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Recent computing-oriented FPGAs feature DSP blocks including small embedded multipliers. A large integer multiplier, for instance for a double-precision floatingpoint multiplier, consumes many of these DSP blocks. This article studies three non-standard implementation techniques of large multipliers: the Karatsuba-Ofman algorithm, non-standard multiplier tiling, and specialized squarers. They allow for large multipliers working at the peak frequency of the DSP blocks while reducing the DSP block usage. Their overhead in term of logic resources, if any, is much lower than that of emulating embedded multipliers. Their latency overhead, if any, is very small. Complete algorithmic descriptions are provided, carefully mapped on recent Xilinx and Altera devices, and validated by synthesis results.

Introduction

A paper-and-pencil analysis of FPGA peak floating-point performance [START_REF] Strenski | FPGA floating point performance -a pencil and paper evaluation[END_REF] clearly shows that DSP blocks are a relatively scarse resource when one wants to use them for acclerating double-precision (64-bit) floating-point applications.

This article presents techniques reducing DSP block usage for large multipliers. Here, "large" means: any multiplier that, when implemented using DSP blocks, consumes more than two of them, with special emphasis on the multipliers needed for single-precision (24-bit) and double-precision (53-bit) floating-point.

There are many ways of reducing DSP block usage, the simplest being to implement multiplications in logic only. However, a LUT-based large multiplier has a large LUT cost (at least n 2 LUTs for n-bit numbers, plus the flipflops for pipelined implementations). In addition, there is also a large performance cost: a LUT-based large multiplier will either have a long latency, or a slow clock. Still, for some sizes, it makes sense to implement as LUTs some of the sub-multipliers which would use only a fraction of a DSP block.

We focus here on algorithmic reduction of the DSP cost, and specifically on approaches that consume few additional LUTs, add little to the latency (and sometime even reduce it), and operate at a frequency close to the peak DSP frequency.

All the results in this article have been obtained using ISE 9.2i / LogiCore Multiplier 10.0.

Contributions

After an introduction in Section 2 to the implementation large multipliers in DSP-enhanced FPGAs, this article has three distinct contributions.

Section 3 studies the Karatsuba-Ofman algorithm [START_REF] Karatsuba | Multiplication of multidigit numbers on automata[END_REF][START_REF] Knuth | The Art of Computer Programming[END_REF][START_REF] Montgomery | Five, six, and seven-term Karatsuba-like formulae[END_REF], commonly used 1 in multiple-precision software and, on FPGAs, large multiplication in finite fields. This algorithm trades multiplications for additions, thus reducing the DSP cost of large multipliers from 4 to 3, from 9 to 6, or from 16 to 10. This technique works for any DSPenhanced FPGA from Xilinx or Altera, but is actually less efficient on more recent chips, which are less flexible.

Section 4 introduces a tiling-based technique that widens the multiplier design space on Virtex-5 (or any circuit featuring rectangular multipliers). It is illustrated by two original multipliers, a 41-bit one in 4 DSP48E and a 58-bit one in 8 DSP48E, suitable for double-precision.

Finally, Section 5 focuses on the computation of squares. Squaring is fairly common in FPGA-accelerated computations, as it appears in norms, statistical computations, polynomial evaluation, etc. A dedicated squarer saves as many DSP blocks as the Karatsuba-Ofman algorithm, but without its overhead.

For each of these techniques, we present an algorithmic description followed by a discussion of the match to DSP blocks of relevant FPGA devices, and experimental results.

Context and state of the art 2.1 Large multipliers using DSP blocks

Let k be an integer parameter, and let X and Y be 2k-bit integers to multiply. We will write them in binary X = 2k-1

i=0 2 i x i and Y = 2k-1 i=0 2 i y i .
Let us now split each of X and Y into two subwords of k bit each:

X = 2 k X 1 + X 0 and Y = 2 k Y 1 + Y 0
X 1 is the integer formed by the k most significant bits of X, and X 0 is made of the k least significant bits of X.

The product X × Y may be written

X × Y = (2 k X 1 + X 0 ) × (2 k Y 1 + Y 0 ) or XY = 2 2k X 1 Y 1 + 2 k (X 1 Y 0 + X 0 Y 1 ) + X 0 Y 0 (1)
This product involves 4 sub-products. If k is the input size of an embedded multiplier, this defines an architecture for the 2k multiplication that requires 4 embedded multipliers. This architecture can also be used for any input size between k + 1 and 2k. Besides, it can be generalized: For any p > 1, numbers of size between pkk + 1 and pk may be decomposed into p k-bit numbers, leading to an architecture consuming p 2 embedded multipliers. Earlier FPGAs had only embedded multipliers, but the more recent DSP blocks [START_REF]XtremeDSP for Virtex-4 FPGAs User Guide[END_REF][START_REF]Virtex-5 FPGA XtremeDSP Design Considerations[END_REF][START_REF]Stratix-II Device Handbook[END_REF][START_REF]Stratix-III Device Handbook[END_REF] include internal adders designed in such a way that most of the additions in Equation ( 1) can also be computed inside the DSP blocks. Let us now review these features in current mainstream architectures, focussing on the capabilities of the DSP blocks relevant to this paper.

Overview of DSP block architectures

The Virtex-4 DSP block (DSP48) contains one signed 18x18 bit multiplier followed by a 48-bit addition/subtraction unit [START_REF]XtremeDSP for Virtex-4 FPGAs User Guide[END_REF]. As the multiplier decomposition (1) involves only positive numbers, the multipliers must be used as unsigned 17-bit multipliers, so for these devices we will have k = 17. The multiplier output may be added to the output of the adder from the previous DSP48 in the row (using the dedicated PCOUT/PCIN port), possibly with a fixed 17-bit shift -this allows for 2 17 factors as in Equation [START_REF]Stratix-II Device Handbook[END_REF].

In Virtex-5 DSP blocks (DSP48E), the 18x18 multipliers have been replaced with asymmetrical ones (18x25 bits signed). This reduces the DSP cost of floating-point single-precision (24-bit significand) from 4 to 2. The fixed shift on PCIN is still 17-bit only [START_REF]Virtex-5 FPGA XtremeDSP Design Considerations[END_REF]. Another improvement is that the addition unit is now capable of adding a third term coming from global routing.

The Stratix II DSP block consists of four 18x18 multipliers which can be used independently. It also includes two levels of adders, enabling the computation of a complete 36x36 product or a complete 18-bit complex product in one block [START_REF]Stratix-II Device Handbook[END_REF]. With respect to this article, the main advantage it has over the Virtex-4 is the possibility to operate on unsigned 18-bit inputs: Altera devices may use k = 18, which is an almost perfect match for doubleprecision (53-bit significand) as 54 = 3 × 18.

In Stratix III, the previous blocks are now called half-DSP blocks and are grouped by two [START_REF]Stratix-III Device Handbook[END_REF]. A half-DSP block contains 4 18x18 multipliers, 2 36-bit adders and one 44-bit adder/accumulator, which can take its input from the half-DSP block just above. This direct link enables in-DSP implementation of some of the additions of (1). Unfortunately, the Stratix-III half-DSP is much less flexible than the Stratix-II DSP. Indeed, its output size is limited, meaning that the 36x36 multiplier of a half-DSP may not be split as four independent 18x18 multipliers. More precisely, the four input pairs may be connected independently, but the output is restricted to one of the addition patterns described by Figure 1. The Stratix IV DSP block is mostly identical to the Stratix III one. All these DSP blocks also contain dedicated registers that allow for pipelined designed at high frequencies (from 300 to 600 MHz depending on the generation).

3 Karatsuba-Ofman algorithm

Two-part splitting

The classical step of Karatsuba-Ofman algorithm is the following. First compute D X = X 1 -X 0 and D Y = Y 1 -Y 0 . The results are signed numbers that fit on k + 1 bits2 . Then compute the product D X × D Y using a DSP block. Now the middle term of equation ( 1), X 1 Y 0 + X 0 Y 1 , may be computed as:

X 1 Y 0 + X 0 Y 1 = X 1 Y 1 + X 0 Y 0 -D X D Y (2) 
Then, the computation of XY using (1) only requires three DSP blocks: one to compute X 1 Y 1 , one for X 0 Y 0 , and one for D X D Y .

There is an overhead in terms of additions. In principle, this overhead consists of two k-bit subtractions for computing D X and D Y , plus one 2k-bit addition and one 2k-bit subtraction to compute equation [START_REF]Stratix-III Device Handbook[END_REF]. There are still more additions in equation ( 1 computed by the classical multiplication decomposition, and are therefore not counted in the overhead.

Counting one LUT per adder bit 3 , and assuming that the kbit addition in LUT can be performed at the DSP operating frequency, is we get a theoretical overhead of 6k LUT. However, the actual overhead is difficult to predict exactly, as it depends on the scheduling of the various operations, and in particular in the way we are able to exploit registers and adders insided DSPs. There may also be an overhead in terms of latency, but we will see that the initial subtraction latency may be hidden, while the additional output additions may take the place of the saved multiplier.

At any rate, these overheads are much smaller than the overheads of emulating one multiplier with LUTs at the peak frequency of the DSP blocks. Let us now illustrate this discussion with a practical implementation on a Virtex-4.

Implementation issues on Virtex-4

The fact that the differences D X and D Y are now signed 18-bit is actually a perfect match for a Virtex-4 DSP block.

Figure 2 presents the architecture chosen for implementing the previous multiplication on a Virtex-4 device. The shift-cascading feature of the DSPs allows the computation of the right-hand side of equation ( 2) inside the three DSPs at the cost of a 2k-bit subtraction needed for recovering X 1 Y 1 . Notice that here, the pre-subtractions do not add to the latency.

This architecture was described in VHDL (using + and * from the ieee.std_logic_arith package), tested, and synthesized. The corresponding results are given in Table 1. Some tweaking of the options was 3 In all the following we will no longer distinguish additions from subtractions, as they have the same LUT cost in FPGAs. needed, for instance to prevent using the much slower SRL16 to implement the registers.

Three-part splitting

Now consider two numbers of size 3k, decomposed in three subwords each:

X = 2 2k X 2 +2 k X 1 +X 0 and Y = 2 2k Y 2 +2 k Y 1 +Y 0
We have

XY = 2 4k X 2 Y 2 + 2 3k (X 2 Y 1 + X 1 Y 2 ) + 2 2k (X 2 Y 0 + X 1 Y 1 + X 0 Y 2 ) + 2 k (X 1 Y 0 + X 0 Y 1 ) + X 0 Y 0 (3) After precomputing X 2 -X 1 , Y 2 -Y 1 , X 1 -X 0 , Y 1 - Y 0 , X 2 -X 0 , Y 2 -Y 0 ,
we compute (using DSP blocks) the six products

P 22 = X 2 Y 2 P 21 = (X 2 -X 1 ) × (Y 2 -Y 1 ) P 11 = X 1 Y 1 P 10 = (X 1 -X 0 ) × (Y 1 -Y 0 ) P 00 = X 0 Y 0 P 20 = (X 2 -X 0 ) × (Y 2 -Y 0 )
and equation (3) may be rewritten as Here we have reduced DSP usage from 9 to 6 which, according to Montgomery [START_REF] Montgomery | Five, six, and seven-term Karatsuba-like formulae[END_REF], is optimal. There is a first overhead of 6k LUTs for the pre-subtractions (again, each DSP is traded for 2k LUTs). Again, the overhead of the remaining additions is difficult to evaluate. Most may be implemented inside DSP blocks. However, as soon as we need to use the result of a multiplication twice (which is the essence of Karatsuba-Ofman algorithm), we can no longer use the internal adder behind this result, so LUT cost goes up. Table 2 provides some synthesis results. The critical path is in one of the 2k-bit additions, and could be reduced by pipeling them.

XY

Four-part splitting and more

We present this last section for completeness, but it is probably less useful: The most recent FPGA families by Xilinx and Altera do not need it for an efficient implementation of double-precision multiplication. 3-part splitting is enough thanks to unsigned 18-bit multiplication on Altera, using 9 or 6 DSP blocks depending on Karatsuba algorithm or not. On Virtex-5, the multiplier structure presented in Section 4 consumes only 8 or 9 DSP48E.

Classically, the Karatsuba idea may be applied recursively: A 4-part splitting is obtained by two levels of 2part splitting. However, a direct expression allows for a more straightforward implementation. From

X = 2 3k X 3 + 2 2k X 2 + 2 k X 1 + X 0 Y = 2 3k Y 3 + 2 2k Y 2 + 2 k Y 1 + Y 0 we have XY = 2 6k X 3 Y 3 + 2 5k (X 2 Y 3 + X 3 Y 2 ) + 2 4k (X 3 Y 1 + X 2 Y 2 + X 1 Y 3 ) + 2 3k (X 3 Y 0 + X 2 Y 1 + X 1 Y 2 + X 0 Y 3 ) + 2 2k (X 2 Y 0 + X 1 Y 1 + X 0 Y 2 ) + 2 k (X 1 Y 0 + X 0 Y 1 ) + X 0 Y 0 (5) 
Here we compute (using DSP blocks) the products

P 33 = X 3 Y 3 P 22 = X 2 Y 2 P 11 = X 1 Y 1 P 00 = X 0 Y 0 P 32 = (X 3 -X 2 ) × (Y 3 -Y 2 ) P 31 = (X 3 -X 1 ) × (Y 3 -Y 1 ) P 30 = (X 3 -X 0 ) × (Y 3 -Y 0 ) P 21 = (X 2 -X 1 ) × (Y 2 -Y 1 ) P 20 = (X 2 -X 0 ) × (Y 2 -Y 0 ) P 10 = (X 1 -X 0 ) × (Y 1 -Y 0 )
and equation ( 5) may be rewritten as 

XY
P 3210 = (X 3 + X 2 + X 1 + X 0 ) × (Y 3 + Y 2 + Y 1 + Y 0 )
instead of P 30 and P 21 , and computes the middle term 5) as a sum of P 3210 and the other P ij . However this poses several problems. Firstly, we have to use a smaller k (splitting in smaller chunks) to ensure P 3210 doesn't overflow from the DSP size. Secondly, we currently estimate that the saved DSP is not worth the critical path degradation.

X 3 Y 0 + X 2 Y 1 + X 1 Y 2 + X 0 Y 3 of equation (
A reader interested in even larger multipliers should read Montgomery's study [START_REF] Montgomery | Five, six, and seven-term Karatsuba-like formulae[END_REF].

Issues with the most recent devices

The Karatsuba-Ofman algorithm is useful on Virtex-II to Virtex-4 as well as Stratix-II devices, to implement single and double precision floating-point.

The larger (36 bit) DSP block granularity (see Section 2.2) of Stratix-III and Stratix-IV prevents us from using the result of a 18x18 bit product twice, as needed by the Karatsuba-Ofman algorithms. This pushes their relevance to multipliers classically implemented as at least four 36x36 half-DSPs. The additive version should be considered, as it may improve speed by saving some of the sign extensions. The frequency will be limited by the input adders if they are not pipelined or implemented as carry-select adders.

On Virtex-5 devices, the Karatsuba-Ofman algorithm can be used if each embedded multiplier is considered as a 18x18 one, which is suboptimal. For instance, single precision K-O requires 3 DSP blocks, where the classical implementation consumes 2 blocks only. We still have to find a variant of Karatsuba-Ofman that exploits the 18x25 multipliers to their full potential. X may be split in 17-bit chunks and Y in 24-bit chunks, but then, in Equation ( 2), D X and D Y are two 25-bit numbers, and their product will require a 25x25 multiplier.

We now present an alternative multiplier design technique specific to Virtex-5 devices.

Non-standard tilings

This section optimizes the use of the Virtex-5 25x18 signed multipliers. In this case, X has do be decomposed into 17-bit chunks, while Y is decomposed into 24-bit chunks. Indeed, in the Xilinx LogiCore Floating-Point Generator, version 3.0, a double-precision floating-point multiplier consumed 12 DSP slices: X was split into 3 24bit subwords, while Y was split into 4 17-bit subwords. This splitting would be optimal for a 72x68 product, but quite wasteful for the 53x53 multiplication required for double-precision, as illustrated by Figure 3(a). In version 4.0, some of the smaller sub-multipliers have been expressed as additions and replaced with either LUT logic or internal DSP adders (the details are not published), reducing the count to 9 or 10 DSP slices. However, a 53bit integer multiplier in LogiCore 10 still consumes 12 DSP48E.

The following equation presents an original way of implementing double-precision (actually up to 58x58) multiplication, using only eight 18x25 multipliers. [START_REF] Montgomery | Five, six, and seven-term Karatsuba-like formulae[END_REF] The reader may check that each multiplier is a 17x24 one except the last one. The proof that Equation ( 7) indeed computes X × Y consists in considering

XY

X ×Y = ( 57 i=0 2 i x i )×( 57 j=0 2 j y j ) = i,j∈{0...57}
2 i+j x i y j and checking that each partial bit product 2 i+j x i y j appears once and only once in the right-hand side of Equation [START_REF] Montgomery | Five, six, and seven-term Karatsuba-like formulae[END_REF]. This is illustrated by Figure 3(b).

The last line of Equation ( 7) is a 10x10 multiplier (the white square at the center of Figure 3(b)). It could consume an embedded multiplier, but is probably best implemented as logic. Equation [START_REF] Montgomery | Five, six, and seven-term Karatsuba-like formulae[END_REF] has been parenthesized to make the best use of the DSP48E internal adders: we have two parallel cascaded additions with 17-bit shifts. This design was implemented in VHDL, tested, and synthesized. Preliminary synthesis results are presented in Table 3. The critical path is in the final addition, currently implemented as LUTs. It could probably exploit the 3-input addition capabilities of DSP48E instead. Or it could be pipelined to reach the peak DSP48E frequency, at the cost of one more cycle of latency. The LUT cost is also larger than expected, even considering that the 10x10 multiplier is implemented in LUTs and pipelined.

Figure 4 illustrates a similar idea for 41x41 and for 65x65 multiplications -the corresponding equations are left as an exercise to the reader. The 65x65 example (which may even be used up to 68x65) shows that a tiling doesn't have to be regular. The bit-complexity of squaring is roughly half of that of standard multiplication. Indeed, we have the identity:

X 2 = ( n-1 i=0 2 i x i ) 2 = n-1 i=0 2 2i x i + 0<i<j<n 2 i+1 x i
This is is only useful if the squarer is implemented as LUTs. However, a similar property holds for a splitting of the input into several subwords:

(2 k X 1 + X 0 ) 2 = 2 2k X 2 1 + 2 • 2 k X 1 X 0 + X 2 0 ( 8 
)
(2 2k X 2 + 2 k X 1 + X 0 ) 2 = 2 4k X 2 2 + 2 2k X 2 1 + X 2 0 + 2 • 2 3k X 2 X 1 + 2 • 2 2k X 2 X 0 + 2 k X 1 X 0 (9) 
Computing each square or product of the above equation in a DSP block, there is again a reduction of the DSP count from 4 to 3, or from 9 to 6. Besides, this time, it comes at no arithmetic overhead.

Squarers on Virtex-4 and Stratix-II

Now consider k = 17 for a Virtex-4 implementation. Looking closer, it turns out that we still lose something using the above equations: The cascading input of the DSP48 and DSP48E is only able to perform a shift by 17. We may use it only to add terms whose weight differs by 17. Unfortunately, in equation ( 8) the powers are 0, 18 and 34, and in equation ( 9) they are 0, 18, 34, 35, 42, 64.

One more trick may be used for integers of at most 33 bits. Equation ( 8) is rewritten

(2 17 X 1 + X 0 ) 2 = 2 34 X 2 1 + 2 17 (2X 1 )X 0 + X 2 0 ( 10 
)
and 2X 1 is computed by shifting X 1 by one bit before inputting it in the corresponding DSP. We have this spare bit if the size of X 1 is at most 16, i.e. if the size of X is at most 33. As the main multiplier sizes concerned by such techniques are 24 bit and 32 bit, the limitation to 33 bits is not a problem in practice.

Table 4 provides synthesis results for 32-bit squares on a Virtex-4. Such a squarer architecture can also be finetuned to the Stratix II-family.

Squarers on Stratix-III and Stratix-IV

On the most recent Altera devices, the 36-bit granularity means that the previous technique begins to save DSP blocks only for very large input sizes.

We now present an alternative way of implementing a double-precision (53-bit) squarer on such devices using only two 36x36 half-DSPs, where a standard multiplier requires four on a Stratix-III and two and a half on a Stratix-IV. It exploits the fact that, although the addition structure of the four 18x18 sub-multipliers is fixed, their inputs are independent.

The two 36x36 multipliers we need are illustrated on Figure 5. The upper-right one is completely standard and computes the subsquare X 0:35 X 0:35 . The bottomleft one (labelled P ) is configured as a multiplier, too, but it doesn't need to recompute and add the sub-product X 18:35 X 18:35 (the dark square in the center), which was already computed by the previous multiplier. Instead, this sub-multiplier will complete the 53-bit square by computing 2X 0:17 X 36:53 (the sum of the two white squares), which has the same weight 2 36 . To this purpose, the inputs of the corresponding 18x18 sub-multiplier have to be set as X 0:17 and 2X 36:53 . The latter will not overflow, because a double-precision significand product is 53x53 and not 54x54, therefore we have X 53 = 0.

We have not yet validated this squarer experimentally. Compared to a standard multiplier, there should be no LUT increase.

Applied to a single 36x36 block, a similar technique allows us to compute squares up to 35x35 using only three of the four 18x18 blocks. The fourth block is unusable, but this may reduce power consumption. 

Non-standard tilings on Virtex-5

Figure 6 ilustrates non-standard tilings for doubleprecision square using six or five 24x17 multiplier blocks.

Remark that these tilings are symmetrical with respect to the diagonal, so that each symmetrical multiplication may be computed only once. However, there are slight overlaps on the diagonal: the darker squares are computed twice, and therefore the corresponding sub-product must be removed. These tilings are designed in such a way that all the smaller sub-products may be computed in LUTs at the peak DSP frequency.

The equations are therefore the following: 

X 2 = X 0:16 X 0:16 ( 
Note that a square multiplication on the diagonal of size n, implemented as LUT, should consume only n(n+1)/2 LUTs instead of n 2 thanks to symmetry. We currently do not have implementation results. It is expected that implementing such equations will lead to a large LUT cost, partly due to the many sub-multipliers, and partly due to the irregular weights of each line (no 17bit shifts) which may prevent optimal use of the internal adders of the DSP48E blocks.

Conclusion

This article has shown that precious DSP resources can be saved in several situations by exploiting the flexibility of the FPGA target. An original family of multipliers for Virtex-5 is also introduced, along with original squarer architectures. The reduction in DSP usage sometimes even entails a reduction in latency.We believe that the place of some of these algorithms is in vendor core generators and synthesis tools, where they will widen the space of implementation trade-off offered to a designer.

The fact that the Karatsuba-Ofman technique is poorly suited to the larger DSP granularity of last-generation devices inspires some reflexions. The trend towards larger granularity, otherwise visible in the increase of the LUT complexity, is motivated by Rent's law: Routing consumes a larger share of the resources in larger-capacity devices [START_REF] De Dinechin | The price of routing in FPGAs[END_REF]. Another illustration is the top entry of the top 10 predictions 4 for FFCMs in 2012: "FPGAs will have floating point cores". We hope this prediction will turn out to be wrong! Considering that GPUs already offer in 2009 massive numbers of floating-point cores, we believe that FPGAs should go further on their own way, which has always been the choice of flexibility. Flexi-bility allows for application-specific mix-and-match between integer, fixed point and floating point [START_REF] De Dinechin | When FPGAs are better at floatingpoint than microprocessors[END_REF], between adders, multipliers [START_REF] Strenski | FPGA floating point performance -a pencil and paper evaluation[END_REF], dividers, and even more exotic operators [START_REF] De Dinechin | When FPGAs are better at floatingpoint than microprocessors[END_REF]. The integer multipliers and squarers studied in this article are not intended only for floating-point multipliers and squarers, they are also needed pervasively in coarser, more exotic, more application-specific operators which are possible only in FPGAs.

For this reason, while acknowledging that the design of a new FPGA is a difficult trade-off between flexibility, routability, performance and ease of programming [START_REF] De Dinechin | The price of routing in FPGAs[END_REF], we think FPGAs need smaller / more flexible DSP blocks, not larger ones.
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 1 Figure 1: Stratix-III and IV operating modes using four 18x18 multipliers. Each rectangle is the 36-bit output of an 18x18 multiplier. All constant shifts are multiples of 18 bits.
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 2 Figure 2: 34x34bit multiplier using Virtex-4 DSP48
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 3 Figure 3: 53-bit multiplication using Virtex-5 DSP48E. The dashed square is the 53x53 multiplication.
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 4 Figure 4: Tilings for 41x41 and 65x65 multiplications.
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 56 Figure 5: Double-precision squarer for Stratix-III and IV

Table 1 :

 1 34x34 multipliers on Virtex-4 (4vlx15sf363-12)

	), but they also have to be

  = 2 4k P 22 + 2 3k (P 22 + P 11 -P 21 ) + 2 2k (P 22 + P 11 + P 00 -P 20 ) + 2 k (P 11 + P 00 -P 10 ) + P 00

		latency freq. slices DSPs
	LogiCore	11	518	156	9
	LogiCore	6	264	94	9
	K-O-3	6	340	337	6
	Table 2: 51x51 multipliers on Virtex-4 (4vlx15sf363-12).
	(4)				

  = 2 6k P 33 + 2 5k (P 33 + P 22 -P 32 ) + 2 4k (P 33 + P 22 + P 11 -P 31 ) + 2 3k (P 33 + P 00 -P 30 + P 22 + P 11 -P 21 ) + 2 2k (P 22 + P 11 + P 00 -P 20 ) + 2 k (P 11 + P 00 -P 10 )

	+ P 00
	(6)
	Here we have only 10 multiplications instead of 16. Note
	that the recursive variant saves one more multiplication:
	It precomputes

Table 4 :

 4 

		latency frequency slices DSPs
	LogiCore	6	518	40	4
	LogiCore	3	176	17	4
	Squarer	3	268	20	3

32-bit squarers on Virtex-4 (4vlx15sf363-12)

We were surprised to find no reference to Karatsuba-Ofman for integer multiplication in the FPGA literature and will be deeply grateful to the referees for any pointer to prior work on FPGAs.

There is an alternative Karatsuba-Ofman algorithm computing X 1 + X 0 and Y 1 + Y 0 . We present the subtractive version, because it enables to use the Xilinx 18-bit signed-only multipliers fully, while working on Altera chips as well.

http://www.fccm.org/top10.php
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