called the Godel number or index for
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Definition 3.2. Letk,[ > 0 be some integers an C F* x N!. The relationR is said to be a recursive
relation ofk function variables andinumber variables if its characteristic function is rectgsi

We now define analytical subsetsisf.

Definition 3.3. A subsetR of N! is analytical if it is recursive or if there exists a recuesisetS C
F™ x N", with m > 0 andn > [, such that

R= {('Ila cee >xl) | (lel)(Q252) ce (Qm—i—n—lsm-i—n—l)s(fla cee 7fmax17 ce >xn)}>

whereQ); is eithervor3for1 <i <m-+n—I[,andwhere,...,Spmin_garefi, ..., fim, Tit1,---,Tn
in some order.
The expressiofiQ1s1)(Q252) - - - (Qman—1Sm+n—1)S(f1,---, fm,x1,...,2y) is called a predicate form

for R. A quantifier applying over a function variable is of typeotherwise it is of typd). In a predicate
form the (possibly empty) sequence of quantifiers, indexetthéir type, is called the prefix of the form.
The reduced prefix is the sequence of quantifiers obtainedgyressing the quantifiers of typdrom
the prefix.

The levels of the analytical hierarchy are distinguisheattysidering the number of alternations in the
reduced prefix.

Definition 3.4. Forn > 0, a X! -prefix is one whose reduced prefix begins withand hasn — 1

alternations of quantifiers. A}-prefix is one whose reduced prefix is empty. kor 0, all}-prefix is
one whose reduced prefix begins withand has: — 1 alternations of quantifiers. Al}-prefix is one
whose reduced prefix is empty.

A predicate form is &), (I1})-form if it has aX! (IT})-prefix. The class of sets in sorb& which can
be expressed ik -form (respectively]I}-form) is denoted byl (respectively]I!).

The class:} = I1{ is the class of arithmetical sets.

We now recall some well known results about the analytioatdrchy.

Proposition 3.5. Let R C N! for some integei. ThenR is an analytical set iff there is some integer
n > 0such thatk € 3} or R € 1.

Theorem 3.6. For each integen > 1,
(@ ZLUlly €L NI,
(b) AsetR C N'isin the class! iff its complement is in the clasd].
(c) B} —TI} # 0 andIT! — L 0.
Transformations of prefixes are often used, following tHesgiven by the next theorem.

Theorem 3.7. For any predicate form with the given prefix, an equivalemtdprate form with the new
one can be obtained, following the allowed prefix transfdaroms given below :

@~...3030. .. ... 30, VOO O
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() ...330 . 3 YL Y
@©...3° ... ..3., N v
@ ... 300 130 03 3y

We can now define the notion of 1-reduction andtcomplete (respectivelyil.-complete) sets. No-
tice that we give the definition for subsetsfbut one can easily extend this definition to the case of
subsets oN' for some integet.

Definition 3.8. Given two setsd, B C N we say A is 1-reducible to B and writé <; B if there exists
a total computable injective function f frofi to N such thatd = f~![B].

Definition 3.9. A set A C N is said to beX!-complete (respectivelyiI}-complete) iff A is a ¥} -set
(respectively]1.-set) and for eack! -set (respectivelyiI.-set) B C N it holds thatB <; A.

For each integen > 1 there exist som&.-complete sefZ,, C N. The complemenE, =N — E,, is a
I1L-complete set. These sets are precisely defingd jn [21] or [3]

4. Borel Hierarchy and Analytic Sets

We assume now the reader to be familiar with basic notionsmilogy which may be found in [IL§, 117,

9. [23,[1B].

There is a natural metric on the S8t of infinite words over a finite alphabét containing at least
two letters which is called therefix metricand defined as follows. Far,v € ¥“ andu # v let
6(u,v) = 27 ref(uv) wherel,et(u,0) IS the first integen such that then + 1)t letter ofu is different
from the (n + 1) letter ofv. This metric induces oXx* the usual Cantor topology for whiabpen
subsetof ¢ are in the formiV. X, whereWW C ¥*. A setL C ¥¢ is aclosed setff its complement
>« — Lis an open set. Define now tB®rel Hierarchyof subsets ok«

Definition 4.1. For a non-null countable ordinal, the classe&? andTI® of the Borel Hierarchy on
the topological spacE® are defined as follows:

E? is the class of open subsetsXsf, H? is the class of closed subsetsXf,

and for any countable ordinal > 2:

3, is the class of countable unions of subset&dfin |, _, IT.

IT), is the class of countable intersections of subsets‘oin |, _, X9,

For a countable ordinak, a subset of>* is a Borel set ofrank « iff it is in X2 U IT% but not in
U'y<a(2g U Hg)

There are also some subsetsSsf which are not Borel. Indeed there exists another hieraraypthd
the Borel hierarchy, which is called the projective hiergrand which is obtained from the Borel hier-
archy by successive applications of operations of praaciind complementation. The first level of the
projective hierarchy is formed by the classasfalytic setsand the class ofo-analytic setsvhich are
complements of analytic sets. In particular the class oEBsubsets ob“ is strictly included into the
classX} of analytic setswhich are obtained by projection of Borel sets.
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Definition 4.2. A subsetA of ¥¢ is in the clas:! of analytic sets iff there exists another finite Sét
and a Borel subseB of (X x Y)¥ such thatr € A — Jy € Y such that(z,y) € B, where(z,y) is
the infinite word over the alphab&t x Y such thatx, y)(i) = (x(i),y(¢)) for each integei > 1.

We now define completeness with regard to reduction by coatis functions. For a countable ordinal
a>1,asetF C X¥ is said to be & (respectivelyI1?, 31)-complete seif for any setE C Y (with

Y a finite alphabet):E € X0 (respectively,E € T1?, E € 1) iff there exists a continuous function
f:YY — ¥¢suchthatt = f~1(F). X0 (respectivelyII?)-complete sets, with an integer> 1, are
thoroughly characterized if [22].

In particularR = (0*.1)« is a well known example ofI9-complete subset of0, 1}«. It is the set of
w-words over{0, 1} having infinitely many occurrences of the lettedts complemen{0, 1}~ — (0*.1)%
is aXxy-complete subset dfo, 1}«.

ForI afinite alphabet having at least two letters, thel¥&t“ of functions fromw x w into I" is usually
equipped with the product topology of the discrete topology'. This topology may be defined by the
following distanced. Letz andy in T'“*“ such thatc # 3, then

1
d(z,y) = o0 where

n=min{p > 0| 3(,j) x(i,j) # y(i, j) andi + j = p}.
Then the topological spad&’*“ is homeomorphic to the topological spdce, equipped with the Can-
tor topology. Borel subsets &> are defined from open subsets as in the case of the topolagiaet
I'“. Analytic subsets of“*“ are obtained as projections dfi*“ of Borel subsets of the product space
Twxw x v,
The sett“ of w-pictures ovel, viewed as a topological subspacessf<“, is easily seen to be home-
omorphic to the topological spaé&’*«, via the mappingp : ¥ — X¥*“ defined byp(p)(i,7) =
p(i+1,7+1)forallp e ¥¥¥andi,j € w.

5. Highly Undecidable Problems

We are now going to study decision problems about recoglEZainguages of infinite pictures. We
shall use some results of Castro and Cucker who studied efegfalecision problems for-languages
accepted by Turing machines and proved that many of themiging/lundecidable,[[3].

So we now recall the notion of acceptance of infinite words bging machines considered by Castro
and Cucker in[[3].

Definition 5.1. A non deterministic Turing machin&1 is a5-tuple M = (Q, X, T, 4, qo), whereQ is a
finite set of statesy. is a finite input alphabet; is a finite tape alphabet satisfying C I, ¢q is the initial
state, and is a mapping fron) x I" to subsets of) x I" x {L, R, S}. A configuration ofM is a3-tuple
(g,0,1), whereq € Q, o0 € T'Y andi € N. An infinite sequence of configuratioms= (g¢;, o, ji)i>1 IS
called a run ofM onw € ¥ iff:

(@) (q1,01,51) = (0, w,1), and



Olivier Finkel/ Highly Undecidable Problems about Recagtiility by Tiling Systems 9

(b) for eachi > 1, (g;, o, Ji) b (Qit1, Q15 Jit1),

wherel- is the transition relation aM defined as usual. The runis said to be complete if the limsup
of the head positions is infinity, i.e. {f/n > 1)(3k > 1)(j, > n). The runr is said to be oscillating if
the liminf of the head positions is bounded, i.e(ik > 1)(Vn > 1)(Im > n)(jm = k).

Definition 5.2. Let M = (Q,%,T,4,qo) be a non deterministic Turing machine ahdC Q. The
w-language accepted by, F') is the set ofv-wordso € ¢ such that there exists a complete non
oscillating runr = (g;, a4, j;)i>1 0of M ono such that, for ali, ¢; € F.

The above acceptance condition is dendtedcceptance infJ4]. Another usual acceptance condition is
the now called Biichi acceptance condition which is alsatki2-acceptance if4]. We now recall its
definition.

Definition 5.3. Let M = (Q,%,T, 4, qo) be a non deterministic Turing machine ahdC . Thew-
language Buchi accepted 1, F') is the set ofv-wordso € ¥“ such that there exists a complete non
oscillating runr = (g;, o, j;)i>1 of M on¢ and infinitely many integerésuch thaty; € F.

Recall that Cohen and Gold proved [h [4, Theorem 8.6] thataameeffectively construct, from a given
non deterministic Turing machine, another equivalent netemninistic Turing machine, equipped with
the same kind of acceptance condition, and in which everyisuwwomplete non oscillating. Cohen
and Gold proved also if][4, Theorem 8.2] thatatanguage is accepted by a non deterministic Turing
machine withl’-acceptance condition iff it is accepted by a non deterriniairing machine with Buchi
acceptance condition.

From now on, we shall denot®&1, the non deterministic Turing machine of index(accepting words
overX = {a,b}), equipped with a’-acceptance condition. In a similar way we shall deribte¢he
non deterministic tiling system of index (accepting pictures ovet = {a, b}), equipped with a Biichi
acceptance condition.

Foro € ¥¢ = {a,b}* we denotes® the w-picture whose first row is the-word o and whose other
rows are labelled with the letter. For an w-language L C ¥ = {a, b}* we denoteL” the language
of infinite pictures{c® | o € L}.

We can now recall a result proved iih [9] which will be usefukla

Lemma 5.4. ([$])
If L C X¢is accepted by some Turing machine (in which every run is éetamon oscillating) with a
Biichi acceptance condition, thért is Blichi recognizable by a finite tiling system.

Proof. Let L C ¥“ be an w-language accepted by some Turing machirte= (Q, >, T, §, qo) with a
Biichi acceptance condition, whefeC () is the set of accepting states.

We assume that the Turing machine has a single semi-infeqite, twith one reading head which may
also write on the tape.

Cohen and Gold proved that one can consider only such actestrinodel of Turing machinef [4].

An instantaneous configuration #ff is given by an infinite word..q.v whereu € T'*, ¢ € Q, v € T“,
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and the first letter of is the one scanned by the head/\df.

The initial configuration ofM reading the infinite word € ¥ is ¢p.0.

A computation ofM readinge € X¢ is an infinite sequence of configurationg, a1, s, ..., a4, ...
whereay = qo.o is the initial configuration and for all intege¥s> 0, o; = w;.q;.v; is the (i 4 1)
configuration.

The computation is successful if and only if there exists al Stateg; € F and infinitely many integers
i such thai; = gy.

Using a similar reasoning as in the classical proof of theegitthbility of the emptiness problem for
recognizable languages of finite picturds] [11, p. 34], wedzfine a set of tilea in such a way that for
o € ¥¢¥, arunp of the tiling systen7 =(X,T" U Q, A, F') over the infinite picturer® satifies:

for each integet > 0  p(0,4).p(1,7).p(2,7) ... = a = w;.q;.v;

i.e. p(0,1).p(1,4).p(2,4) ... is the(i + 1)*" configuration ofM reading thes-word o € ¥*.
Thus the Buchi tiling syster(iZ ,F") recognizes the languadé'. O

Notice that the above cited constructions[¢f [4] and of teopof Lemme5}4 are effective and that they
can be achieved in an injective way. This is expressed byollmring lemma.

Lemma 5.5. There is an injective computable functid from N into N satisfying the following prop-
erty.

If M. is the non deterministic Turing machine (equipped witli-acceptance condition) of indexand
if 7x(.) is the tiling system (equipped with a Buchi acceptance itimmj of index K (z), then

L(Mz)a = LB(TK(Z))

Recall that Castro and Cucker proved|ih [3] that the non-grap$ problem and the infiniteness problem
for w-languages of Turing machines are bath-complete. We can now easily infer from Lemfng 5.5 a
similar result for recognizable languages of infinite pietu

Theorem 5.6. The non-emptiness problem and the infiniteness problem mhBrecognizable lan-
guages of infinite pictures abel-complete, i.e. :

1. {z e N| LB(T,) # 0} is ©i-complete.
2. {z € N| LB(T,) is infinite } is X1-complete.

Proof. We first show that these two decision problems are in the &lass

Notice first that, using a recursive bijection (N —{0})?> — N — {0}, one can associate to eactword

o € ¥ a uniquew-picturep? € X which is simply defined by’ (i, j) = o(b(i,5)) for all integers
i,j > 1.

On the other hand a run of a tiling systeds(Q, >, A) over anw-picturep € ¥“* is a mapping from

w x winto Q, i.e. an element of)**~. Using again a recursive bijection betwe@h)? andN, we can
identify a runp with an element of)“ and finally with a coding of this element over the alphafietl }.

So the rurp can be identified with its code € {0, 1}“.
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Assume now that the tiling system=(Q, >, A) is equipped with a set of accepting staféesC Q. It
is then easy to see that fere ¥ andp € {0,1}*, “pis a Buchi accepting run qfA, F') over the
w-picturep®” can be expressed by an arithmetical formula, see fllso (tid®e2.4].

We can now expressi®(7,) # (" by “3o € ¥ 3p € {0,1}* [ pis a Biichi accepting run df, over
thew-picturep? ]” which is a ©1-formula.

In order to show that .2 (7,) is infinite ” can be also expressed bya-formula, we shall use again the
bijectiond : (N — {0})?> — N — {0}.

We can consider an infinite worgd € ¥ as a countably infinite family of infinite words ov&r: the
family of w-words(o;) such that for each > 1, o; is defined byr;(j) = o(b(4,5)) foreachj > 1. Ina
similar manner a-word p € {0, 1}* can be considered as a countably infinite family of infinitedgo
(p;) defined, for each > 1, by p;(5) = p(b(, 7)) for eachj > 1.

We can now expressL?(7,) is infinite ” by the formula 90 € ¥ 3p € {0,1}* [ (all w-wordso;

are distinct ) and (for each integer> 1, p; is a Buchi accepting run df, over thew-picture p?) ] .
This is a©}-formula because “alb-wordse; are distinct” can be expressed by the arithmetical formula:
Vi >EkE>1)(Fi>1) 04(i) # o)

Using the reductior” given by Lemmd5]5 we can easily see that 1, ) is empty (respectively, infinite)
if and only if LB(TK(Z)) = L(M.)* is empty (respectively, infinite). This proves that

{z eN|LIM.) # 0} <1 {2 e N| L(T;) # 0}

{z e N| L(M,) isinfinite } <; {z € N | L?(T,) is infinite }

and then the completeness result follows from Ydecompleteness of the non-emptiness problem and
of the infiniteness problem fog-languages of Turing machines. O

On the other hand it is easy to see that the languatge — (3“)® of w-pictures is Biichi recognizable.
But the class/'S(X+¢) is closed under finite union, so we get the following result.

Lemmab.7. If L C X¢ is accepted by some Turing machine with a Biichi acceptaordition, then
Ly [E9« — (X¢)?] is Buchi recognizable by a finite tiling system.

Notice that the constructions are effective and that theyleaachieved in an injective way, so we can
now state the following lemma, asserting the existence afaputable functiond which will be often
used in the sequel.

Lemma 5.8. There is an injective computable functiéhfrom N into N satisfying the following prop-
erty.

If M. is the non deterministic Turing machine (equipped witi-acceptance condition) of indexand
if 752 is the tiling system (equipped with a Buchi acceptance itmmj of index H (z), then

L(M;)* U[E2% — (%)% = L (Ty o))
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We can now prove that the universality problem for Blicluegnizable languages of infinite pictures is
highly undecidable and give its exact degree.

Theorem 5.9. The universality problem for Biichi-recognizable langes@f infinite pictures idl3-
complete, i.e.: {z € N| LB(T,) = ¥~} isIIi-complete.

Proof. We first check that the sdt: € N | L?(7,) = ¥“«} is in the clasd1}. We can write that
LB(T,) = x»~ifand onlyif“v o € ¥ 3p € {0,1}* (pisaBiichi-accepting run &, overp®)”. The
two quantifiers of type 1 are followed by an arithmetical foten Thus the seftz € N | LB(7,) = v}
is in the clasg13.

In order to prove completeness we use the corresponding fesifuring machines proved irff][3]: the
set{z € N | L(M,) = ¥} is II-complete. Consider now the injective computable functidn
from N into N given in Lemmd5]8. It is easy to see that for any Turing maet, it holds that
L(M;) = x¥if and only if L(M,)* U [Z¥¥ — (£%)] = LB(Ty,)) = £“«. This proves that
{z€N|LM,) =%%} <1 {z € N| LB(T,) = X~} thus this latter set ill}-complete. O

We now consider the inclusion and the equivalence problenBiichi-recognizable languages of infinite
pictures.

Theorem 5.10. The inclusion and the equivalence problems for Biichi-geaable languages of infinite
pictures ardI}-complete, i.e. :

1. {(y,2) € N2 | LB(T,) C LB(7,)} isT1i-complete.
2. {(y,2) € N? | LB(T,) = LP(T,)} isTI}-complete.

Proof. We first prove that the s€i(y, z) € N? | LB(7,) C LB(7,)} is alli-set. It suffices to remark
that “LB(7,) C LB(7.)" can be expressed by ti&-formula : *v o € X% Vp € {0,1}* 3p’ € {0,1}*
[if (p is a Buchi accepting run df, overp?), then (' is a Buchi accepting run df; overp?)]”.

Then the se{(y,z) € N2 | LB(T,) = LB(7,)} which is the intersection of the two seft§y, z) € N? |
LB(T,) C LB(T,)} and{(y,2) € N? | LB(T,) C LP(T,)} is also all}-set.

On the other hand it is easy to check that for all integers, it holds thatL(M,) C L(M.,) iff
LB(TH(y)) - LB(TH(Z)) and thatL(My) = L(MZ) iff LB(TH(y)) = LB(TH(Z)) Thus using the
reductiond we see that

{(y,2) € N* | L(My) € L(M.)} <1 {(y.2) € N* | L(T,) € LP(T2)}

{(y,2) € N* | L(M,) = L(M>)} <1 {(y,2) € N* | L(T,) = L*(T.)}

TheTli-completeness follows then from thE-completeness of the inclusion and the equivalence prob-
lems forw-languages of Turing machines proved|ih [3]. O

We are going to consider now the decision problems studigfflinUsing topological arguments, we
gave in [§] the answer to two questions raised[]n [1], shoviva it is undecidable whether a Biichi
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recognizable language of infinite pictures is E-recograétespectively, A-recognizable). We are going
to show that these problems are actuallyycomplete, using again some topological arguments.

Theorem 5.11. The problem to determine whether a given Biichi-recogméizmguage of infinite pic-
tures is E-recognizable (respectively, A-recognizalgé)j-complete, i.e. :

1. {z € N| LB(T,) is E-recognizablg is I1}-complete.
2. {z € N| LB(T,) is A-recognizablé is TI}-complete.

Proof. We first prove that the setz € N | L5(T,) is E-recognizablg is all}-set. The sentence
“LB(T.) is E-recognizable” can be expressed By “ L5(7,) = L®(T,)". The assertion L5(7,) =
LE(T,)" can be expressed byla-formula in a very similar manner ad.#(7,) = L?(7,)” was (see
the proof of Theorer 5.]L0), because foe ¥ andp € {0,1}* the sentence [(is a E-accepting run
of 7, over thew-picturep?)” can be expressed by an arithmetical formula. Moreovengtrentifierdy is
of type0 thus “L?(T,) is E-recognizable” can be expressed bylaformula.

We prove in a very similar manner that®(7.) is A-recognizable” can be expressed biigformula.
Details are here left to the reader.

We now prove the completeness part of the result. We first@efisimple operation over-languages.
For twow-wordsz, 2’ € X¢ thew-wordz ® 2’ is just the shuffle of the twa-wordsz andz’ which is
simply defined by : for every integer> 1 (z®2')(2n—1) = z(n) and(z®2’)(2n) = 2’(n). For two
w-languaged., L’ C ¢, thew-languagel ® L’ is defined byL @ L' = {x ® 2’ | x € L anda’ € L'}.

We shall use the following construction. We know that there isimple example aEi-complete set
L C X¥ accepted by d-counter automaton, hence by a Turing machine Witacceptance condition,
see [B]. Then it is easy to define an injective computabletfon® from N into N such that, for every
integerz € N, it holds thatZ(My,,)) = (L ® £¥) U (3* ® L(M.)).

We are going to use now the reductiGhalready considered above. We have seen that
L(M;) =¥ ifand only if L(Ty,)) = X

and we can easily see that
L(My,)) = X ifand only if L(M,) = X¢

becausd. # X¥.

The reductionH o 6 is an injective computable function frohinto N.

We consider now two cases.

First case. L(M.) = 3. ThenL(My,)) = % andL? (Tyqp(»)) = X¢*. In particularL? (Tpep,))

is E-recognized (respectively, A-recognized) by a tiliggtem.

Second caseL (M) # ¥. Then there is an-wordz € X* such thatr ¢ L(M.). But L(My(.)) =
(L®X¥)U (Z¥® L(M,)) thus{o € £¥ | c ® z € L(My,))} = L is aXi-complete set. The
functions,, : ¢ — o @ z is continuous. This implies thdt(My,.) is not a Borel set because otherwise
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L={cex¥|o®ze LMy} =1, (L(My))) would be also Borel as the inverse image of a
Borel set by a continuous functioh [15].

Then it is easy to see thadt® (Ty.p(.)) = L(Mg(,))* U [E“¥ — (£¢)%] is not a Borel set. But it was
proved in [§, Lemma 5.2] that every E-recognized languagmfufite pictures is ax9-set and in [[p,
Lemma 5.3] that every A-recognized language of infiniteypies is a closed set.

Thus in that case the-picture IanguageZB(THog(z)) is neither E-recognizable nor A-recognizable.

Finally, using the reductio/ o #, we have proved that :
{zeN| LM,) =%%} < {z € N| LP(T,) is E-recognizablg

{zeN| L(M,) =%} <; { € N| LP(T,) is A-recognizable
and this ends the proof. O

As in [[g] we are going to infer from the proof of (high) undeafidlity of E-recognizability (respectively,
A-recognizability) some other (high) undecidability résu

It was proved in [B] that for any Borel clasg? or I19, it is undecidable whether a given Biichi-
recognizable language af-pictures is inx? (respectively, is inl1?, is a Borel set). We can deduce
from the above proof that the topological complexity of rgaizable languages of infinite pictures is in
fact highly undecidable.

Theorem 5.12. Let « be a non-null countable ordinal. Then
1. {z € N| LB(T,) is in the Borel clas&?} is I13-hard.
2. {z € N| LB(T,) isin the Borel clas31? } is I1}-hard.
3. {z e N | LB(7,) is a Borel set is I13-hard.

Proof. We can use the same reductiiho ¢ as in the proof of Theoreifn 5]11. We have seen that there
are two cases.

Firstcase. L(M.) = ¥. ThenL(My,)) = X andL? (Tyog(,)) = . In particularL? (Typ(.)) =
Y« is an open and closed subsetsf« and it belongs to all Borel class#s) andIT?.

Second caseL (M) # ¥“. Then we have seen thElB(THog(z)) is not a Borel set.

Finally, using the reductiol o 6, the result follows from th&li-completeness of the universality prob-
lem for w-languages of Turing machines. O

We now come to the complementability problem. The classwatfecognizable languages of infinite
pictures is not closed under complemdht [1]. Thus the questaturally arises: “can we decide whether
the complement of a Biichi-recognizable language of imipittures is Blchi-recognizable?”. It has
been proved in[[9] that this problem is undecidable. We aieggtm prove that it is in factli-complete.

Another classical problem is the determinizability prabie‘can we decide whether a given recogniz-
able language of infinite pictures is recognized by a det@sti¢ tiling system?”. Again this problem
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has been proved to be undecidable[Jn [9] and we shall proseritfactIli-complete.

Recall that a tiling system is called deterministic if on gigture it allows at most one tile covering
the origin, the state assigned to positi@nt- 1, j + 1) is uniquely determined by the states at positions
(4,7),(i + 1,7), (4,5 + 1) and the states at the border positighs;j + 1) and(i + 1,0) are determined
by the state0, j), respectively(i, 0), [f].

As remarked in[]1], the hierarchy proofs of the classical dwaeber hierarchy defined using determin-
istic w-automata “carry over without essential changes to pisturén particular it is easy to see that
a language ofv-pictures which is Buichi-recognized by a deterministing system is alI3-set and
that a language af-pictures which is Muller-recognized by a deterministing system is a boolean
combination offIJ-sets, hence A$-set.

We can now state the following results.

Theorem 5.13. The determinizability problem and the complementabilitylppem for Biichi-recognizable
languages of infinite pictures arg}-complete, i.e. :

1. {z € N| LB(T,) is Biichi-recognizable by a deterministic tiling systeimI1}-complete.
2. {z € N | LB(T,) is Muller-recognizable by a deterministic tiling systéris I13-complete.
3. {zeN|3Jy =¥ — LB(T,) = LB(T,)} isI13-complete.

Proof. It is easy to see that the sBtof indices of deterministic tiling systems equipped with i&cBi
acceptance condition is recursive. The formtilac D LB(7,) = LP(7,) can be written : Sy[y €
DandLB(T,) = LB(T,)]” and it can be expressed by -formula because the quantifigy is of type
0and “LB(7,) = LB(T,)” can be expressed byl&-formula. Thusthesgtz € N |3y € D LP(7,) =
LB(T,)} is in the clasdIi.

The case of deterministic tiling systems wiuller acceptance condition is very similar. Details are
here left to the reader.

On the other hand®“« — LB(T,) = LP(7,)” can be expressed by}-formula so “Jy ¥« —
LB(T,) = LP(T,)” can be expressed byla}-formula because the quantifiéy is of type0. Thus the
set{z e N| 3y v« — LB(T,) = LB(T,)} is in the clasdI3.

To prove completeness, we use the same reduéfiord as in the proof of Theorefn 5]11. We have seen
that there are two cases.

First case. L(M.) = 3¢ and thenL” (T9(,)) = . In particularL? (Tp09(,)) = £+ is accepted
by a Bichi deterministic tiling system and also by a Mulletetministic tiling system. Morever its
complement is empty so it is Biichi (or Muller) recognizedaaling system.

Second case.L(M,) # X“. Then we have seen thmB(THog(z)) is not a Borel set. Thus in that
caseL?(7; Hod(=)) cannot be accepted by any deterministic tiling system witlet8 or Muller accep-
tance condition. Moreover its complement~ — LB(THOQ(Z)) is not aXi-subset ofx““ because
otherwiseL? (Tj.0(.)) Would be inA} = X{ N II} which is the class of Borel sets by Suslin’s Theo-
rem. Thus:«* — LB(THog(Z)) cannot be Biichi-recognizable because it is nBt{asubset o2« and
TS(Xw) C ¥l C ¥4, see [IL].

Finally, using the reductio o 6, the result follows from th&li-completeness of the universality prob-
lem forw-languages of Turing machines. O



16 Olivier Finkel/ Highly Undecidable Problems about Recagtiility by Tiling Systems

We gave in[[P] a solution to a question ¢f [1], showing thatlafiguages of infinite pictures which are
accepted row by row by Biichi or Choueka automata readinglsvof lengthw? are Biichi recognized
by a finite tiling system, but the converse is not true. Thersth@ved that one cannot decide whether
a given Bichi-recognizable language of infinite pictuseadcepted row by row by a Biichi or Choueka
automaton reading words of lengtd. We are going to show now that this decision problem is algtual
alsoll}-complete.

Recall that anv?-word = over the alphabe¥ is a sequence of length? of letters inX. It is denoted by
(2(7))o<icw? = z(0).x(1).x(2) ... z(i) ..., where for alli, 0 < i < w?, (i) is a letter in%.

The set ofu?-words overy is denoted b)E“2. An w?-language ovek is a subset oE+”.

To define a notion of acceptance row by row of @picture we first associate, to an infinite picture
p € ¥¥¢ anw?-word p € »«* which is defined by(w.n + m) = p(m + 1,n + 1) for all integers
n,m > 0.

This can be extended to languages of infinite picturesZfar > we denotel, = {p | p € L} soL is
anw?-language ovekr.

We refer the reader t¢][9] for a precise definition of geneealiBiichi automaton acceptings words of
ordinal length. We recall now the following definition.

Definition 5.14. A language of infinite pictured C ¥““ is accepted row by row by an ordinal Buchi
automaton if and only if thes?-languagel is regular, i.e. is accepted by an ordinal Biichi automaton.
We denoteB A(X«“) the set of languagek € X such thatL is regular.

We can now state the following result.

Theorem 5.15. The problem to determine whether a given Biichi-recogiézmguage of infinite pic-
tures is accepted row by row by an ordinal Biichi automatwH}icomplete, i.e. :

{z € N| LP(T,) is regular} is II}-complete

Proof. Recall that, for each language of infinite pictures whichdsepted row by row by a Buchi
automaton reading words of lengif?, it was constructed inJ[9] a Muller tiling system accepting i
Then, using [[1, Theorem 1], one can effectively constructiarB tiling system accepting the same
language. The séfy of indices of Biichi tiling systems constructed from theggrof [§, Theorem 4.1]
and [1, Theorem 1] is easily seen to be recursive. NoticeThadoes not contain all indices of Biichi
tiling systems accepting languagesini (X«*). But for each languagg in BA(X““) there is an index
z € Ty such thatl, = LB(T,).

We can then expresd.? (T,) is regular ” by the formula3y[(y € Tr ) andLB(7,) = LB(7,)". This

is alli-formula becauseE?(7,) = LB(7,)” can be expressed byl&-formula and the quantifiety is

of type0.

To prove completeness we can use the same reduktion as in the proof of Theorefn 5]11. We have
seen that there are two cases.
First case. L(M,) = ¥“ and thenLB(THoe(z)) =X““ In particular,LB(THog(z)) = Y% js accepted
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row by row by an ordinal Blichi automaton.

Second caseL(M.) # £¢. Then we have seen that®(7;;.4(.)) is not a Borel set. Thus in that case
EB(THog(Z)) is not a regulaw?-language because otherwiéé(THog(Z)) would be a Borel set (of rank
smaller than or equal to 5), s€¢ [9, Proposition 4.2].

Finally, using the reductiorf o ¢, the completeness result follows from thig-completeness of the
universality problem fow-languages of Turing machines.
O

6. Concluding Remarks

We have given in this paper the exact degree of numerousahatecision problems for recognizable
languages of infinite pictures. This way we have given exaspf natural highly undecidable problems
which are complete at the first or at the second level of thdéytca hierarchy. Notice that many
examples of:}-complete problems are already known, such as the recutiting problem, see for
instance [[22[ 43[ 14]. But it seems that very few natural j@mis, except some problems abauit
languages of Turing machines, are known toIbgcomplete. One of the motivation of Castro and
Cucker in [3] was actually to “give natural complete probtefor the lowest levels of the analytical
hierarchy which constitute an analog of the classical cetepbroblems given in recursion theory for the
arithmetical hierarchy”. So we have added in this paper mmaw examples which complete the work

of [A].

Notice that in another paper we have also given many nallalomplete problems about the infinite
behaviour of very simple finite machines likecounter automata @-tape automata[J10].

We hope also that our results could be useful in other cordeateas, for instance in the study of the
infinite behaviour of cellular automatd, [45%, 6].
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