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Abstract

We apply the entropy formalism to the study of the near-horizon geometry of
extremal black p-brane intersections in D > 5 dimensional supergravities.

The scalar flow towards the horizon is described in terms an effective potential
given by the superposition of the kinetic energies of all the forms under which the
brane is charged. At the horizon active scalars get fixed to the minima of the
effective potential and the entropy function is given in terms of U-duality invariants
built entirely out of the black p-brane charges.

The resulting entropy function reproduces the central charges of the dual bound-
ary CFT and gives rise to a Bekenstein-Hawking like area law.

The results are illustrated in the case of black holes and black string intersections
in D = 6,7,8 supergravities where the effective potentials, attractor equations,
moduli spaces and entropy/central charges are worked out in full detail.
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1 Introduction

In D > 5 dimensions, supergravity theories involve a rich variety of tensors fields of various
rank (see e.g. [IL 2]). A single black hole solution is in general charged under different
forms and can be thought of as the intersection on a timelike direction of extended branes
of various types. More generally, branes intersecting on a (p + 1)-dimensional surface
lead to a black p-brane intersecting configuration [3]. In complete analogy with what
happens in the case of D = 4,5 black holes, one can think of the D > 5 solutions as
a scalar attractor flow from infinity to a horizon where a subset of the scalars becomes
fixed to particular values depending exclusively on the black p-brane charges. The study
of such flows requires a generalization of the attractor mechanism [4], 5, [6] [7, [§] in order
to account for p-brane solutions carrying non-trivial charges under forms of various rank.
In this paper we address the study of these general attractor flows.

We focus on static, asymptotically flat, spherically symmetric, extremal black p-brane
solutions in supergravities at the two derivative level [9]. The analysis combines standard
attractor techniques based on the extremization of the black hole central charge [4, [5] [6]
7, 8] and the so-called “entropy function formalism” introduced in [I0] (see [11I, 12] for
reviews and complete lists of references). Like for black holes carrying vector-like charges,
we define the entropy function for black p-branes as the Legendre transform with respect
to the brane charges of the supergravity action evaluated at the near-horizon geometry (see
[13] for previous investigations of black rings and non-extremal branes using the entropy
formalism). The resulting entropy function can be written as a sum of a gravitational
term and an effective potential Vog given as a superposition of the kinetic energies of the
forms under which the brane is charged. Extremization of this effective potential gives
rise to the attractor equations which determine the values of the scalars at the horizon as
functions of the brane charges. In particular, the entropy function itself can be expressed
in terms of the U-duality invariants built from these charges and it is proportional to the
central charge of the dual CFT living on the AdS boundary. The attractor flow can then
be thought of as a c-flow towards the minimum of the supergravity c-function [14, [15].
Interestingly, the central charges for extremal black p-branes satisfy an area law formula
generalizing the famous Bekenstein-Hawking result for black holes.

We will illustrate our results in the case of extremal black holes and black strings in
D = 6,7,8 supergravities. In each case we derive the entropy function F' and the near-
horizon geometry via extremization of F'. At the extremum, the entropy function results
into a U-duality invariant combination of the brane charges reproducing the black hole
entropy and the black string central charge, respectively. Scalars fall into two classes:
“fixed scalars” with strictly positive masses and “flat scalars” not fixed by the attractor
equations, which span the moduli space of the solution. The moduli spaces will be given by
symmetric product spaces that can be interpreted as the intersection of the charge orbits



of the various branes entering in the solution. In addition one finds extra “geometric
moduli” (radii and Wilson lines) that are not fixed by the attractors.

The paper is organized as follows. In Sect. 2l we derive a Bekenstein-Hawking like area
law for central charges associated to extremal black p-branes. In Sect. [3] the “entropy
function” formalism is adapted to account for solutions charged under forms of different
rank. In Sect. dl we anticipate and summarize in a very universal form the results for
the set of theories considered in detail in the rest of the paper, namely the two non-
chiral (1,1) and (2,2) supergravities in D = 6 (Sects. [l and [0, respectively), and the
maximal D = 7, 8 supergravities (Sects. [ and [§ respectively). In Sect. [ the uplift of
the previously discussed near-horizon geometries to D = 11 M-theory is briefly discussed.
The concluding Sect. [I0 contains some final remarks and comments.

2 Area Law for Central Charges

Before specifying to a particular supergravity theory, here we derive a universal Bekenstein-
Hawking like formula underlying any gravity flow (supersymmetric or not) ending on an
AdS point. Let AdS; x ¥,,, with ¥,, a product of Einstein spaces, be the near-horizon
geometry of an extremal black (d — 2)-brane solution in D = d + m dimensions. After
reduction along 32, this solution can be thought as the vacuum of a gauged gravity theory
in d dimensions. To keep the discussion, as general as possible, we analyze the solution
from its d-dimensional perspective. The only fields that can be turned on consistently
with the AdS; symmetries are constant scalar fields. Therefore we can describe the near-
horizon dynamics in terms of a gravity theory coupled to scalars ¢* with a potential V.
The potential V; depends on the details of the higher-dimensional theory. The “entropy
function” is given by evaluating this action at the AdS; near horizon geometry (with
constant scalars ¢’ ~ u')

1 Qaas, Thas [ d(d—1)
F = — dov/—g (R — = d 2.1
167Gy /d =g (R =Va) 167Gy 245 Vg (2.1)

with 7445 the AdS radius and 2445, the regularized volume of an AdS slice of radius one.
Following [16] we take for Q44s, the finite part of the AdS volume integral when the cut
off is sent to infinity. More precisely we write the AdS metric

ds® = rils(dp® — sinh®pdr? + cosh?pdQ3_,) , (2.2)

with 7 € [0,27], 0 < p < cosh™'7y and dQy_» the volume form of a unitary (d-2)-
dimensional sphere. The regularized volume 2445, is then defined as the (absolute value
of the) finite part of the volume integral [ d?z/—g in the limit ro — oo. This results into

2T

Qags, = (df

_ 1)Qd—2 : (2.3)



A different prescription for the volume regularization leads to a redefinition of the entropy
function by a charge independent irrelevant constant. The “entropy” and near-horizon
geometry follow from the extremization of the entropy function F with respect to the
fixed scalars v’ and the radius rags

ou’ ou 7
oF !
3 x raggVat(d—1)(d—-2) = 0. (2.4)
TAdS

The first equation determines the values of the scalars at the horizon. The second equation
determines the radius of AdS in terms of the value of the potential at the minimum.
Notice that solutions exist only if the potential V} is negative. Indeed, as we will see in
the next section, V; is always composed from a part proportional to a positive definite
effective potential Vg generated by the higher dimensional brane charges and a negative
contribution — Ry, related to the constant curvature of the internal space ¥ (see eq.(3.25)
below) . The “entropy” is given by evaluating F' at the extremum and can be written in
the suggestive form

249 Tf\l(;sz i A
F o= 22 A _ e 2.5
4Gy d—2Tads 1Gp (2.5)

where A denotes the area of 3,,, 24 is the volume of the unit (d-2)-sphere, and Gp =
AG, the D-dimensional Newton constant. For black holes (d = 2), this formula is nothing

than the well known Bekenstein-Hawking entropy formula S = ﬁ and it shows that F
can be identified with the black hole entropy. For black strings (d = 3), %F = ??*ngs

reproduces the central charge ¢ of the two-dimensional CF'T living on the AdS3 boundary
[T7]. In general, the scaling of (2 with the AdS radius matches that of the supergravity
c-function introduced in [14] and it suggests that F' can be interpreted as the critical value
of the central charge ¢ reached at the end of the attractor flow.

In the remainder of this paper we will study the flows from the D-dimensional per-
spective where the black p-branes carry in general charges under forms of various rank.

3 The Entropy Function

The bosonic action of supergravity in D-dimensions can be written as
Ssucra = / (Rx1—1gii(¢)dd’' Axd¢? — 5 Np,s, (8') Eim AxE0m + Lwz) o (3.1)

with FA» | denoting a set of n-form field strengths, ¢’ the scalar fields living on a manifold
with metric ¢,;(¢) and Lwyz some Wess-Zumino type couplings. The scalar-dependent
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positive definite matrix Ny, 5, (¢°) provides the metric for the kinetic term of the n-forms.
The sum over n is understood. In the following we will omit the subscript n keeping
in mind that both the rank of the forms and the range of the indices A depends on n.
We will work in units where 167rGp = 1, and restore at the end the dependence on
Gp. For simplicity we will restrict ourselves here to solutions with trivial Wess-Zumino
contributions and this term will be discarded in the following.

We look for extremal black p-brane intersections with near-horizon geometry of topol-
ogy Mp = AdS,12 x S™ xT. Explicitly we look for solutions with near-horizon geometry

q
2 2 2 2 7.2 2 2
ds = Tags dSAdSp+2 + Tg dSSm + Z (" d@k s
k=1
FA — p;\aa + eArﬁr 7 ¢z — ui ’ (32)

with 7 = (rags,7s,7%), describing the AdS and sphere radii, and u’ denoting the fixed
values of the scalar fields at the horizon. a® and 3, denote the volume forms of the compact
{¥%} and non-compact {¥,} cycles, respectively, in Mp. The forms are normalized such
as

/ ab =6, By =10". (3.3)

DI

They define the volume dependent functions C®, C,,
/ Oéa A *O{b — Cab , /67’ A *ﬁs e C?“S , (34)
Mp Mp

describing the cycle intersections. In particular, for the factorized products of AdS space
and spheres we consider here, these functions are diagonal matrices with entries

ab __ gab UD — YD
O = e O = 0 e (3:5)

with vp the volume of Mp. Integrals over AdS spaces are cut off to a finite volume,
according to the discussion around (2.3).

The solutions will be labeled by their electric q;, and magnetic charges p. defined as

pﬁz/FA,

drnr = NAE * FZ = CTSNAEQES y (36)

L

where we denote by *X" the complementary cycle to X" in Mp.
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Let us now consider the “entropy function” associated to a black p-brane solution with
near-horizon geometry (8.2)). The entropy function F is defined as the Legendre transform
in the electric charges ga, of Ssugra evaluated at the near-horizon geometry

F = gy — Ssucra
= Mgy — Rup + %NAE pipr O — %NAE A Oy (3.7)

The fixed values of 7, u’, e!” at the horizon can be found via extremization of F with

respect to 7, u?, and e!":
OF OF oOF
oF  out deM 0. (38)

From the last equation one finds that

gar = NAE 628 Crs 5 (39)

in agreement with the definition of electric charges (B3.6]). Solving this set of equations for
e in favor of gy, one finds

F(Q,7,u') = =R(M) vp() + 3Q" - M(F,u') - Q (3.10)

with

i) = (T sl ) @) o

and N**  C™ denoting the inverse of N,y and C,, respectively.

. . . . . . . /
It is convenient to introduce the scalar and form intersection “vielbeine” V™, Je, J's
according to

Nas = WMWeNouw, b = Jee gbe cre = Jrtyet (3.12)

From (B.5)) one finds for the factorized products of AdS space and spheres

B 1)
Jab — 5ab L Jlrs — s VO 3.13
vol(Xe) 032 (3.13)

The electric and magnetic central charges can be written in terms of these quantities as

ZMa _ VAM Jba p;} ’ gLM — (V_l)MA J/sr hs - (314)

mag

Combining ([B12)) and (3:I4) one can rewrite the scalar dependent part of the entropy
function as the effective potential

Vg = Q7 -M(Fu')-Q = sz z00 + 1 e Lol (3.15)

- 2 mag “mag
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For the n = D/2-forms in even dimensions the argument is similar, except for the
possibility of an additional topological term

SSUGRA = / (R x 1 — 1 Tyn(¢") FMN*FY — 1 Ras(9") EMA Fnz) : (3.16)
(note that Ray, = €Rsa, with € = (—1)[P/2). Following the same steps as before one finds
Vers QT - M(Fou') - Q (3.17)

with

. € -1 5w € -1\ X A
iy = o (T ) o). s

For R = 0 we are back to the diagonal matrix [B.I1]). In general, thus we obtain for the
D /2-forms an effective potential

Vg = 2Q"-M(Fu)-Q = $z2MzMe, (3.19)
with
ZMa  — Jba(VAMpll,\-i-VAMqAb), (3.20)

where VM = (V\M VAM) is the coset representative.

Summarizing, in the case of a general supergravity with bosonic action ([B.1]) the en-
tropy function is given by

F(Q,7u') = —R(F)vp(7) + Vg (u', 7) | (3.21)

with the intersecting-branes effective potential

= LgMagMe LN (gMuan gMn y gre g Y (3.22)
n#D/2

where the first contribution in the second line comes from the n = D/2 forms. Notice that
there are two types of interference between the potentials coming from forms of different
rank: First, they in general depend on a common set of scalar fields and second, they
carry a non-trivial dependence on the AdS and the sphere radii. Besides this important
difference the critical points of the effective potential can be studied with the standard
attractor techniques for vector like charged black holes.
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The near-horizon geometry follows from the extremization equations

Ve = 0 Ve du'y Y QL - VM, (Fu') - Q= 0, (3.23)

M-
o

07 [~ R(F) vp(7) + Veg (u', 7)] (3.24)
We conclude this section by noticing that after reduction to AdSy, the D-dimensional
effective potential Vg combines with the contribution coming from the scalar curvature
Ry, of the internal manifold into the d-dimensional scalar potential

1
Viy=—Vug — Ry (3.25)
Up
appearing in (2.1]). Notice that the resulting potential is not positive defined and therefore
an AdS vacuum is supported.

4 Summary of Results

Before entering into the detailed analysis of the entropy function and its minima, here we
summarize our main results in a universal form independent of the particular dimension
D considered. We consider extremal black p-brane solutions with p = 0,1 in d = 6,7,8
maximal supergravities and A/ = (1,1) supergravity in six dimensions . The attractor
mechanism for black strings in N' = (1,0) six-dimensional supergravity was studied in
[18].

There are three classes of extremal black p-brane intersections. The corresponding
near-horizon geometries, effective potentials Vg, and entropy functions in each case are
given as follows:

o AdSs x S® x T

v I 1/4
Vg = —o L] , TAdS = Ts = %>
Ugs3 2TV pn
6 6
F = Up (2— - —2) —|—V;ﬁ == |Ig‘ . (41)
Taas Ts



o AdSs x S?x T

1/3
UAdSs  1/3 2 |I2|
3 3
Vet = 3 vl I35, TAds = 2rs = 13
Vg2 2TV
6 2
o= UD(2—__2 +Ver = [Ts] .
Taags Ts
(4.2)
o AdSy x S? x T
1/6
Vo o 3 Uadss p2 Tt
Vg3 Upn 27U
2 6
1/2
F = vD<z———2 + Vg = [T (4.3)
Taags Ts
where
Up = Uadsy Usm Urn
n
d n n
vads, = $dads, TAqs vgn = 148, , vpn = Hri,
i=1

Ql = 271', Qg = 47'(', Qg = 271'2, QAng = 271', QAng = 271'2, (44)

are the volumes of the near-horizon AdS/spheres and I, 3 are the relevant quadratic and
cubic U-duality invariants built out of the black p-brane charges. We stress that these
invariants involve, in general, charges under forms of various ranks. This is also the case
for the effective potential V.g resulting from the interfering superpositions of the various
form contributions.

We also note that in all cases the radii of the circles of the torus 7™ are not fixed by
the extremization equations but remain as free parameters.

The results (£I)—([Z3) shows that the entropy function F' can be related to the black
hole entropy and black string central charges

Vg3 Un
St = F = L2 = P
D
3 3 3r,
Colacsring. = F7 = T Laal = 2?;28. (4.5)

In the following we will derive these results from the corresponding supergravities in
various space-time dimensions.



5 N=(1,1)in D=6

5.1 N =(1,1), D =6 Supersymmetry Algebra

The half-maximal (1,1), D = 6 Poincaré supersymmetry algebra has Weyl pseudo-
Majorana supercharges and R-symmetry SO (4) ~ SU (2), x SU (2). Its central ex-
tension reads as follows (see e.g. [19, 20, 21])

{90,97} = Az P+ 200, (5.1)
o A8l . (dB

{od, 08} = o 2 vzl 5:2)
A A _ 7 AA v 7AA

{Q'Y’ Q§ } - C’y5Z + 755 Zy,y ) (53)

where A, A = 1,2, so that the (L,R)-chiral supercharges are SU(2)(1,r)-doublets.

Notice that, in our analysis of both (1,1) and (2,2) D = 6 supergravities, it holds
(4B) _ ,(4B) _ (AB)

that Z,,’ = Zu, * = 0, because the presence of the term Z,,,
bound p < D — 4, due to the assumed asymptotical flatness of the (intersecting) black

is inconsistent with the

p-brane space-time background.

Strings can be dyonic, and are associated to the central charges Z;[LAB}, ZLAB] in the
(1,1) of the R-symmetry group. They are embedded in the 11 (here and below the
subscripts denote the weight of SO(1,1)) of the U-duality group SO (1,1) x SO (4, ny).
On the other hand, black holes and their magnetic duals (black 2-branes) are associated to
ZA4, Zf,f‘ in the (2,2') of SO (4), and they are embedded in the (ny + 4)i% of SO (1,1) x
SO (4, nv).

In our analysis, the corresponding central charges are denoted respectively by Z, and
Z_ for dyonic strings, and by Z 44 and Z,.. 44 for black holes and their magnetic duals.

5.2 N =(1,1), D = 6 Supergravity

The bosonic field content of half-maximal N' = (1, 1) supergravity in D = 6 dimensions
coupled to ny matter (vector) multiplets consists of a graviton, (ny +4) vector fields with
field strengths FM, M = 1,...,(ny + 4), a three form field strength Hs, and 4ny + 1
scalar fields parametrizing the scalar manifold

SO (4, nv)

M = SO(1,1) x SO (4) x SO (ny)’

dimg M =4ny + 1, (54)

with the dilaton ¢ spanning SO (1,1), and the 4ny real scalars z' (1 = 1,...,4ny)

parametrising the quaternionic manifold %. The U-duality group is SO (1, 1) x

9



SO (4,ny) and the field strengths transform under this group in the representations

FQA . (IIV —|— 4)+%
Hg . 1:|:1 . (55)

Y

The coset representative LM, A, M =1,... 4+ ny, of % sits in the (4,ny)

representation of the stabilizer H = SO(4) x SO(ny) ~ SU(2), x SU(2)g x SO(ny), and
satisfies the defining relations

LaMnun Ls™ = mas LaM ™ Ly = MY (5.6)
with the SO(4, ny) metric nay. It is related to the vielbein Vo™ from B.12) by

WM o= eI (5.7)
and its inverse is defined by LyALyN = 51\]\2. The Maurer-Cartan equations take the form

Pyun = Ly“d.Lay = Ly 0;Landz", (5.8)

where Py is a symmetric off-diagonal block matrix with non-vanishing entries only in
the (4 x ny)-blocks. Here and below we use dy;y to raise and lower the indices M, N.

The solutions will be specified by the electric and magnetic three-form charges ¢, p,
and the two-form charges p®, ¢s;. The quadratic and cubic U-duality invariants that can
be built from these charges are

I, =pg, Iy = gmsp'pp. Ty = 50" aagsq. (5.9)
The central charges (3.14)), (3:20)) are given by

Twagt = € 2T Ly p™ | T =2 T Ly qn

1
7, = — J(e?pte?q). 5.10
+ \/5 3( p C.I) ( )

Using (5.6]), the U-duality invariants (5.9) can be rewritten in terms of the central charges
as

Wz -722) = JI,,
N D Zmagn (2o + Z22) = (JsJ3) s,
sl ZanZan (Zy = Z2-) = (JsJ3*) Ty (5.11)
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The effective potential Vog ([B.22]) for this theory is given by
2 2 2 2
‘/Cff - %Z'F + %Z_ _'_ %ZCLM _'_ %Zmag,M . (512)

From the Maurer-Cartan equations (5.8) one derives

VZmag,M = _PMN Zmag,N - %P¢ Zmag,M 5
VZam = PunZan+ 3P Zeu ,
VZ, = P,Z.. (5.13)

with P, = d¢. The attractor equations ([3.23)) thus translate into

!
PMN (Zel,MZel,N - Zmag,MZmag,N) + P(b (QZ-l-Z— - %anag,M + %ZEI,M) = 0. (514)

Splitting the index M into (AA) = 1,...,4, (A, A = 1,2) (central charges sector) and
I'=5,...,(ny+4) (matter charges sector), and using the fact that only the components
Pr 44 = Py are non-vanishing, the attractor equations can be written as

Zel,AAZeLI - Zmag,AAZmagJ =0 )
42,7 — Zmag,AAzﬁfg + Zel,AAZé?A - Zglag,l + Ze21,I = 0. (5.15)

Indices A, A are raised and lowered by eap, €45 We will study the solutions of these
equations, their supersymmetry-preserving features, and the corresponding moduli spaces.
BPS solutions correspond to the solutions of (B.15]) satisfying

Zmag,] = Zel,I = Oa (516)

as follows from the Killing spinor equation A} ~ T/{V’}/“VE 4 = 0 with T ;fu the matter

central charge densities.

Let us finally consider the moduli space of the attractor solutions, i.e. the scalar degrees
of freedom which are not stabilized by the attractor mechanism at the classical level. For
homogeneous scalar manifolds this space is spanned by the vanishing eigenvalues of the
Hessian matrix VVV.g at the critical point. Using the Maurer-Cartan equations (5.13))
one can write VV V¢ at the critical point as

VWV = PpaaPr (2 ZarZas + 2 Znag1 Zinag.1)
+plAAL pLBB (229442085 t 2 Znag Ai%mag.BB)
+PyPy (223 + 222 + 172 v+ 325 00)
+2 PyPT A (Z 12 ga + Zomog1 Zomag 1)

= HIAA,JBBPI’AAPJ’BB +2 HIAA,¢PI’AAP¢ + Hy o PyPy , (5.17)

11



which defines the Hessian symmetric matrix H with components Hy 44 55, Hrad4 Hoo -
By explicit evaluation of the Hessian matrix for both BPS and non-BPS solutions we will
show that eigenvalues are always zero or positive implying the stability (at the classical
level) of the solutions under consideration here. We will now specify to the different near-
horizon geometries and study the BPS and non-BPS solutions of the attractor equations.

5.3 AdS; x S3

Let us start with an AdS3; x S3 near-horizon geometry, in which only the three-form
charges (magnetic p and electric ¢) are switched on (dyonic black string). There are
no closed two-forms supported by this geometry and therefore two-form charges are not
allowed. The near-horizon geometry ansatz can then be written as

ds* = Tzds dsidsg + TS% d3?93 ) H3 = pags +efhas; - (5.18)
The attractor equations (5.15) are solved by

Zwag M = Zam = Z_ =0, or equivalently, (5.19)
Zragt = Zoisr = Z4 = 0. (5.20)

Solution (5.19) has Z, > 0, whereas solution (5.20) has Z, < 0; they are both 1-BPS, and
they are equivalent, because the considered theory is non-chiral.

Plugging the solutions (5.19) or (5.20)) into (5.12]) one can write the effective potential
at the horizon in the scalar independent form

'S3

v
Va = 123+122 = 47 - 2\ RIml - () () (5.21)

in agreement with the claimed formula (4.1]). Extremizing F' in 7, one finds the entropy
function and near-horizon AdS and sphere radii (£.1]).

Now let us consider the moduli space of the solutions. Plugging (5.19), (5:20) into
(5I7) one finds that the only non-trivial component of the Hessian matrix is

Hys =273 +27% =4V > 0. (5.22)

Therefore, the Hessian matrix H for the AdSs x S? solution has 4ny vanishing eigenvalues
and one strictly positive eigenvalue, corresponding to the dilaton direction. Consequently,
the moduli space of non-degenerate attractors with near-horizon geometry AdSs x S? is
the quaternionic symmetric manifold

. SO (4, nv)
Mers = 551 % S0 (ny) (5.23)
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This result is also evident from the explicit form of the attractor solution Z_ = 0: only
the dilaton is stabilized, while all other scalars are not fixed since the remaining equations
ZeaMm = Zmag,m = 0 are automatically satisfied for pP=qgr=0.

5.4 AdS; x S? x S!

For solutions with near-horizon geometry AdSs x S? x S*, there is no support for electric
two-form charges and therefore e* = 0. We set also the electric three-form charge e to
zero otherwise no solutions are found. The near-horizon ansatz becomes

2 2 2 2 2 2 192
ds = Tags dSAdS3 + Tg dSSZ + L] d@ s

E) = ptag, Hs =pageyg . (5.24)
The attractor equations (5.15) admit two types of solutions with non trivial central charges

BPS: Zi=Z2_, Zya,aiZid =422, (5.25)

mag

non-BPS: Z,=2_  Z?

mag,l

=477 . (5.26)
Plugging the solution into (5.11]) one finds the relation
|3 Ts| = 2v2Z3 . (5.27)

that allows us to write the effective potential (5.12) at the horizon in the scalar indepen-
dent form

2
Vg = 375 = 2| LT)° (5.28)
with
3
J2J5)5 = D _ Dads U7 5.29
( ? 3> (V01§2V0152X51)% Vs ( )

in agreement with our proposed formula (42) upon taking I3 = Z3. The black string
central charge and the near-horizon radii follow from 7-extremization of the entropy func-
tion F and are given by (£2). Note that the radius r; of the extra S* is not fixed by
the extremization equations. Besides this geometric modulus the solutions can be also
deformed by turning on Wilson lines for the vector field potentials A% = ¢*. This is in
contrast with the more familiar case of black holes in D = 4,5 where the near-horizon
geometry is completely fixed at the end of the attractor flow. As we shall see in the

following, this will be always the case for extremal black p-branes with 7" factors where
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the “geometric moduli” describing the shapes ad volumes of the tori and constant values
of field potentials along 7™ remain unfixed at the horizon.

Now, let us consider the moduli spaces of the two solutions. The BPS solution (5.25])
has remaining symmetry SO (3) x SO(ny ), because by using an SO (4) transformation
this solution can be recast in the form

Zmag,AA = 2251415141 ) Z+ =7 _ =z ) Zel,M =0. (530)

Notice that both choices of sign satisfy the Killing spinor relations (5.16) and therefore
correspond to supersymmetric solutions. Plugging (5.30) into the Hessian matrix (5.17))
one finds

o ) 80770410810 4103, Oany 1 ( )
. ' 5.31
01 xany 6

This matrix has 3ny vanishing eigenvalues and ny + 1 strictly positive eigenvalues, corre-
sponding to the dilaton direction plus the ny directions P, . Consequently, the moduli
space of the BPS attractor solution (5.25) with near-horizon geometry AdSs x S? x S! is
the symmetric manifold

50(3, nv)
SO(3) x SO(ny)

Mpps = (5.32)

More precisely, the scalars along P; 44 in the (4,ny) of the group H decompose with
respect to the symmetry group SO(3) x SO(ny) as:

(4,ny) — (3,ny) ® (1,ny), (5.33)
2=0 2>0
me= m*>

and only the (1,ny) representation is massive, together with the dilaton. The (3,ny)
representation remains massless, and it contains all the massless Hessian modes of the
attractor solutions.

The analysis of the moduli space for the non-BPS solution follows closely that for the
BPS one. Now the symmetry is SO(4) x SO(ny —1) and using an SO(ny ) transformation
such a solution can be recast as follows:

Zmag,IZQZ(SIlu Z_;’_:Z_:Z7 ZCLM:Zmag,AA:ZLAA:O . (534)

(&)

Plugging (5.34)) into the Hessian matrix (5.17), now one finds

85,4/15335]15[1 O4nv><1
H = 2? : (5.35)

O1xdny 6
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This Hessian matrix has 4(ny —1) vanishing eigenvalues and 4+1 strictly positive eigenval-
ues, corresponding to the dilaton direction plus the 4 P, ,; directions. Consequently, the
moduli space of the non-BPS attractor solution with near-horizon geometry AdSsx S?x S*
is the symmetric manifold

SO (4, ny — 1)
SO(4) x SO(ny —1)

More precisely, the scalars along P; 44 in the (4,ny) of the group H decompose with

MnonBPS - (536)

respect to the symmetry group SO(4) x SO(ny — 1) as:

(47 nV) - (47 IIV—].) S (47 1)7 (537)
20 2>0
me= m=>

and only the (4,1) representation is massive, together with the dilaton. The (4,ny — 1)
representation remains massless, and it contains all the massless Hessian modes of the
attractor solution.

The BPS solution can be regarded as the intersection of one 1-BPS black string (with

pq = 0) with one -BPS black 2-brane (with p*p*nsy; > 0). The latter is described by

the charge orbit SO 4”"3 [23]. The moduli space of the latter coincides with the moduli

space of the Whole considered intersection, and it is given by Eq. (5.32).

On the other hand, the non-BPS solution can be regarded as the intersection of one
1-BPS black string (with pg = 0) with one non-BPS black 2-brane (with p"pnas < 0).

The latter is described by the charge orbit #n"v)) [23]. The moduli space of the latter

coincides with the moduli space of the whole considered intersection, and it is given by
the quaternionic manifold of Eq. (5.36)).

A similar reasoning will be performed for the moduli spaces of the attractor solutions
of the maximal non-chiral D = 6 supergravity in Sect. [Gl

5.5 AdS; x S3 x S!

For solutions with AdS; x S x S* near-horizon geometry, there is no support for magnetic
two-form charges and therefore Zy, ps7 = 0. The near-horizon ansatz becomes

ds® = Tiig dsf\dSz + 72 dsgs + r1do*
F = e Buas, , Hj3 = e Bras, xst - (5.38)
The fixed-scalar equations (.14]) admit two type of solutions
BPS:  Zyagm = Za1 =0, Zi=—Z_,  ZyaaZit=422. (5.39)
non-BPS:  Zyagnr = Zy 44 =0, Zy=—Z_, Zi,=4Z3. (5.40)

el,
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Now one finds
IR Ty =2V2 73 (5.41)

and the effective potential (5.12)) at the horizon can be written in the scalar independent

form

Var = 323 = 3|JALT (5.42)
with

syt = (Mot o (5.43)

in agreement with the proposed formula (43]) upon taking Iy = Zj. Extremizing F in
the radii 7 one finds the result (£.3]) for the black hole entropy and AdS and sphere radii.
Again, the radius r; of the extra S! is not fixed by the extremization equations. The
analysis of the moduli spaces follows mutatis mutandis that of the AdSs x S? attractors
(replacing magnetic by electric charges) and the results are again given by the symmetric

manifolds (5.32) and (5.3G).

6 N =(22)inD=06

6.1 N =(2,2), D=6 Supersymmetry Algebra

The maximal (2,2), D = 6 Poincaré supersymmetry algebra has Weyl pseudo-Majorana
supercharges and R-symmetry USp(4), x USp(4)p (USp(4) = Spin(5)). Its central
extension reads as follows (see e.g. [19] 20} 21])

{90, 98} = A2 Ak 200, (6.1)
o A o (AB

[od.08) = o 2™ yrgly)). (6.2)

{aaf} = cuzteay zah, (6.3)

where A, A =1,...,4, so that the (L,R)-chiral supercharges are SO (5)(L7R)—spin0rs.

Strings can be dyonic, and they are in the antisymmetric traceless (5,1)+(1,5’) of the
R-symmetry group. They are embedded in the 10 of the U-duality group SO (5,5). On
the other hand, black holes and their magnetic duals (black 2-branes) sit in the (4,4') of
USp(4), x USp (4), and they are embedded in the chiral spinor repr. 16 of SO (5,5).
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In our analysis, the corresponding central charges are denoted respectively by Z, and
Zi (a,a=1,...,5) for dyonic strings, and by Z 44 and Z,,, 44 for black holes and their
magnetic duals.

6.2 N =(2,2), D=6 Supergravity

The maximal N = (2,2) supergravity in D = 6 dimensions [26] has bosonic field content
given by the graviton, 25 scalar fields, 16 vectors and 5 two-form fields. Under the global
symmetry group SO(5,5) these fields organize as

o _ [Vt Vil SO(5,5) I,M=1,...10,
o7 \yma yme | ° 5O(5) x SO(5) a,a,m=1,....5),
Fr: 16 A=1,...,16,
{H$ , H{ }: 10 a,a=1,...,5. (6.4)

In particular, the scalar coset space is parametrized by the vielbein V™ evaluated in the
vector representation 10 of SO(5,5), satisfying the defining relations

. . 1 1
VIGVJG_VIGVJG =n = ( (1) 0 ) ’ VmMVmN+VmMVmN :UMNE ( . _(1) ) ’

i.e. the splits of basis Vi — (V,,M, V™M) and V™ — (V;%, V%) refer to the decomposi-
tions SO(5,5) — GL(5) and SO(5,5) — SO(5) x SO(5), respectively. They are relevant
for splitting the two-forms into electric and magnetic potentials and for coupling them
to the fermionic fields, respectively. The scalar coset space can equivalently be described
by a scalar vielbein Vyaa (A, A=1,... ,4) evaluated in the 16 spinor representation of
SO(5,5). The Maurer-Cartan equations are given by

L I v I V4 o 7 W ()

with the SO(5) x SO(5) Gamma matrices 78, v45 and the vector and spinorial indices
raised and lowered by the SO(5) invariant symmetric tensors dq, d,; and antisymmetric
tensors Q4p, €15, respectively.

The Lagrangian involves the 5 two-forms B™, whose field strengths are related to the
selfdual HY, and antiselfdual HS by

dB™ = H™ = V™HE +V"HE (6.6)

Electric and magnetic three-form charges combine into an SO(5,5) vector Q; = (p™, ¢m)-
The quadratic and cubic U-duality invariants of charges are given by

L=m"Q1Qs, Ti= 55T Qip'r”, ITi = 750" Qranes (6.7)
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with the SO(5,5) Gamma matrices (I'1)A%, (I') 5.
The central charges (3.14), (3.20) are defined as

Zih = RwMpt, zdh = Mg,
Zy = J(VHSQr, Zy = Js(V1H'0Qr . (6.8)

In terms of these central charges one can rewrite the U-duality invariants (6.7]) as

2J32:Z-2 - Zg_Zg )
W2 (J5I)Ts = Zp 205 (ZavapQas + ZaQasrs )

mag ““mag

2\/§(J§2J3)I§ = ZeLAA Zel,BB (ZWZBQAB - ZaQABVf;B) . (6-9)
The intersecting-branes effective potential Vg for the considered theory is defined as

Ver = 370 + 320+ 520,44 25" + 32 ag 14 %ns (6.10)

The Maurer-Cartan equations (6.5) imply

VZa = Pa[zZ[z ) VZ[z = Pa[zZa
VZQA = %Paa 7&437&43 Z ,BB » VZaL = —%Paa %;43734]3 Zmag,BB . (6.11)

e mag ~

Thus the extremization equations take the form

VWt = ZaVZi+ ZiVZi+ Zy sj VI + Zyy aa VI

mag
_ <2ZaZd + 1yt ZAA ZBB _ Lya i 7Ad Zrﬁi) Pw = 0. (6.12)
The Hessian matrix at the horizon can written as

VVVig = 2Pme;,{6abZaZi,+6deaZb

+ 104" (") 4" (28 i + ZibZuna) | (6:13)

6.3 AdS; x S3

The analysis of D = 6 maximal supersymmetric supergravity solutions follows the same
steps as in the half-maximal case with minor modifications. We start from the ansatz

ds® = rﬁds dsf\dsg + 7‘5% dS%g ,
H?r’n = pm g3 + e ﬁAng 5 (614)
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for the AdSs x S? near-horizon geometry. The fixed scalar equation (6.12)) admits the two
solutions

Zmag,AA =27 1LAA = Zfl =0 ’

(&)

Zmag,AA =7 LLAA — Zy =10 5 (615)

e

which are both supersymmetric. Combining this with (69) one can write the effective
potential at the horizon in the scalar independent form

Ve = N2+ 22) =122 — 22| = 2T, (6.16)

Again the effective potential is given by the general formula (4.1]) but now Iy = 7, is given
by the quadratic invariant (G.7) of SO(5,5). Similarly, 7~extremization of the entropy
function shows that the sphere and AdS radii and the black string central charges are
given by (4.)) in terms of the SO(5,5) invariant Zs.

Let us consider the moduli space of these solutions. The two solutions are equivalent
and we can focus on the Z, = 0 case. Using an SO(5) rotation this solution can be recast
in the form Z; = 20;1. The symmetry group leaving this solution invariant is SO(5,4).
The moduli space is hence given by the quotient of this group by its maximal compact

subgroup SO(5) x SO(4), i.e. ([27, 28] 29])

SO(5,4)
SO(5) x SO(4)

Mgps (6.17)

Alternatively, the same conclusion can be reached by evaluating the Hessian (6.13) at the
solution

VVVg = 22°P,iP,;, (6.18)

a

one finds 5 strictly positive eigenvalues. More precisely, the (5,5) scalars decompose in

terms of SO(5) x SO(4) as

m2=0 m2>0

with the (5,4) components along P, j~i spanning the moduli space of the solution.

The story goes the same way for the solution with Z, = 0 which has moduli space
Mpps = %. The two solutions are equivalent and they both preserve the same
amount of supersymmetry (namely the minimal one: %—BPS). Actually, they can be in-
terpreted as the supersymmetry uplift of the two distinct i—BPS solutions (given by Egs.
(5.19) and (E20)) of the half-maximal D = 6 supergravity coupled to ny = 4 vector

multiplets.
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6.4 AdS; x S?x S!

The ansatz for this near-horizon geometry is

2 2 2 2 2 2 192
ds = Tags dSAdS3 + Tg dSSZ + L8] d@ s

F = plag H =p™ageyst . (6.20)

Notice that a magnetic string corresponds to the SO (5,5) invariant constructed with
the 10-dimensional vector (p™,0) having vanishing norm. This is the %—BPS constraint
for a D = 6 string configuration, derived in [27].

The solutions of the fixed-scalar equations (6.12]) on this background can be written
up to an SO(5) x SO(5) rotation a

Zy = Zaala Zy = Z(séLl?
ZCLAA = 07 Zrﬁz?g = \/ﬁdiag(z,z,0,0) : (621)

Using (6.9) one can express z in terms of the cubic U-invariant (6.7)
(J2J5) Ty = 2V22° . (6.22)

Combining (6.10), (€21), ([€22), one finally writes the effective potential in the scalar
independent form

‘2/3

1/3
Ve = 32° = 2 |BLL|"° = g%mﬁ/‘? (6.23)

)
Like in the half-maximal case, the effective potential, the black string central charge and
the near-horizon geometry are given by the general formulas (4.2)) but now in terms of
the SO(5,5) cubic invariant I3 = Z3. Again, the radius 7, of the extra S’ is not fixed by
the extremization equations.

Let us consider the moduli space of this attractor. The symmetry of the solution is
SO(4,3), which is the subgroup of SO(5, 5) leaving invariant (6.21]). To see this we notice
that SO(4,3) is the maximal subgroup of SO(5,5) under which the decompositions of
both the vector and the spinor representations of SO(5,5) contain a singlet

10 = 7®3-1,
16 = 8GT®1. (6.24)

I The explicit form of the solution clearly depends on the particular form of SO(5) gamma-matrices
z44 44 7BB which has only

considered. In our conventions, this choice of Z7 7, mag Lmag

induces a matrix v4§ B*yf}‘ 5L
one non-vanishing entry.
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The moduli space is then given by the quotient of the symmetry group by its maximal
compact subgroup

SO(4,3)
SO(4) x SO(3)

Mgps (6.25)

More precisely, decomposing the scalar components P,; under SO(4) x SO(3) one finds

(5.5) — (4.3)©(2- (418 (1.3) 92 (1.1)) (6.26)

This can be confirmed by explicitly evaluating the Hessian (6.I3]) at this extremum. As
a result one finds 12 vanishing and 13 strictly positive eigenvalues.

The moduli space in (G2F) can be understood in terms of orbits of 3-BPS strings
and i—BPS black holes [27, 28, 29]. Indeed, the U-invariant Z3 can be considered as an
intersection of a %—BPS string with supporting charge orbit % and of a i—BPS
black hole with supporting charge orbit % [28]. The common stabilizer of the
charge vectors 10 and 16 of the D = 6 U-duality SO(5,5) is SO (4,3). Indeed, we find
that the resulting moduli space of the considered intersecting configuration is given by
Eq. ([625). This is also what expected by the supersymmetry uplift of the BPS moduli

space of the half-maximal (1, 1) theory to maximal (2,2) supergravity.

6.5 AdS; x S% x S!

The near-horizon geometry ansatz is

2 9 2 2 7.9 2 192
ds® = rAdesAdS2+rS dsgs + rido”

F = e Bas, H3" = €™ Brag, xst - (6.27)

The computation of the effective potential proceeds as for the AdS;x.S? x St case replacing
magnetic by electric charges. The final result read

2
3 UAdS,

1/3
Vg3 Up

Vir = 2|25 T5

3
2

7] . (6.28)

Extremizing the entropy function F' in the radii 7" one confirms that the AdS, sphere radii
and the black hole entropy are given again by the general formulae (4.3) with I3 = 7} the
magnetic SO(5,5) cubic invariant. The analysis of the moduli space is identical to that
of AdS3 x S? x S! case and the result is again given by (6.25)).
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7 Maximal D=7

7.1 N =2, D=7 Supersymmetry Algebra

The maximal N' = 2, D = 7 Poincaré supersymmetry algebra has pseudo-Majorana
supercharges and R-symmetry USp (4). Its central extension reads as follows (see e.g.
[19, 20, 21])

{Q), QF} = o2 + A5 20 + A 2P + 450 2007 (7.1)

where A = 1,...,4, so that the supercharges are SO (5)-spinors. The "trace” part of
Z,[LAB} is the momentum P,Q47 where Q4P is the 4 x 4 symplectic metric.

Black holes and their magnetic dual (black 3-brane) central extensions ZA45), Zﬁﬁf )

sit in the 10 of the R-symmetry group, and they are embedded in the 10 (and 10) of
the U-duality group SL (5,R). Thus, they correspond to the decomposition 10) — 10
of SL(5,R) into SO (5).

On the other hand, black strings and their magnetic dual (black 2-brane) central
extensions Z,EAB}, Z,%B} sit in the 5 of USp (4), and they are embedded in the 5’ (and 5) of
the U-duality group. Thus, they correspond to the decomposition 5¢) — 5 of SL (5,R)
into SO (5).

In our analysis, the corresponding central charges are denoted by ZJ" and ZJ7

(m,n = 1,...,5 are SO (5) indices) for black holes and their magnetic duals, and by

Zq and Z,, for black strings and their magnetic duals.

7.2 N =2, D=7 Supergravity

The global symmetry group of maximally supersymmetric D = 7 supergravity [30] is
SL(5,R). The bosonic field content comprises the graviton, 14 scalars, 10 vectors and 5
two-form fields. Under the U-duality group SL(5,R) these organize as

SL(5,R)
i —— =1,...
V my 50(5) z’m ) 57
AT a0,

The corresponding charges will be denoted by p“, g;;, p;, ¢". For near-horizon geometries
AdSy x 83 x T? and AdS; x S? x T?, there are two independent electric and magnetic
three-cycles, respectively, depending on which of the two circles of T2 = S{ x S} is part
of the cycle. The corresponding three-charges will be denoted by pj,, ¢ with a,r = 1,2.
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7.3 AdS; x S3 x S!

We start from the ansatz

2 2 2 2 2 2 2
ds = Tags dSAdS3 + Ts dSSS + T1d¢91 s

Hs, = e;Baas; + pioss , (7.3)

for the near-horizon geometry. The central charges and the relevant quadratic U-duality
invariant are given by

Zmag,m = JSijpja Zel,m = Jé (V_l)miqia
Ly = q'Pi = ZmagiZy (JsJ3)™", (7.4)

with J; = vpJj = (%) *. The effective potential can be written as
S

‘/eff = %Zm Al +%Zel,mZ01,m- (75)

mag“‘mag

Using the Maurer-Cartan equations, we obtain

vzr  =27" Pmn s vZel,m = _Zel,npmn ) (76)

mag mag

with P, a symmetric and traceless matrix (F,,,,, = 0). Here, indices m,n are raised and
lowered with d,,,. For the variation of the effective potential we thus obtain

V‘/eﬂ" = ( g}ag rrrzlag - Zel,mZel,n> Pmn é 07 (77)

Equation (7.7)) is solved by

zn sz (7.8)

mag
In this case we find

Vi = LT = 287 (7.9)
VVeg=0 Ugs

in agreement with (4.1]). Extremization of F' w.r.t. the radii yields the black string central
charge and near-horizon geometry (L1l ) with I = 7, the SL(5,R) quadratic invariant.
Notice that this solution can be thought of as the D = 7 lift of the AdSs x S solution
studied in the last section. The radius r; of the additional S! is not fixed by the attractor
equations.

23



Finally let us consider the moduli space of this black string solution. For this purpose
we notice that upon SO(5) rotation the solution can written in the form

Zinng = T Zeim = 20m1 - (7.10)
This form is clearly invariant under SL(4,R) rotations. The moduli space can then be
written as
SL(4,R)
= —. 7.11
Mrs SO(4) (7-11)

Alternatively, evaluating the Hessian at the solution one finds
VVVg = 42°P, P, (7.12)

a matrix with 5 strictly positive eigenvalues and 9 zeros. More precisely the 14 scalars in
the symmetric traceless 14 of SL (5,R) decompose under SO(4) ~ SU(2) x SU(2) into
the following representations

14— (2,1) @ (1,2)® (1,1) @ (3, 3). (7.13)
m=> me=

Notice that these 9 moduli, together with the free radius r; and the 10 degrees of freedom
associated to Wilson lines of the 10 vector fields along S! sum up to 20 free parameters
characterizing the solution. This precisely matches the dimension of the moduli space of
the six-dimensional solution of which the present solution is a lift. In other words, in going
from six to seven dimensions, an 11-dimensional part of the moduli space translates into
“geometrical moduli” describing the circle radius and Wilson lines. This will be always
the case for all D > 6 solutions under consideration here.

It is worth noticing that the solution with Zy # 0 can be considered as an intersection
of one %-BPS electric string and one %-BPS magnetic black-3-brane, respectively in the 5’
and 5 of the D = 7 U-duality group SL (5,R) [27]. The corresponding supporting charge
% [28], but the common stabilizer of the two charge vectors is SL (4,R)
only, with resulting moduli space of the considered intersecting configuration given by

Eq. (TI1).

orbit is

7.4  AdS; x S? x T?

We start from the near-horizon ansatz:

ds® = TRqsdsaas, + 18 dsee +ridoi® + ridbs*
Fy = plag,  Hs = €fas,+ D PiaOsxsy » (7.14)
a=1,2
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where T? = S{ x S1. In particular, in this case there are two magnetic three cycles S? x S}
which we label by a = 1,2. The corresponding central charges are given by

Zmag,mn == JZ (V_l)mi(v_l)nj pij )
Zy - J3b5ab ij Pjib Zel,m = J:; (V_l)mi ql ) (715)

mag,m

1
1 2
. _ [ vads3vp2 UAdSy |\ 2 o VAdS3 V72
with J = < Ys2 ) Js = <”s2”T2) ) S0 = (”52 (Usé)z)
In terms of these charges one can built two U-duality invariants

Iy = Leijump’PMq™, Iz =1ipiapip” €. (7.16)

Note that the existence of Z3 hinges on the fact that there are two inequivalent magnetic
three-cycles. In terms of the central charges (T.I5)) the invariants can be written as

Leijhim Z2,, 2820 = T3 T Ts ZmagiaZmagib Zieg €0 = JodsaJse Ty . (7.17)
The effective potential is now given by
‘/eff = iZmag,ngmag,mn + ;ernnaagzrfnna(; %Zol,mzol,m . (718)

The Maurer-Cartan equations give VV¢,, = V', P,,,, with P,,, symmetric and traceless.
The variation of the central charges is thus given by

vaag,mn - 2Zmag,k[mpn}k 5 Ve = Zys Pmn s VZel,m = - el,ann .

mag mag

Hence, we obtain
mag“~“mag

V‘/eﬂ" - < - Zmag7 memag7 nk + VANSVASEES Zel,mZel,n> Pmn é 0 s (719)

By SO(5) rotation, the antisymmetric matrix Zyag, mn can be brought into skew-diagonal
form

Zmag,mn = 2z 51[m5n]2 + 229 53[m5n]4 . (720)

Plugging this into the attractor equation (Z.I9) one finds the following solutions

A) Zmag7 mn = 22 (61[m5n}2 + 53[m5n}4> ) Zol,m = Z(Smf) ’ ernnaag =0. (721)
B) Zmag,mn =2z 51[m5n}2 ) Zel,m =0 ’ quagm = Z(S?n . (722)
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The corresponding effective potentials are given by

3U Ul/3
Vaa = 32 = (RLIGIY = 520 (TP
3’03 ’01/3
Vi = 32" =3 (nhada L) = 520 TP, (7.23)

in agreement with (4.2)) with Iy = Z3 and I3 = 7, for the solutions A and B, respectively.
After the 7-extremization one finds again that the AdS and sphere radii and the entropy
function are given by the general formula (£2)). Again, the radii 7, of the two circles S}
are not fixed by the extremization equations.

Let us finally consider the associated moduli spaces. We start with solution A. The
symmetry of (Z.21]) is Sp(4,R) ~ SO(3,2). The moduli space is the quotient of this group
by its maximal compact subgroup

SO(3,2)
SO(3) x SO(2)

Mgps 4 (7.24)

More precisely, in terms of SO(3) x SO(2) representations one finds that the 14 scalar
components decompose according to

Po: 14—3,303_01,001 5d 1D 5, (7.25)
2 h ;ro g
m*=0 me>

subscripts referring to SO(2) charges. Indeed, evaluating the Hessian

Vvv;aff = 2 Pmppnq (Zmag,mpZmag,nq + Zmag,memag,nk 5pq + ng;gzglgg 5
‘I'Zel,mZel,n 5pq> )

at the solution (Z.21]) one finds a matrix with 6 vanishing and 8 strictly positive eigenval-
ues.

For solution B one finds as a symmetry SL(3,R) and thus the moduli space
,R
Mprsp = —(o - (7.26)

The scalars decompose into SO(3) representations according to

Pp: 14— 5 ©2.3@3-1. (7.27)
M2 \— e’

m2>0
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Indeed from the Hessian
VVVgls = 622 (PP, + PoypPyy) , (7.28)

one finds a matrix with 9 strictly positive and 5 vanishing eigenvalues.

As mentioned above, at D = 7 the charge orbit supporting one %—BPS black string (or

black-2-brane) is given by SLER) 53] On the other hand, the charge orbit supporting
ST(4,R) xR
one black hole (or black-3-brane) is ST R)SXLS(%E)R)XSRG and sos(g(z?i)w in the 3-BPS and

2-BPS cases, respectively [28].

Solution A corresponds to an intersection of one i-BPS black-3-brane (with charges
in the 10" of SL(5,R)) with one 3-BPS black string (with charges on the 5" of SL(5,R)).
The stabilizer of both charge vectors is SO (3,2) only, and thus the resulting moduli space

of the considered intersecting configuration is given by Eq. (T.24]).

Solution B corresponds to an intersection of one %—BPS black-3-brane with two parallel
%—BPS black 2-branes (with charges on two different 5s of SL(5,R)). Accordingly, the
stabilizer of the three charge vectors is SL (3, R) only, and thus the resulting moduli space
of the considered intersecting configuration is given by Eq. (Z.26]).

7.5 AdSy x S3 x T?

The analysis of the black hole solutions is very similar to the previous one of the black
strings replacing electric with magnetic charges and vice versa. Now we start from the
near-horizon ansatz:

ds’ = 1iasdsias, +15dss +rid " + rydy”
F2ij = 6ij 6Ang y Hgi = p;0gs + Z 6; ﬁAdSzxsr1 ) (729)
r=1,2

where 7 = 1,2 labels the two inequivalent electric three-cycles and 7% = S] x S3. The
central charges and U-duality invariants are given by

Zel,mn - Jé Vimvjnqij>

r ! STSs —1\m j 7
el,m = J386 (V ) 7 qg ) Zmag,m - J3 V mPi s
/ 1 _ijklm 1 _ijklm 2 —1
Iy = gEJ qijQkiPm = gEJ Zelij Lol k1 Lmag,m (Jy°J3) ™,
A S rs __ 1r7i J rs (7 7 7 \—1
Iy = 30065 €”° = 520,20 Zaii € (Jods1d35) " (7.30)

1 1 snas, (ve1)? z
. 7 [ vAds, |\ 2 _ [ vruads, \ 2 ’ AdSy Vsl
with J, = (UTUSS) , J3 = <7053 s J3s = | Tmuge
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The two solutions of the associated attractor equations are given by

A) Zel,mn - 22(51[m5n}2 + 53[m5n}4) 5 Zmag,m = 25m5 s Zg =0 (731)

el,m

B) Zelvm" - 2’251[7”6"]2 ) Zmag,m =0, YA

om = 20 - (7.32)
The effective potentials, entropy function and near-horizon geometry are given by the
general formula (4.3]) with I3 given by Z} and Zj for the cases A and B, respectively. The
analysis of the moduli spaces is identical to that of the AdS; cases and the results are

again given by (.24]) and (7.26)), respectively.

Solution A has f{,, = 0, which comes from ¢;,q;»¢® = 0, meaning that the two 5’s are
reciprocally parallel. On the other hand, solution B has Z} = 0; this derives from the
condition €7*™g;.q,, = 0 for a D = 7 black hole to be %—BPS [27].

8 Maximal D =38

8.1 N =2, D =238 Supersymmetry Algebra

The maximal N = 2, D = 8 Poincaré supersymmetry algebra has complex chiral super-
charges (as in D = 4) and R-symmetry SU (2) x U (1) = Spin(3) x Spin(2). Its central
extension reads as follows (see e.g. [19] 20, 21])

{Q1,QF} = € 2UP) 4y 2188 + ﬁgﬂkz}ﬁ (and h.c.) (8.1)

{QF’?’QS\B} = V5 Zip + 1 el (8.2)

where A, B = 1,2, so that the supercharges are SU (2)-doublets. The trace part of Z;“B
is the momentum Puég.

Black holes and their magnetic dual (black 4-brane) central extensions Z45), Z iﬁf/\)

sit in the (3,2) (and (3',2)) of SU (2) x U (1), and they are embedded in the (3,2) of
the U-duality group SL (3,R) x SL(2,R).

On the other hand, dyonic black membrane central extensions Z,%B} are in the (1,2)
of SU (2) x U (1), and they are embedded in the (1,2) of SL(3,R) x SL(2,R).

Black strings and their magnetic dual (black 3-brane) central extensions Z;“ B Z;‘V olB
sit in the (3/,1) (and (3,1)) of SU (2) x U (1) (namely in the adjoint of SU (2), and they
do not carry U(1) charge, because they are real), and they are embedded in the (3,1)

of the U-duality group SL (3,R) x SL(2,R).
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In our analysis, the corresponding central charges are denoted by Z.;a and Zagia
(¢ =1,2,3 and A = 1,2) for black holes and their magnetic duals, by Za; and Zag, for
black strings and their magnetic duals, and by Z4 for dyonic black 2-branes.

8.2 N =2, D=8 Supergravity

The bosonic field content of D = 8 supergravity [31] with maximal supersymmetry in-
cludes beside the graviton, scalars in the symmetric manifold

SL(3,R) SL(2R)

m B .
Vi Vam S0(3) SO(2)

(8.3)

withi,m =1,...,3, A= 1,2, and forms in the following representations of the SL(3, R) x
SL(2,R) U-duality group:

B (3,2),
H3i . (3/7 1) )
e (1,2). (8.4)

The Lagrangian carries only one three-form potential C', whose field strength F); together
with its magnetic dual spans the SL(2,R) doublet F}'.

The scalar vielbeins V;"*, V42, corresponding to the two factors, vary as
VY™ = Vi"Pun , VVAP = V¢ Pye (8.5)

with P,,, and Psp, symmetric and traceless. Here we raise and lower indices m and A
with 0,,, and dg4, respectively.

8.3 AdS;x S®xT?

We start with the AdS; x S x T? near-horizon ansatz:

2 2 2 2 2 2 2
ds” = TaqsdSyas, T 75 dSgs + E rdfs” Fyia = giaare,
s=1,2
Hsi = piass +€iPrass Fy = E €r Oadssxst + E Pa (S35 - (8.6)
r=1,2 a=1,2
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Depending on the choice of the circle within 72 = S} x S3, there are two inequivalent elec-
tric and magnetic four-cycles. The four-form charges combine into the SL(2,R) doublet

QAT = (q7“7p7”)'

The central charges are given by

Zmag,m = ']3 (V_l)mjpj ) 01 = ']/ Vm ' 5 ZZ} = ']4568T (V_1>AB QBS 5 (87)

1

1 2
. UAdSg V2 UVAdS 2 VAdS3 V2
with Jy= (=% )", Ji=—=2 )", Jis = p—
vs Vg3 U2 Vg3 (vssl)

The U-duality invariants that can be built with these set of charges are

I2 = Pi qZ = Zol,iZmag,i(J3']§)_1 )
_'2'2 = (arQBs EABETS = Zel,ArZelBs EABETS(J4,1J472)_1 . (88)

Note that the existence of two inequivalent electric four-cycles is crucial for the existence
of Z,. The effective potential can be written as

V:aff = %Zmag, Zmagm + 2Z el 1+ %ZATZAT’ 5 (89)

and the attractor equations take the form

M=

(Zmag,mZmag,n — Za ?1) Prn + <ZA7‘ZB7‘> Pap 0. (8.10)

We will consider the following two solutions to these equations

A) Zogm = T2 = 20m s Zar=0. (8.11)
B) Zmag,m = gln =0 ’ ZAT = ZéAr . (812)

The effective potentials at the horizon become

UAdS;

Vtla = 22 = LJ4|T| = |Zs|
Vg3
~ U ~
Vgl = 22 =Ji1daz|L| = zdjg |Z] , (8.13)
)5

respectively. Plugging this into the entropy function and extremizing with respect to the
radii one recovers the near-horizon geometry central charge (4.1]) with I, taken as Z, or
7, for the solution A and B, respectively.
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Let us consider the associated moduli spaces. The symmetry groups leaving (8.1T])
and (8I2) invariant are SL(2,R)? and SL(3,R), respectively. The moduli spaces are thus

SL(2,R)\° SL(3,R
Mgppsa = (%) ) Mgppsp = g (8.14)

The same results follow from evaluating the Hessians at the solutions

VVViga = 22°P}

im »

VVVigp = 22°P5,, (8.15)
which shows that one has 3(2) strictly positive and 4(5) vanishing eigenvalues for the

solution A (B), in agreement with the dimensions of the moduli spaces (814)).

At D = 8 there are two dyonic %—BPS black-2-brane, whose charge orbits are %

The 3-BPS black strings (and their dual black 3-branes) are in the (3/,1) and (3,1) of

the D = 8 U-duality group SL (3,R) x SL(2,R), and their individual charge orbit is

© L‘(qu &’fﬁ%iiﬁﬁém [28]. The black holes (and their dual black 4-branes) are in the (3, 2)

and (3',2) of SL (3,R) x SL (2, R), and their individual charge orbit is SLEESLER) ;) g

SL(Z,R)xsR2
% for the $-BPS and 3-BPS cases, respectively [28].

In the considered AdSs x S x T? near-horizon geometry, solution A corresponds to
the intersection of one %—BPS black string and one %—BPS black 3-brane. The stabilizer

of both charge vectors is SL (2,R) x SL (2,R) only, and thus the resulting moduli space

2
of the considered interesecting configuration is <SSLC(?2(72H§)> , given in the left hand side of

Eq. (8:14).

On the other hand, solution B corresponds to the instersection of two dyonic %—BPS
black 2-branes. Thus the stabilizer of both charge vectors is SL (3,R) only, and the
resulting moduli space of the considered interesecting configuration is S;O(?gf), given in the
right-hand side of Eq. (8.14]).

8.4 AdS;x S*x T3

The near-horizon ansatz is given by

2 2 2 2 2 § 2 2
dS = TAdS dSAdS3 + TS dSSQ ‘l’ Tsdes s

s=1,2,3
1A A a
F° = pTas:, Hs; = E P; 028t
a=123
A _ A 1 A
Fy = E €q Oadssxsy + E 3 |€abe| Do Q52551 sy (8.16)
a=12,3 a=12,3
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with 7% = S} x S} x Si. In this near-horizon geometry there are thus three inequivalent
electric and magnetic four-cycles and three magnetic three-cycles. The four-form charges

again combine into the SL(2,R) doublet Q4. = (qa, Pa)-

The central charges take the form

zma = RV VPP Zon = Jud (V)

mag mag,m

Zaa = Japday VA" Qpy

1 1
. VAdS3 U3 % VAdS3 U3 2 VAdS3 (Usl )2 2
with Jp = ( =21 ) 7, J3, = 7] s Jwe= | ——
Vg2 vs2 (vg1) Y2 U3

The U-duality invariants are given by

1.3 - piAP? QAa - ZiA Zmag,ia ZAa (J2J3a<]4a)_1 5

mag
T 1,a, b, c ijk 1r7a b c ijk -1
13 = 3P PPy € 7 €abc = §Z VA 'Zmag,k € €abe (J371J372J373) .

mag,? "~ mag,j

From variation of the effective potential

Ver = SZ0AZ0A 4 L D + Y200 %

1
2“mag“mag 2 “mag,m*“/mag,m

we thus obtain the attractor equations

mA nA a a !
<Zmameag - Zmangmagn> Pmn - O )
(Zgaézgfg - ZArZBr> Pyp é 0,

with P, and Psp symmetric and traceless.

We will consider the solutions

A) Z08 =0 = Zaa,  Zlogm = 205
B) Z;n;; = 25m15A1 y Zglag,m = 5a15m1 Z ZAT = (57«1 5A1 z .

The effective potentials become

1
3 UAds; Vgs
2’[152

N
[N}

|i-3|2/3 ’

1

Veg,a = 22°=3(JJsedua 1Z5)%% =

3 Unds, V3
=5 Usdsadss [T = — 0 [T P°
S

N
N
|

Ve, =
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(8.20)
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(8.22)
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respectively, and r-extremization leads to the near-horizon geometry and central charge
([A2) with I3 = Z3 and I3 = Z3 for the cases A and B, respectively.

The symmetry group leaving (821 and (822)) invariant, is SL(2,R) and the moduli
space thus given by

SL(2,R
Megppsa/p = ﬁ (8.24)

Alternatively the moduli space can be determined from the vanishing eigenvalues of the
Hessians

VVVera = 22%(PL,+P;,)
VVVgp = 42°P} +62*P, | (8.25)

respectively, showing 5 strictly positive and 2 vanishing eigenvalues in each case.

We now derive the nature of the moduli spaces of solutions A and B from the charge
orbits discussed in [28].

Solution A corresponds to an intersection of three black 3-branes, with Z; = det (p%) #

0 but Zz = pp?Qa, = 0. The charge orbit for each of them is ( SL%%H?I@%(;L% AL and
the common stabilizer is the SL (2, R) commuting with SL (3,R). This agrees with the

moduli space SSL&’;%) ) of solution A (see Eq. (824).

Solution B corresponds to the intersection of three parallel black 2-branes, three paral-
lel black 3-branes and %-BPS black 4-branes, respectively characterized by the constraints

QuaQppe™ =0, piple’* =0, p“pPeap =0, (8.26)

with Z3 = p"p2Qaq # 0 and 7, = 0.

SL(3,R)xSL(2,R)
(SL(2,R)x sR%)x SL(2,R) ’
the parallel 2-branes have a common charge orbit w, and the %—BPS 4-brane

SL(3,R)xR!
SL(3R)xSL2R) g
GL(3,R)xR2)xR! [ ]

The three parallel 3-branes have a common charge orbit whereas

has charge orbit (
Since the coset is factorized, the common stabilizer of the three parallel 3-branes and
of 1-BPS 4-brane is SL (2,R) inside SL (3,R), and this agrees with the moduli space

SSLO@(QI? . of solution B (see Eq. (824).
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8.5 AdS,; x S3x T3

This case is very similar to the previous discussion. We start with the near-horizon ansatz

2 2 2 2 2 § 2 2
dS = TAdS dSAdSz + TS dSSS + Tsdes s

s=1,2,3
A iA B ,
Fy" = €7 Bags, » Hs; = E €; Brdsyxst
a=1,2,3
_ 1 A A
Fy = Z 5| €abe| €2 Baassxsixst + E Do (S3xSL (8.27)
a,b,c=1,2.3 a=1,2,3

with 7% = S} x S3 x S3. Again, there are thus three inequivalent electric and magnetic
four-cycles. In addition, there are three inequivalent electric three-cycles.

The associated central charges and U-duality invariants are given by

Zama = SV APV " as T o= Je Vi,
Zar = Jasbs VA" Qps ,
b= Gady QY = Zaia 25 Z (3 Ta Jia)
Ty = 3qiaqiar eine™ = 325,22, 28 c€ijue®™ (JsaJspdss) " (8.28)

1 1

1 2\ 2 2
. ads, \ 2 vAds, (vg1) UAdS, V3
with Jp = (—adsa )?gr - (25208l ) g = 213
Vg VU3 vs3 U3 US3 (’US;)

The possible solutions of the attractor equations are

A) Zol,mA =0 = ZAS; q= Z(Smrv

el

B) Zol,mA = 25m15A1 mr = 57"15m1 Z ZAT = 5,«1 6A2 Z . (829)

el

The effective potentials, entropy function and near-horizon geometry are given by the
general formula (43]) with I3 = Z3 and I3y = Z3 for the cases A and B respectively. The
analysis of the moduli spaces is identical to that on AdSs; x S? case and the results are

given again by (8.24]).

9 The Lift to Eleven Dimensions

The attractor solutions we have discussed throughout this paper have a simple lift to
eleven-dimensional supergravity. The black string solutions with AdSs x S x TP~6 near-
horizon geometry follow from dimensional reduction of M2M5 branes intersecting on a
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string. The supersymmetric solutions with AdSs; x S? x TP=5 follow from reductions of
triple M2-intersection on a string. Finally AdS; x S® x TP~5 near-horizon geometries
correspond to triple M5 intersections on a time-like line. The orientations of the M2,M5
branes in the three cases are summarized in table [Il

0O 1 2 3 4 5 6 7 8 9 10 near-horizon
M2|— — o © © o o o o o — | AdS;xS?>x1T®
M| — — o ©¢ ©¢ ©¢ — — — — o
M2|— o o © o o o o o — — [ AdSyxS3xTS
M2|— o o © ©¢ o o — — o o
M2|— o o ©¢ ¢ — — o o o o
M| — — o © o o o — — — — | AdSyxS?xT®
M5|l— — o ©¢ @ — — o e — —

M| — — o ©¢ @€ — — — — o o

Table I: Supersymmetric M-intersections

After dimensonal reductions down to D = 6,7,8-dimensions the solutions expose a
variety of charges with respect to forms of various rank. Indeed, a single brane intersection
in D = 11 leads to different solutions after reduction to D-dimensions depending on the
orientation of the M-branes along the internal space. Different solutions carry charges
with respect to a different set of forms in the D-dimensional supergravity. They can be
fully characterized by U-duality invariants built out of the brane charges. The list of
U-duality invariants leading to extremal black p-brane solutions in D = 6, 7, 8 dimensions
are listed in table[[I. The reader can easily check that there is a one-to-one correspondence
between the entries in this table and the solutions found in the previous sections.

dim p=20 p=1
d 429292 D2p2p2
6 729243 D343, P2P2P3
7 42492P3, 434392 D343, P2P243, P3P3pP2
8 4243P4, 434393 | P343, P4q4, P2P3q4, P3P3P3

Table II: Electric and magnetic charges for M-brane intersections. p = 0,1 corresponds to in-
tersections on a black hole and a black string respectively. g, (p,) denotes the electric(magnetic)
charge of the brane solution and n specifies the rank of the form.
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10 Final Remarks

In the present paper we analyzed the attractor nature of solutions of some supergravity
theories in D = 6, 7, 8, with static, asymptotically flat, spherically symmetric extremal
black-p brane backgrounds and scalar fields turned on.

We have found that for such theories, with the near-horizon geometry containing a
factor AdS,i2 (p = 0,1), a generalization of the “entropy function” [I0] and “effective
potential” [4], 5] 6] [7, 8] formalisms occurs, which allows one to determine the scalar flow
and the related moduli space near the horizon. The value of the entropy function at its
minimum is given in terms of U-duality invariants built out of the brane charges and it
measures the central charges of the dual CF'T living on the AdS boundary. The resulting
central charges were shown to satisfy a Bekenstein-Hawking like area law generalizing the
familiar results of black hole physics.

In order to make further contact with previous work on p-brane intersections and their
supersymmetry-preserving features [3], we have found that for maximal supergravities in
D space-time dimensions, the moduli spaces of attractors with AdSs x S3 x TP~6 near-
horizon geometries have rank 10 — D. Actually, this holds also for the D = 4 case (with
near-horizon geometry AdS, x S?) in the non-BPS configuration, with the related moduli

space given by the rank-6 symmetric space U%;?g) [22].

Furthermore, for D-dimensional maximal supergravities, the moduli spaces of attrac-
tors with AdS3 x S? x TP=5 (or AdS; x S x TP~%) near-horizon geometries have rank
9 — D. This holds also for the D = 5 case (with near-horizon geometry AdSs x S? or
AdSy x S3) in the é—BPS configuration, with the related moduli space given by the rank-4

symmetric space W [32] 22].

These results imply that the dilatons of the p-brane intersections in D = 11 described
in [3] are not all on equal footing, because only one or two (combinations) of them get(s)
fixed at the horizon, while the other ones have asymptotical values which enter the flow,
although the function F' does not depend on such values.

Finally, we would like to comment on the fact that the half-maximal non-chiral (1, 1),
D = 6 theory analyzed in Sect. Bl may be considered as Type ITA compactified on K3
[33]. The result obtained in the present paper for the AdS; x S* near-horizon geometry
supports the conjecture of [34]. On the other hand, we do not find an agreement with the
other Ansdtze for the near-horizon geometry, because we only find solutions where the
charges of strings (or that of their magnetic duals) are turned on.

We note that the techniques we have developed here apply to any supergravity flow
ending on an AdS horizon even in presence of higher derivative terms and gaugings. It
would be interesting to apply this formalism to the study of higher derivative corrections
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to central charges in ungauged and gauged supergravities extending the black holes results
found in [35] and [36]. The study of non-BPS black p-brane flows along the lines of [37]
deserves also further investigations.
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