
HAL Id: ensl-00356421
https://ens-lyon.hal.science/ensl-00356421

Submitted on 27 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Large multipliers with less DSP blocks
Florent de Dinechin, Bogdan Pasca

To cite this version:
Florent de Dinechin, Bogdan Pasca. Large multipliers with less DSP blocks. Field Programmable
Logic and Applications, Aug 2009, Czech Republic. �ensl-00356421�

https://ens-lyon.hal.science/ensl-00356421
https://hal.archives-ouvertes.fr


Large multipliers with less DSP blocks

LIP research report RR2009-03

Florent de Dinechin, Bogdan Pasca ∗

LIP (CNRS/INRIA/ENS-Lyon/UCBL)

École Normale Supérieure de Lyon — Université de Lyon

Florent.de.Dinechin@ens-lyon.fr

Abstract

Recent computing-oriented FPGAs feature DSP blocks

including small embedded multipliers. A large integer

multiplier, for instance for a double-precision floating-

point multiplier, consumes many of these DSP blocks.

This article studies three non-standard implementation

techniques of large multipliers: the Karatsuba-Ofman al-

gorithm, non-standard multiplier tiling, and specialized

squarers. They allow for large multipliers working at the

peak frequency of the DSP blocks while reducing the DSP

block usage. Their overhead in term of logic resources,

if any, is much lower than that of emulating embedded

multipliers. Their latency overhead, if any, is very small.

Complete algorithmic descriptions are provided, carefully

mapped on recent Xilinx and Altera devices, and validated

by synthesis results.

1 Introduction

A paper-and-pencil analysis of FPGA peak floating-point

performance [8] clearly shows that DSP blocks are a rel-

atively scarse resource when one wants to use them for

acclerating double-precision (64-bit) floating-point appli-

cations.

This article presents techniques reducing DSP block us-

age for large multipliers. Here, “large” means: any mul-

tiplier that, when implemented using DSP blocks, con-

sumes more than two of them, with special emphasis on

∗This work was partly supported by the XtremeData university pro-

gramme and the ANR EVAFlo and TCHATER projects.

the multipliers needed for single-precision (24-bit) and

double-precision (53-bit) floating-point.

There are many ways of reducing DSP block usage, the

simplest being to implement multiplications in logic only.

However, a LUT-based large multiplier has a large LUT

cost (at least n2 LUTs for n-bit numbers, plus the flip-

flops for pipelined implementations). In addition, there is

also a large performance cost: a LUT-based large mul-

tiplier will either have a long latency, or a slow clock.

Still, for some sizes, it makes sense to implement as LUTs

some of the sub-multipliers which would use only a frac-

tion of a DSP block.

We focus here on algorithmic reduction of the DSP

cost, and specifically on approaches that consume few

additional LUTs, add little to the latency (and sometime

even reduce it), and operate at a frequency close to the

peak DSP frequency.

All the results in this article have been obtained using

ISE 9.2i / LogiCore Multiplier 10.0.

Contributions

After an introduction in Section 2 to the implementation

large multipliers in DSP-enhanced FPGAs, this article has

three distinct contributions.

Section 3 studies the Karatsuba-Ofman algorithm [5, 6,

7], commonly used1 in multiple-precision software and,

on FPGAs, large multiplication in finite fields. This algo-

rithm trades multiplications for additions, thus reducing

1We were surprised to find no reference to Karatsuba-Ofman for in-

teger multiplication in the FPGA literature and will be deeply grateful

to the referees for any pointer to prior work on FPGAs.



the DSP cost of large multipliers from 4 to 3, from 9 to

6, or from 16 to 10. This technique works for any DSP-

enhanced FPGA from Xilinx or Altera, but is actually less

efficient on more recent chips, which are less flexible.

Section 4 introduces a tiling-based technique that

widens the multiplier design space on Virtex-5 (or any cir-

cuit featuring rectangular multipliers). It is illustrated by

two original multipliers, a 41-bit one in 4 DSP48E and a

58-bit one in 8 DSP48E, suitable for double-precision.

Finally, Section 5 focuses on the computation of

squares. Squaring is fairly common in FPGA-accelerated

computations, as it appears in norms, statistical compu-

tations, polynomial evaluation, etc. A dedicated squarer

saves as many DSP blocks as the Karatsuba-Ofman algo-

rithm, but without its overhead.

For each of these techniques, we present an algorith-

mic description followed by a discussion of the match to

DSP blocks of relevant FPGA devices, and experimental

results.

2 Context and state of the art

2.1 Large multipliers using DSP blocks

Let k be an integer parameter, and let X and Y be 2k-bit

integers to multiply. We will write them in binary X =∑2k−1

i=0
2ixi and Y =

∑2k−1

i=0
2iyi.

Let us now split each of X and Y into two subwords of

k bit each:

X = 2kX1 + X0 and Y = 2kY1 + Y0

X1 is the integer formed by the k most significant bits of

X , and X0 is made of the k least significant bits of X .

The product X × Y may be written

X × Y = (2kX1 + X0) × (2kY1 + Y0)

or

XY = 22kX1Y1 + 2k(X1Y0 + X0Y1) + X0Y0 (1)

This product involves 4 sub-products. If k is the input size

of an embedded multiplier, this defines an architecture for

the 2k multiplication that requires 4 embedded multipli-

ers. This architecture can also be used for any input size

between k +1 and 2k. Besides, it can be generalized: For

any p > 1, numbers of size between pk − k + 1 and pk
may be decomposed into p k-bit numbers, leading to an

architecture consuming p2 embedded multipliers.

Earlier FPGAs had only embedded multipliers, but the

more recent DSP blocks [10, 9, 1, 2] include internal

adders designed in such a way that most of the additions in

Equation (1) can also be computed inside the DSP blocks.

Let us now review these features in current mainstream

architectures, focussing on the capabilities of the DSP

blocks relevant to this paper.

2.2 Overview of DSP block architectures

The Virtex-4 DSP block (DSP48) contains one signed

18x18 bit multiplier followed by a 48-bit addi-

tion/subtraction unit [10]. As the multiplier decompo-

sition (1) involves only positive numbers, the multipli-

ers must be used as unsigned 17-bit multipliers, so for

these devices we will have k = 17. The multiplier output

may be added to the output of the adder from the previ-

ous DSP48 in the row (using the dedicated PCOUT/PCIN

port), possibly with a fixed 17-bit shift – this allows for

217 factors as in Equation (1).

In Virtex-5 DSP blocks (DSP48E), the 18x18 multipli-

ers have been replaced with asymmetrical ones (18x25

bits signed). This reduces the DSP cost of floating-point

single-precision (24-bit significand) from 4 to 2. The

fixed shift on PCIN is still 17-bit only [9]. Another im-

provement is that the addition unit is now capable of

adding a third term coming from global routing.

The Stratix II DSP block consists of four 18x18 multi-

pliers which can be used independently. It also includes

two levels of adders, enabling the computation of a com-

plete 36x36 product or a complete 18-bit complex prod-

uct in one block [1]. With respect to this article, the main

advantage it has over the Virtex-4 is the possibility to op-

erate on unsigned 18-bit inputs: Altera devices may use

k = 18, which is an almost perfect match for double-

precision (53-bit significand) as 54 = 3 × 18.

In Stratix III, the previous blocks are now called half-

DSP blocks and are grouped by two [2]. A half-DSP

block contains 4 18x18 multipliers, 2 36-bit adders and

one 44-bit adder/accumulator, which can take its input

from the half-DSP block just above. This direct link en-

ables in-DSP implementation of some of the additions of

(1). Unfortunately, the Stratix-III half-DSP is much less



3872 55

37 37

Figure 1: Stratix-III and IV operating modes using four

18x18 multipliers. Each rectangle is the 36-bit output of

an 18x18 multiplier. All constant shifts are multiples of

18 bits.

flexible than the Stratix-II DSP. Indeed, its output size is

limited, meaning that the 36x36 multiplier of a half-DSP

may not be split as four independent 18x18 multipliers.

More precisely, the four input pairs may be connected in-

dependently, but the output is restricted to one of the ad-

dition patterns described by Figure 1. The Stratix IV DSP

block is mostly identical to the Stratix III one.

All these DSP blocks also contain dedicated regis-

ters that allow for pipelined designed at high frequencies

(from 300 to 600 MHz depending on the generation).

3 Karatsuba-Ofman algorithm

3.1 Two-part splitting

The classical step of Karatsuba-Ofman algorithm is the

following. First compute DX = X1−X0 and DY = Y1−

Y0. The results are signed numbers that fit on k + 1 bits2.

Then compute the product DX ×DY using a DSP block.

Now the middle term of equation (1), X1Y0 +X0Y1, may

be computed as:

X1Y0 + X0Y1 = X1Y1 + X0Y0 − DXDY (2)

Then, the computation of XY using (1) only requires

three DSP blocks: one to compute X1Y1, one for X0Y0,

and one for DXDY .

There is an overhead in terms of additions. In princi-

ple, this overhead consists of two k-bit subtractions for

computing DX and DY , plus one 2k-bit addition and one

2k-bit subtraction to compute equation (2). There are still

more additions in equation (1), but they also have to be

2There is an alternative Karatsuba-Ofman algorithm computing

X1 + X0 and Y1 + Y0. We present the subtractive version, because

it enables to use the Xilinx 18-bit signed-only multipliers fully, while

working on Altera chips as well.

latency freq. slices DSPs

Logicore 6 518 43 4

Logicore 3 176 17 4

K-O-2 3 518 100 3

Table 1: 34x34 multipliers on Virtex-4 (4vlx15sf363-12)

computed by the classical multiplication decomposition,

and are therefore not counted in the overhead.

Counting one LUT per adder bit3, and assuming that

the k − bit addition in LUT can be performed at the DSP

operating frequency, is we get a theoretical overhead of

6k LUT. However, the actual overhead is difficult to pre-

dict exactly, as it depends on the scheduling of the various

operations, and in particular in the way we are able to ex-

ploit registers and adders insided DSPs. There may also

be an overhead in terms of latency, but we will see that the

initial subtraction latency may be hidden, while the addi-

tional output additions may take the place of the saved

multiplier.

At any rate, these overheads are much smaller than the

overheads of emulating one multiplier with LUTs at the

peak frequency of the DSP blocks. Let us now illus-

trate this discussion with a practical implementation on

a Virtex-4.

3.2 Implementation issues on Virtex-4

The fact that the differences DX and DY are now signed

18-bit is actually a perfect match for a Virtex-4 DSP

block.

Figure 2 presents the architecture chosen for imple-

menting the previous multiplication on a Virtex-4 device.

The shift-cascading feature of the DSPs allows the com-

putation of the right-hand side of equation (2) inside the

three DSPs at the cost of a 2k-bit subtraction needed for

recovering X1Y1. Notice that here, the pre-subtractions

do not add to the latency.

This architecture was described in VHDL (using +

and * from the ieee.std_logic_arith package),

tested, and synthesized. The corresponding results are

given in Table 1. Some tweaking of the options was

3In all the following we will no longer distinguish additions from

subtractions, as they have the same LUT cost in FPGAs.



Y1

X1

z

X0

X1

Y0

Y1

z

X0

Y0

DSP48

DSP48

DSP48

P

X0 ∗ Y0

51 68

X0 ∗ Y0(16 : 0)

X1 ∗ Y1

X1 ∗ Y1 + X0 ∗ Y0 − DX ∗ DY

X0 ∗ Y0(33 : 17)

17

17

17

17

18

18

34

36

34

34

35

Figure 2: 34x34bit multiplier using Virtex-4 DSP48

needed, for instance to prevent using the much slower

SRL16 to implement the registers.

3.3 Three-part splitting

Now consider two numbers of size 3k, decomposed in

three subwords each:

X = 22kX2+2kX1+X0 and Y = 22kY2+2kY1+Y0

We have

XY = 24kX2Y2

+ 23k(X2Y1 + X1Y2)
+ 22k(X2Y0 + X1Y1 + X0Y2)
+ 2k(X1Y0 + X0Y1)
+ X0Y0

(3)

After precomputing X2 −X1, Y2 −Y1, X1 −X0, Y1 −

Y0, X2 − X0, Y2 − Y0, we compute (using DSP blocks)

the six products

P22 = X2Y2 P21 = (X2 − X1) × (Y2 − Y1)
P11 = X1Y1 P10 = (X1 − X0) × (Y1 − Y0)
P00 = X0Y0 P20 = (X2 − X0) × (Y2 − Y0)

and equation (3) may be rewritten as

XY = 24kP22

+ 23k(P22 + P11 − P21)
+ 22k(P22 + P11 + P00 − P20)
+ 2k(P11 + P00 − P10)
+ P00

(4)

latency freq. slices DSPs

LogiCore 11 518 156 9

LogiCore 6 264 94 9

K-O-3 6 340 337 6

Table 2: 51x51 multipliers on Virtex-4 (4vlx15sf363-12).

Here we have reduced DSP usage from 9 to 6 which, ac-

cording to Montgomery [7], is optimal. There is a first

overhead of 6k LUTs for the pre-subtractions (again, each

DSP is traded for 2k LUTs). Again, the overhead of the

remaining additions is difficult to evaluate. Most may be

implemented inside DSP blocks. However, as soon as we

need to use the result of a multiplication twice (which is

the essence of Karatsuba-Ofman algorithm), we can no

longer use the internal adder behind this result, so LUT

cost goes up. Table 2 provides some synthesis results. The

critical path is in one of the 2k-bit additions, and could be

reduced by pipeling them.

3.4 Four-part splitting and more

We present this last section for completeness, but it is

probably less useful: The most recent FPGA families by

Xilinx and Altera do not need it for an efficient implemen-

tation of double-precision multiplication. 3-part splitting

is enough thanks to unsigned 18-bit multiplication on Al-

tera, using 9 or 6 DSP blocks depending on Karatsuba al-

gorithm or not. On Virtex-5, the multiplier structure pre-

sented in Section 4 consumes only 8 or 9 DSP48E.

Classically, the Karatsuba idea may be applied recur-

sively: A 4-part splitting is obtained by two levels of 2-

part splitting. However, a direct expression allows for a

more straightforward implementation. From

X = 23kX3 + 22kX2 + 2kX1 + X0

Y = 23kY3 + 22kY2 + 2kY1 + Y0



we have

XY = 26kX3Y3

+ 25k(X2Y3 + X3Y2)
+ 24k(X3Y1 + X2Y2 + X1Y3)
+ 23k(X3Y0 + X2Y1 + X1Y2 + X0Y3)
+ 22k(X2Y0 + X1Y1 + X0Y2)
+ 2k(X1Y0 + X0Y1)
+ X0Y0

(5)

Here we compute (using DSP blocks) the products

P33 = X3Y3

P22 = X2Y2

P11 = X1Y1

P00 = X0Y0

P32 = (X3 − X2) × (Y3 − Y2)
P31 = (X3 − X1) × (Y3 − Y1)
P30 = (X3 − X0) × (Y3 − Y0)
P21 = (X2 − X1) × (Y2 − Y1)
P20 = (X2 − X0) × (Y2 − Y0)
P10 = (X1 − X0) × (Y1 − Y0)

and equation (5) may be rewritten as

XY = 26kP33

+ 25k(P33 + P22 − P32)
+ 24k(P33 + P22 + P11 − P31)
+ 23k(P33 + P00 − P30 + P22 + P11 − P21)
+ 22k(P22 + P11 + P00 − P20)
+ 2k(P11 + P00 − P10)
+ P00

(6)

Here we have only 10 multiplications instead of 16. Note

that the recursive variant saves one more multiplication:

It precomputes

P3210 = (X3 + X2 + X1 + X0) × (Y3 + Y2 + Y1 + Y0)

instead of P30 and P21, and computes the middle term

X3Y0 + X2Y1 + X1Y2 + X0Y3 of equation (5) as a sum

of P3210 and the other Pij . However this poses several

problems. Firstly, we have to use a smaller k (splitting in

smaller chunks) to ensure P3210 doesn’t overflow from the

DSP size. Secondly, we currently estimate that the saved

DSP is not worth the critical path degradation.

A reader interested in even larger multipliers should

read Montgomery’s study [7].

3.5 Issues with the most recent devices

The Karatsuba-Ofman algorithm is useful on Virtex-II to

Virtex-4 as well as Stratix-II devices, to implement single

and double precision floating-point.

The larger (36 bit) DSP block granularity (see Sec-

tion 2.2) of Stratix-III and Stratix-IV prevents us from us-

ing the result of a 18x18 bit product twice, as needed by

the Karatsuba-Ofman algorithms. This pushes their rel-

evance to multipliers classically implemented as at least

four 36x36 half-DSPs. The additive version should be

considered, as it may improve speed by saving some of

the sign extensions. The frequency will be limited by the

input adders if they are not pipelined or implemented as

carry-select adders.

On Virtex-5 devices, the Karatsuba-Ofman algorithm

can be used if each embedded multiplier is considered as

a 18x18 one, which is suboptimal. For instance, single

precision K-O requires 3 DSP blocks, where the classical

implementation consumes 2 blocks only. We still have to

find a variant of Karatsuba-Ofman that exploits the 18x25

multipliers to their full potential. X may be split in 17-bit

chunks and Y in 24-bit chunks, but then, in Equation (2),

DX and DY are two 25-bit numbers, and their product

will require a 25x25 multiplier.

We now present an alternative multiplier design tech-

nique specific to Virtex-5 devices.

4 Non-standard tilings

This section optimizes the use of the Virtex-5 25x18

signed multipliers. In this case, X has do be decomposed

into 17-bit chunks, while Y is decomposed into 24-bit

chunks. Indeed, in the Xilinx LogiCore Floating-Point

Generator, version 3.0, a double-precision floating-point

multiplier consumed 12 DSP slices: X was split into 3 24-

bit subwords, while Y was split into 4 17-bit subwords.

This splitting would be optimal for a 72x68 product, but

quite wasteful for the 53x53 multiplication required for

double-precision, as illustrated by Figure 3(a). In version

4.0, some of the smaller sub-multipliers have been ex-

pressed as additions and replaced with either LUT logic

or internal DSP adders (the details are not published), re-

ducing the count to 9 or 10 DSP slices. However, a 53-

bit integer multiplier in LogiCore 10 still consumes 12



DSP48E.

The following equation presents an original way of im-

plementing double-precision (actually up to 58x58) mul-

tiplication, using only eight 18x25 multipliers.

XY = X0:23Y0:16 (M1)

+ 217(X0:23Y17:33 (M2)

+ 217(X0:16Y34:57 (M3)

+ 217X17:33Y34:57)) (M4)

+ 224(X24:40Y0:23 (M8)

+ 217(X41:57Y0:23 (M7)

+ 217(X34:57Y24:40 (M6)

+ 217X34:57Y41:57))) (M5)

+ 248X24:33Y24:33

(7)

The reader may check that each multiplier is a 17x24 one

except the last one. The proof that Equation (7) indeed

computes X × Y consists in considering

X×Y = (
57∑

i=0

2ixi)×(

57∑

j=0

2jyj) =
∑

i,j∈{0...57}

2i+jxiyj

and checking that each partial bit product 2i+jxiyj ap-

pears once and only once in the right-hand side of Equa-

tion (7). This is illustrated by Figure 3(b).

The last line of Equation (7) is a 10x10 multiplier (the

white square at the center of Figure 3(b)). It could con-

sume an embedded multiplier, but is probably best imple-

mented as logic.

Equation (7) has been parenthesized to make the best

use of the DSP48E internal adders: we have two parallel

cascaded additions with 17-bit shifts.

51

48

(a) standard tiling

34

0

0

24

41

58 34 17

41 24

17

M1

M2

M3M4
M5

M6

M7
M8

(b) proposed tiling

Figure 3: 53-bit multiplication using Virtex-5 DSP48E.

The dashed square is the 53x53 multiplication.

latency Freq. REGs LUTs DSPs

LogiCore 14 655 348 297 12

LogiCore 8 337 297 222 12

LogiCore 4 115 137 34 12

Tiling 4 369 243 400 8

Table 3: 58x58 multipliers on Virtex-5 (5vlx30ff324-3).

Results for 53-bits are almost identical. However, this

table misses a serious contender: the multiplier used in

LogiCore Floating-Point Operator 4.0, which is unfortu-

nately not available separately as an integer multiplier

This design was implemented in VHDL, tested, and

synthesized. Preliminary synthesis results are presented

in Table 3. The critical path is in the final addition, cur-

rently implemented as LUTs. It could probably exploit

the 3-input addition capabilities of DSP48E instead. Or it

could be pipelined to reach the peak DSP48E frequency,

at the cost of one more cycle of latency. The LUT cost is

also larger than expected, even considering that the 10x10

multiplier is implemented in LUTs and pipelined.

Figure 4 illustrates a similar idea for 41x41 and for

65x65 multiplications – the corresponding equations are

left as an exercise to the reader. The 65x65 example

(which may even be used up to 68x65) shows that a tiling

doesn’t have to be regular.

41x41
65x65

Figure 4: Tilings for 41x41 and 65x65 multiplications.



5 Squarers

The bit-complexity of squaring is roughly half of that of

standard multiplication. Indeed, we have the identity:

X2 = (

n−1∑

i=0

2ixi)
2

=

n−1∑

i=0

22ixi +
∑

0<i<j<n

2i+1xi

This is is only useful if the squarer is implemented as

LUTs. However, a similar property holds for a splitting of

the input into several subwords:

(2kX1 + X0)
2 = 22kX2

1 + 2 · 2kX1X0 + X2
0 (8)

(22kX2 + 2kX1 + X0)
2 = 24kX2

2 + 22kX2
1 + X2

0

+ 2 · 23kX2X1

+ 2 · 22kX2X0

+ 2kX1X0

(9)

Computing each square or product of the above equation

in a DSP block, there is again a reduction of the DSP

count from 4 to 3, or from 9 to 6. Besides, this time, it

comes at no arithmetic overhead.

5.1 Squarers on Virtex-4 and Stratix-II

Now consider k = 17 for a Virtex-4 implementation.

Looking closer, it turns out that we still lose something

using the above equations: The cascading input of the

DSP48 and DSP48E is only able to perform a shift by

17. We may use it only to add terms whose weight differs

by 17. Unfortunately, in equation (8) the powers are 0, 18

and 34, and in equation (9) they are 0, 18, 34, 35, 42, 64.

One more trick may be used for integers of at most 33

bits. Equation (8) is rewritten

(217X1 + X0)
2 = 234X2

1 + 217(2X1)X0 + X2
0 (10)

and 2X1 is computed by shifting X1 by one bit before

inputting it in the corresponding DSP. We have this spare

bit if the size of X1 is at most 16, i.e. if the size of X is at

most 33. As the main multiplier sizes concerned by such

techniques are 24 bit and 32 bit, the limitation to 33 bits

is not a problem in practice.

Table 4 provides synthesis results for 32-bit squares on

a Virtex-4. Such a squarer architecture can also be fine-

tuned to the Stratix II-family.

5.2 Squarers on Stratix-III and Stratix-IV

On the most recent Altera devices, the 36-bit granular-

ity means that the previous technique begins to save DSP

blocks only for very large input sizes.

We now present an alternative way of implementing

a double-precision (53-bit) squarer on such devices us-

ing only two 36x36 half-DSPs, where a standard multi-

plier requires four on a Stratix-III and two and a half on

a Stratix-IV. It exploits the fact that, although the addition

structure of the four 18x18 sub-multipliers is fixed, their

inputs are independent.

The two 36x36 multipliers we need are illustrated on

Figure 5. The upper-right one is completely standard

and computes the subsquare X0:35X0:35. The bottom-

left one (labelled P ) is configured as a multiplier, too,

but it doesn’t need to recompute and add the sub-product

X18:35X18:35 (the dark square in the center), which was

already computed by the previous multiplier. Instead, this

sub-multiplier will complete the 53-bit square by com-

puting 2X0:17X36:53 (the sum of the two white squares),

which has the same weight 236. To this purpose, the in-

puts of the corresponding 18x18 sub-multiplier have to be

set as X0:17 and 2X36:53. The latter will not overflow, be-

cause a double-precision significand product is 53x53 and

not 54x54, therefore we have X53 = 0.

We have not yet validated this squarer experimentally.

Compared to a standard multiplier, there should be no

LUT increase.

Applied to a single 36x36 block, a similar technique

allows us to compute squares up to 35x35 using only three

of the four 18x18 blocks. The fourth block is unusable,

but this may reduce power consumption.

latency frequency slices DSPs

LogiCore 6 518 40 4

LogiCore 3 176 17 4

Squarer 3 268 20 3

Table 4: 32-bit squarers on Virtex-4 (4vlx15sf363-12)



5.3 Non-standard tilings on Virtex-5

Figure 6 ilustrates non-standard tilings for double-

precision square using six or five 24x17 multiplier blocks.

Remark that these tilings are symmetrical with respect

to the diagonal, so that each symmetrical multiplication

may be computed only once. However, there are slight

overlaps on the diagonal: the darker squares are computed

twice, and therefore the corresponding sub-product must

be removed. These tilings are designed in such a way that

all the smaller sub-products may be computed in LUTs at

the peak DSP frequency.

The equations are therefore the following:

X2 = X0:16X0:16 (M1)

+ 234X17:33:X17:33 (M2)

+ 272X36:52X36:52 (M3)

+ 2 × 217X0:16X17:35 (M4)

+ 2 × 219+34X19:35X34:52 (M5)

− 234+34X34:35X34:35 (LUT)

+ 2 × 236X0:18X36:52 (M6)

+ 2 × 217+34X17:18X34:35 (LUT)

(11)

X2 = X0:16X0:18 (M1)

+ 217X17:18X0:18 (LUT)

+ 248X24:40:X24:40 (M2)

+ 2 × 217X0:23X19:35 (M3)

− 219+19X19:23X19:23 (LUT)

+ 2 × 236X0:23X36:52 (M4)

+ 2 × 224+41X24:47X41:52 (M5)

− 241+41X41:47X41:47 (LUT)

+ 248+48X48:52X48:52 (LUT)

(12)

Note that a square multiplication on the diagonal of size

n, implemented as LUT, should consume only n(n+1)/2
LUTs instead of n2 thanks to symmetry.

36

0

0

36

X0:17X36:53

X36:53X0:17

X0:35X0:35

P

Figure 5: Double-precision squarer for Stratix-III and IV

36

53

17

0

M1

M2

M3 M6M5

M4

0
41 24 0

19

36

53

M1

M2

M3

M4
M5

Figure 6: Double-precision squaring on Virtex-5. Left:

tiling corresponding to Equation (11). Right: tiling corre-

sponding to Equation (12).

We currently do not have implementation results. It is

expected that implementing such equations will lead to

a large LUT cost, partly due to the many sub-multipliers,

and partly due to the irregular weights of each line (no 17-

bit shifts) which may prevent optimal use of the internal

adders of the DSP48E blocks.

6 Conclusion

This article has shown that precious DSP resources can

be saved in several situations by exploiting the flexibility

of the FPGA target. An original family of multipliers for

Virtex-5 is also introduced, along with original squarer ar-

chitectures. The reduction in DSP usage sometimes even

entails a reduction in latency.We believe that the place of

some of these algorithms is in vendor core generators and

synthesis tools, where they will widen the space of imple-

mentation trade-off offered to a designer.

The fact that the Karatsuba-Ofman technique is poorly

suited to the larger DSP granularity of last-generation de-

vices inspires some reflexions. The trend towards larger

granularity, otherwise visible in the increase of the LUT

complexity, is motivated by Rent’s law: Routing con-

sumes a larger share of the resources in larger-capacity

devices [3]. Another illustration is the top entry of the

top 10 predictions4 for FFCMs in 2012: “FPGAs will

have floating point cores”. We hope this prediction will

turn out to be wrong! Considering that GPUs already of-

fer in 2009 massive numbers of floating-point cores, we

believe that FPGAs should go further on their own way,

which has always been the choice of flexibility. Flexi-

4http://www.fccm.org/top10.php



bility allows for application-specific mix-and-match be-

tween integer, fixed point and floating point [4], between

adders, multipliers [8], dividers, and even more exotic op-

erators [4]. The integer multipliers and squarers studied

in this article are not intended only for floating-point mul-

tipliers and squarers, they are also needed pervasively in

coarser, more exotic, more application-specific operators

which are possible only in FPGAs.

For this reason, while acknowledging that the design

of a new FPGA is a difficult trade-off between flexibility,

routability, performance and ease of programming [3], we

think FPGAs need smaller / more flexible DSP blocks, not

larger ones.

References

[1] Altera Corporation. Stratix-II Device Handbook,

2004.

[2] Altera Corporation. Stratix-III Device Handbook,

2006.

[3] F. de Dinechin. The price of routing in FPGAs. Jour-

nal of Universal Computer Science, 6(2):227–239,

2000.

[4] F. de Dinechin, J. Detrey, I. Trestian, O. Creţ, and

R. Tudoran. When FPGAs are better at floating-

point than microprocessors. Technical Report ensl-

00174627, École Normale Supérieure de Lyon,

2007. http://prunel.ccsd.cnrs.fr/ensl-00174627.

[5] A. Karatsuba and Y. Ofman. Multiplication of multi-

digit numbers on automata. Doklady Akademii Nauk

SSSR, 145(2):293–294, 1962.

[6] D. Knuth. The Art of Computer Programming, vol.2:

Seminumerical Algorithms. Addison Wesley, 3rd

edition, 1997.

[7] P. L. Montgomery. Five, six, and seven-term

Karatsuba-like formulae. IEEE Transactions on

Computers, 54(3):362–369, 2005.

[8] D. Strenski. FPGA floating point performance – a

pencil and paper evaluation. HPCWire, Jan. 2007.

[9] Xilinx Corporation. Virtex-5 FPGA XtremeDSP De-

sign Considerations (v3.2), 2008.

[10] Xilinx Corporation. XtremeDSP for Virtex-4 FPGAs

User Guide (v2.7), 2008.


