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Abstract

The error function erf is a special function. It is widely used in statistical
computations for instance, where it is also known as the standard normal
cumulative probability. The complementary error function is defined as
erfc(x) = 1− erf(x).
In this paper, the computation of erf(x) and erfc(x) in arbitrary precision
is detailed: our algorithms take as input a target precision t′ and deliver
approximate values of erf(x) or erfc(x) with a relative error guaranteed
to be bounded by 2−t

′

.
We study three different algorithms for evaluating erf and erfc. These
algorithms are completely detailed. In particular, the determination
of the order of truncation, the analysis of roundoff errors and the way
of choosing the working precision are presented. The scheme used for
implementing erf and erfc and the proofs are expressed in a general
setting, so they can directly be reused for the implementation of other
functions.
We have implemented the three algorithms and studied experimentally
what is the best algorithm to use in function of the point x and the
target precision t′.

Keywords: Error function, complementary error function, erf, erfc, floating-point
arithmetic, arbitrary precision, multiple precision.



Résumé

La fonction d’erreur erf est une fonction spéciale. Elle est couramment
utilisée en statistiques par exemple. La fonction d’erreur complémentaire
est définie comme erfc(x) = erf(x)− 1.
Dans cet article, nous détaillons l’évaluation de erf(x) et erfc(x) en préci-
sion arbitraire : nos algorithmes prennent en entrée une précision cible t′

et fournissent en retour une valeur approchée de erf(x) ou erfc(x) avec
une erreur relative bornée par 2−t

′

.
Nous étudions trois algorithmes différents pour évaluer erf et erfc. Ces al-
gorithmes sont expliqués en détails. En particulier, nous décrivons com-
ment déterminer l’ordre de troncature, comment analyser les erreurs
d’arrondi et comment choisir la précision intermédiaire de travail. Le
schéma employé pour l’implantation de erf et erfc est expliqué en des
termes généraux et peut donc être directement réutilisé pour l’implan-
tation d’autres fonctions.
Nous avons implémenté les trois algorithmes ; nous concluons par une
étude expérimentale qui montre quel algorithme est le plus rapide en
fonction du point x et de la précision cible t′.

Mots-clés: fonctions d’erreur, erf, erfc, arithmétique flottante, précision arbitraire,
multiprécision

2



erf and erfc in arbitrary precision 1

1 Introduction

The error function, generally denoted by erf is defined as

erf : x 7→ 2√
π

∫ x

0
e−v

2

dv.

Sometimes it is called the probability integral [12], in which case, erf denotes the integral itself
without the normalization factor 2/

√
π. The complementary error function denoted by erfc is

defined as erfc = 1− erf. These two functions are defined and analytic on the whole complex
plane. Nevertheless we will consider them only on the real line herein.

These functions are important because they are encountered in many branches of applied
mathematics, in particular probability theory. Namely, if X is a Gaussian random variable
with mean 0 and standard deviation 1/

√
2, the probability P (−x ≤ X ≤ x) is equal to

erf(x) (Figure 1). See [12] for instance for other applications.

Figure 1: erf(x) is the probability that a certain Gaussian random variable lies in [−x, x]

In this article we describe the numerical implementation of erf and erfc in floating-point
arithmetic with arbitrary precision. Such an arbitrary precision implementation is useful in
several cases including:

❼ when highly accurate values of the functions are needed;

❼ for testing the quality of lower precision libraries;

❼ for building good approximating polynomials with a given accuracy.

A good overview of the applications of arbitrary precision is given in the introduction of [5].
We approximate the real numbers by floating-point numbers with arbitrary precision with

radix 2; more precisely: let t ∈ N⋆, the set of floating-point numbers with precision t is the
set

Ft = {0}∪
{
± m

2t
2e, e ∈ Z, m ∈ J2t−1, 2t − 1K

}
where J2t−1, 2t−1K = [2t−1, 2t−1]∩Z.

The integer e is called the exponent of the floating-point number. For practical reasons, it is
usually bounded in the implementation. However, in general, in multiple precision libraries,
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its range is extremely large (typically e ∈ [−232; 232]) and may be considered as practically
almost unbounded. We will assume in this paper that e is unbounded. The number m/2t

is called the mantissa and is more conveniently written as 0.1b2 . . . bt where b2, . . . , bt are
the bits of its binary representation. The mantissa lies in the interval [1/2, 1): this is the
convention used by the MPFR library and we will adopt it here. Note that the IEEE-754
standard takes another convention and suppose that the mantissa lies in [1, 2).

Our goal is the following: given t′ in N⋆ and x a floating-point number, compute a value
y approximating erf(x) with a relative error less than 2−t

′

. More formally, we would like to
compute y such that

∃δ ∈ R, y = erf(x)(1 + δ) where |δ| ≤ 2−t
′

.

Arbitrary precision floating-point arithmetic is already implemented in several software
tools and libraries. Let us cite Brent’s historical Fortran MP package [4], Bailey’s Arprec C++
library [2], the MPFR library [9], and the famous Mathematica and Maple tools. MPFR provides
correct rounding of the functions: four rounding-modes are provided (rounding upwards,
downwards, towards zeros, and to the nearest) and the returned value y is the rounding of
the exact value erf(x) to the target precision t′. Other libraries and tools usually only ensure
that the relative error between y and the exact value is O(2−t

′

).

Our implementation guarantees that the final relative error be smaller than 2−t
′

. This is
stronger than O(2−t

′

), since the error is explicitly bounded.

Since we provide an explicit bound on the error, our implementation can also be used to
provide correct rounding, through an algorithm called Ziv’s onion strategy [15]: in order to
obtain the correct rounding in precision t′, a first approximate value is computed with a few
guard bits (for instance 10 bits). Hence | erf(x) − y| ≤ 2−t

′−10 erf(x). Most of the time, it
suffices to round y to t′ bits in order to obtain the correct rounding of erf(x). But in rare cases,
this is not true and another value y must be computed with more guard bits. The precision
is increased until the correct rounding can be decided. This is the strategy used by MPFR

for instance. Providing correct rounding does not cost more in average than guaranteeing an
error smaller than 2−t

′

: the average complexity of Ziv’ strategy is the complexity of the first
step, i.e. when only 10 guard bits are used.

For our implementation, we use classical formulas for approximating erf and erfc and we
evaluate them with a summation technique proposed by Smith [14] in 1989. As we already
mentioned, some implementations of erf and erfc are already available. However:

❼ None of them uses Smith’s technique. This technique allows us to have the most efficient
currently available implementation.

❼ In general they use only one approximating method. In this article, we study three
different approximating formulas and show how to heuristically choose the most efficient
one, depending on the target precision and the evaluation point.

❼ Most of the available implementations do not guarantee an explicit error bound. The
MPFR library actually does give an explicit error bound. However, only few details are
given on the implementation of functions in MPFR. The only documentation on MPFR is
given by [9] and by the file algorithm.pdf provided with the library. In general, there
is no more than one or two paragraphs of documentation per function.
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❼ More generally, to our best knowledge, there does not exist any reference article de-
scribing in detail how to implement a function in arbitrary precision, with guaranteed
error bounds. In this article, we explicitly explain how to choose the truncation rank
of each formula, how to perform the roundoff analysis and how to choose the working
precision used for the intermediate computations. Through the detailed example of the
functions erf and erfc, this article gives a general scheme that can be followed for the
implementation of other functions.

Our implementation is written in C and built on top of MPFR. It is distributed under the LGPL
and it is available with this research report at http://prunel.ccsd.cnrs.fr/ensl-00356709/.

The outline of the paper is as follows: Section 2 begins with a general overview of the
scheme used to evaluate functions in arbitrary precision by means of series. The section
continues with a general discussion about erf and erfc and the ways of computing them with
arbitrary precision. In particular, the algorithm used for the evaluation of the series is detailed.
Section 3 is devoted to some reminders on classical techniques required for performing the
roundoff analysis. In Section 4 the algorithms are completely described and the roundoff
analysis is detailed. However, for the sake of clarity, proofs are omitted in that section. They
are all given in an appendix at the end of the article. Section 5 gives experimental results.
In particular, it gives timings comparing our implementation with MPFR and Maple. It also
experimentally shows what is the best approximating method, depending on the evaluation
point and the target precision. Finally, Section 6 is devoted to the conclusion and presents
future works.

2 General overview of the algorithms

2.1 General scheme used for the evaluation in arbitrary precision

In order to evaluate a function f in arbitrary precision, it is necessary to have approxi-
mating formulas that can provide values arbitrarily close to the exact value f(x). We refer
to [5] for a general overview of the classical techniques in this domain. In the following, we
shall restrict to the case when a power series or an asymptotic series is used.

Let us assume for instance that f(x) =
∑+∞
n=0 an x

n. Two important questions must be
addressed:

❼ In practice, only a finite number N of terms are summed (so the truncation rank is
N − 1). We must choose N in such a way that the approximation error be small
enough.

❼ Floating-point arithmetic is used when evaluating the sum. This implies that rounding
errors affect the final result. In order to keep this evaluation error small enough, the
working precision should be carefully chosen.

In particular, it is important to distinguish the target precision (i.e. the value t′ such that
we eventually want to return an approximate value y satisfying |y − f(x)| ≤ 2−t

′ |f(x)|) and
the working precision (i.e. the precision used to perform the computations). In the following,
we will always denote by t the working precision.

We adopt the following strategy for the implementation of f :

1. Find a rough overestimation N − 1 of the truncation rank.

http://prunel.ccsd.cnrs.fr/ensl-00356709/
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2. Rigorously bound the roundoff errors. This allows us to choose a suitable working
precision.

3. Evaluate the series. An on-the-fly criterion allows us to stop the evaluation as soon as
possible. So, in practice, the finally used truncation rank N⋆ − 1 is near-optimal.

A few remarks are necessary to understand this strategy. First, we remark that the
roundoff errors depend on several things: the series used (the values an may be more or
less complicated to evaluate), the evaluation scheme used to evaluate the series, and the
number of operations performed. This is why we need to have an overestimation N − 1 of
the truncation rank before we choose the working precision. However, this estimation does
not need to be very accurate, since (as we will see) only the logarithm of N matters for the
roundoff errors. Of course, in practice we do not want to perform more operations than what
is strictly necessary: this is why we use an on-the-fly stopping criterion at step 3.

We want that the final absolute error be smaller than 2−t
′ |f(x)|. In practice, we cut this

error into two equal parts: we choose the truncation rank and the working precision in such a
way that both the approximation error and the evaluation error be smaller than 2−t

′−1 |f(x)|.
The overall error is bounded by the sum of both errors, which gives the desired bound.

Since we want to ensure that the value N be an overestimation, it must be determined
with care. It is generally possible to bound the remainder of order N , in function of x: i.e.
we usually explicitly know a function εN such that

∀x,
∣∣∣∣∣f(x)−

N−1∑

n=0

ai x
i

∣∣∣∣∣ ≤ εN (x).

Hence it suffices to choose N such that εN (x) ≤ 2−t
′−1 |f(x)|. The problem is that we do not

know |f(x)| yet. Thus, for finding N we must address two problems:

❼ Find an easily computable underestimation g(x) of |f(x)|.

❼ Find N such that we are sure that εN (x) ≤ 2−t
′−1 g(x). This implies inverting the

function N 7→ εN (x).

The scheme that we just described is general and can be used for the implementation of
other functions. Let us sum up the questions that must be addressed:

1. Find one (or several) series
∑+∞
n=0 an x

n approximating f(x). It can also be an asymptotic
development.

2. Choose an algorithm for the evaluation of this series.

3. Perform a roundoff analysis of this algorithm. This gives an error bound that depends
on the truncation rank.

4. Find a good underestimation g(x) of |f(x)|.

5. Find a good bound εN (x) of the remainder of the series, and invert the relation εN (x) ≤
2−t

′−1 g(x) in function of N .

Provided that these questions find an answer, our technique applies. In the following, we will
answer these questions in the case when f = erf or f = erfc. More precisely:
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❼ We give three approximating series for erf and erfc in the next Section 2.2.

❼ We describe evaluation algorithms in Section 2.3. These algorithms are not specific to erf
or erfc and can be reused in other contexts. The actual algorithms used for evaluating
erf and erfc are described in Section 4 and more precisely in Figures Algorithm 3,
Algorithm 4 and Algorithm 5.

❼ We show how to perform a roundoff analysis in Section 3. Again, this section is general
and can be reused in other contexts. The specific roundoff analyses of our implementa-
tion are given in Propositions 4, 6 and 8.

❼ We give explicit underestimations of | erf(x)| and | erfc(x)| in the appendix in Lemma 9.

❼ We give explicit bounds for the remainder of the series that we use for the implemen-
tation of erf and erfc and show how to invert them. This gives us a rough but rigorous
overestimation of the necessary truncation rank for each approximation formula. These
results are summed up in Recipes 1, 3 and 5.

❼ Finally, we use our roundoff analyses together with the estimations of the truncation
ranks, in order to choose a suitable working precision t for each approximation formula.
These results are summed up in Recipes 2, 4 and 6.

2.2 Approximation formulas for erf and erfc

It is easy to see that erf is odd. Thus we restrict to computing erf(x) when x > 0
without loss of generality. Except if it is explicitly mentioned, x will always be positive in the
following. Moreover, erf(0) = 0 and erf(x) approaches 1 as x → +∞. Thus for large x, the
binary representation of erf(x) looks like

0. 11 . . . 11︸ ︷︷ ︸
many 1s

b1b2b3 . . .

This is why, for large x, it is more convenient to consider the complementary error function
erfc(x) = 1− erf(x). The graphs of these two functions are represented in Figure 2.

Among the formulas given in [1] we retain the following ones, suited for the computation
in arbitrary precision (Equations 7.1.5, 7.1.6, 7.1.23 and 7.1.24 of [1]):

erf(x) =
2x√
π

+∞∑

n=0

(−1)n
x2n

(2n+ 1)n!
, (1)

erf(x) =
2xe−x

2

√
π

+∞∑

n=0

(2x2)n

1 · 3 · 5 · · · (2n+ 1)
, (2)

erfc(x) =
e−x

2

x
√
π

(
1 +

N−1∑

n=1

(−1)n
1 · 3 · 5 · · · (2n− 1)

(2x2)n

)
+ ε

(3)
N (x) (3)

where |ε(3)
N (x)| ≤ e

−x2

x
√
π
· 1 · 3 · 5 · · · (2N − 1)

(2x2)N
. (4)
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(a) Graph of erf (b) Graph of erfc

Figure 2: Graphs of the functions erf and erfc

These formula can also be rewritten, with a more compact form, using the symbol 1F1 of
hypergeometric functions:

1F1(a, b; x) =
+∞∑

i=0

a (a+ 1) . . . (a+ n− 1)xn

b (b+ 1) . . . (b+ n− 1) (n!)
.

So, we have

erf(x) =
2x√
π

1F1

(
1

2
,

3

2
; −x2

)
(1′ )

and erf(x) =
2xe−x

2

√
π

1F1

(
1,

3

2
; x2

)
. (2′ )

Equation (1) is mostly interesting for small values of x. The series is alternating and the
remainder is thus bounded by the first neglected term. The ratio between two consecutive
terms is, roughly speaking, x2/n. Thus, if x < 1, both x2 and n contribute to reduce
the magnitude of the term and the convergence is really fast. For larger values of x, the
convergence is slower since only the division by n ensures that the term decreases. Though,
the main problem with large arguments is not the speed of the convergence.

The main drawback of (1) for large arguments comes from the fact that the series is
alternating: the sum is henceforth ill-conditioned and accuracy is lost during the evaluation.
This is due to a phenomenon usually called catastrophic cancellation [8].

Definition 1 (Cancellation). Let a and b be two numbers. When subtracting b from a, we
say that there is a cancellation of bits when the leading bits of a and b cancel out. In this case,
only the last (few) bits of a and b contribute to the result. Thus, the accuracy of the result
can be much smaller than the accuracy of a and b.

Due to this cancellation phenomenon, the computations must be performed with a preci-
sion much higher than the target precision. We will quantify this phenomenon in Section 4.2:
as we will see, as x increases, the use of Equation (1) quickly becomes impractical.

Equation (2) does not exhibit cancellations. Its evaluation does not require much more
precision than the target precision. However, the convergence is a bit slower. Besides, it
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requires to compute e−x
2

(the complexity of computing it is somewhat the same as computing
erf itself).

Equation (3) gives a very efficient way of evaluating erfc and erf for large arguments.

However ε
(3)
N (x) cannot be made arbitrarily small by increasing N (there is an optimal value

reached when N = ⌊x2 + 1/2⌋). If erfc(x) is to be computed with a bigger precision, one has
to switch back to Equation (1) or (2).

2.3 Evaluation scheme

2.3.1 Particular form of the sums

The three sums described above exhibit the same general structure: they are polynomials
or series (in the variable x2, 2x2 or 1/(2x2)) with coefficients given by a simple recurrence
involving multiplications or divisions by integers. More formally, they can all be written as

S(y) = α0 + α0α1 y + . . .+ α0α1 · · ·αN−1 y
N−1. (5)

Namely, we have

❼ in the case of Equation (1), y = −x2, α0 =
2x√
π

and for i ≥ 1, αi =
2i− 1

(2i+ 1) i
;

❼ in the case of Equation (2), y = 2x2, α0 =
2xe−x

2

√
π

and for i ≥ 1, αi =
1

2i+ 1
;

❼ in the case of Equation (3), y =
−1

2x2
, α0 =

e−x
2

x
√
π

and αi = 2i− 1.

It is important to remark that the values αi are integers (or inverse of integers) that fit
in a 32-bit or 64-bit machine integer. The multiplication (or division) of a t-bit floating-
point number by a machine integer can be performed [4] in time O(t). This should be
compared with the multiplication of two t-bit floating-point numbers which is performed in
time O(t log(t) log(log(t))) asymptotically (and which is only quadratic for small precisions).
Additions and subtractions of two t-bit floating-point numbers are also done in time O(t).

2.3.2 Straightforward algorithm

A natural way of evaluating the sum (5) is to successively compute the terms of the sum,
while accumulating them in a variable (see Algorithm 1).

With this algorithm the following operations are performed: N additions, N multiplica-
tions by the small integers αi+1, and N full-precision multiplications by y. The total cost of
the algorithm is henceforth dominated by the full-precision multiplications: the complexity is
O(N M(t)) where M(t) denotes the cost of a full-precision multiplication in precision t.

2.3.3 Concurrent Series Algorithm

We may take advantage of the particular structure of the sum (5), using a technique
described by Smith [14] as a concurrent series summation (after an idea of Paterson and
Stockmeyer [13]).
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Input: y, N, t

Output: the sum S(y) of Equation (5)
/* each operation is performed in precision t */

R← 0;1

acc← α0;2

for i = 0 to N− 1 do3

R← R + acc;4

acc← acc ∗ αi+1 ∗ y;5

end6

return R;7

Algorithm 1: StraightforwardAlgo()

Let L be an integer parameter. For the sake of simplicity, we assume that N is a multiple
of L. The general case is easy to deduce from this particular case. Smith remarks that S(y)
may be expressed as follows:

S(y) = 1 ·
(
α0 + α0 · · ·αL(yL) + . . . + α0 · · ·αN−L(yL)N/L−1

)

+ y ·
(
α0α1 + α0 · · ·αL+1(yL) + . . . + α0 · · ·αN−L+1(yL)N/L−1

)

+ . . .

+ yL−1·
(
α0 · · ·αL−1 + α0 · · ·α2L−1(yL) + . . . + α0 · · ·αN−1(yL)N/L−1

)
.

(6)

We denote by Si the sum between the parentheses of the i-th line of this array: thus

S(y) = S0 + S1 y + · · ·+ SL−1 y
L−1.

The sums Si are computed concurrently: a variable is used to successively compute

α0, α0α1, . . . , α0 · · ·αL−1, α0 · · ·αL(yL), etc.

and the sums Si are accumulated accordingly. The power yL is computed once in the beginning
by binary exponentiation, with at most log(L) full-precision multiplications. When computing
the coefficients, the multiplications (or divisions) involved are all multiplications by machine
integers, except the multiplications by yL that occur N/L− 1 times.

Finally, the polynomial S(y) = S0 + S1 y + · · ·+ SL−1 y
L−1 is evaluated by Horner’s rule

and requires L− 1 high-precision multiplications.
The complete algorithm requires log(L) +N/L+L− 2 full-precision multiplications (and

N+L−1 additions andN multiplications/divisions by machine integers). The optimal value is
obtained with L ≃

√
N . The total cost is then approximately 2

√
N slow multiplications. The

corresponding complexity is O
(√
NM(t) +Nt

)
, which is strictly better than the complexity

of the straightforward evaluation algorithm. We note that this method requires extra space
to store the values Si until they are used in the final Horner evaluation (Lt bits are needed).
The algorithm is summed up in Figure Algorithm 2.

2.3.4 Stopping criterion in the concurrent series algorithm

In Figure Algorithm 2, the algorithm is described as ifN were known in advance. However,
as we explained in Section 2.1, it is preferable to stop the computation with help of an on-
the-fly stopping criterion, in order to avoid useless computations.
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Input: y, L, N, t

Output: the sum S(y) of Equation (5)
/* each operation is performed in precision t */

z← power(y, L) ; /* obtained by binary exponentiation */1

S← [0, . . . , 0] ; /* array of L floating-point numbers */2

acc← 1 ;3

i← 0 ; /* indicates the Si currently updated */4

for k← 0 to N− 1 do5

acc← acc ∗ αk ;6

S[i]← S[i] + acc ;7

if i = L− 1 then8

i← 0 ;9

acc← acc ∗ z ;10

else11

i← i + 1 ;12

end13

end14

/* now S(y) is evaluated from the Si by Horner’s rule */

R← S[L− 1] ;15

for i← L− 2 downto 0 do16

R← S[i] + y ∗ R ;17

end18

return R;19

Algorithm 2: ConcurrentSeries()
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In Figure Algorithm 2, the terms of Equation (6) are computed successively beginning
by the first column (from top to bottom), following by the second column (from top to
bottom), etc. The variable k denotes the term currently being computed, while the variable
i represents the corresponding line. The variable acc is used to store the current term: just
after the line 6 of the algorithm was performed, (acc ·yi) is an approximation to the k-th term
of the polynomial S(y).

This means that N does not really need to be known in advance: a test of the form
sum the terms until finding one whose absolute value is smaller than a given bound can be
used. Of course, (acc · yi) is only an approximation of the actual coefficient. If we are not
careful enough, we might underestimate the absolute value and stop the summation too soon.
Hence, the rounding mode should be chosen carefully when updating acc, in order to be sure
to always get an overestimation of the absolute value.

3 Error analysis

Since the operations in Algorithm 2 are performed with floating-point arithmetic, they are
not exact and roundoff errors must be taken into account. We have to carefully choose the
precision t that is used for the computations in order to keep the roundoff errors small enough.
Techniques make it possible to bound such roundoff errors rigorously. In his book [10], Higham
explains in great details what should be known in this domain. We recall a few facts here,
without proofs; see [10] for details.

Definition 2. If x ∈ R, we denote by ⋄(x) a rounding of x (i.e. x itself if x is a floating-point
number and one of the two floating-point numbers enclosing x otherwise).

If t denotes the current precision, the quantity u = 21−t is called the unit roundoff.
We will use the convenient notation∗ ẑ = z 〈k〉 meaning that

∃δ1, . . . , δk ∈ R, s1, . . . , sk ∈ {−1, 1}, such that ẑ = z
k∏

i=1

(1 + δi)
si with |δi| ≤ u.

This notation corresponds to the accumulation of k successive relative errors. The follow-
ing proposition justifies it:

Proposition 1. For any x ∈ R, there exists δ ∈ R, |δ| ≤ u such that ⋄(x) = x (1 + δ).

We now recall a few rules for manipulating error counter.

Rule 1. If k′ ≥ k and if we can write ẑ = z 〈k〉, we can also write ẑ = z 〈k′〉.

Rule 2. If we can write x̂ = x 〈k1〉 〈k2〉 then we can write x̂ = x 〈k1 + k2〉.

Rule 3. If ⊕ denotes the correctly rounded addition, the following holds:

∀(x, y) ∈ R2, x⊕ y = ⋄(x+ y) = (x+ y)(1 + δ) for a given |δ| ≤ u.

Hence we can write x⊕ y = (x+ y) 〈1〉.
The same holds for the other correctly rounded operations ⊖, ⊗, ⊘, etc.

∗According to Higham [10], this notation has been introduced by G. W. Stewart under the name of relative

error counter.
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Rule 4. If we can write ẑ = (x + y) 〈k〉 then we can also write ẑ = x 〈k〉 + y 〈k〉. Note that
the reciprocal is false in general.

Let us do a complete analysis on a simple example. Consider a, b, c, d, e f six floating-
point numbers. We want to compute S = a b + c d e + f . In practice, we may compute for
instance Ŝ = ((a⊗b)⊕((c⊗d)⊗e))⊕f . We can analyze the roundoff errors with the following
simple arguments:

Ŝ =
(
(a⊗ b) ⊕ ((c⊗ d)⊗ e)

)
⊕ f

=
(
(ab) 〈1〉 ⊕ (cde) 〈2〉

)
⊕ f (Rule 3 applied to ⊗ and Rule 2)

=
(
(ab) 〈2〉 ⊕ (cde) 〈2〉

)
⊕ f (Rule 1)

=
(
(ab) 〈2〉 + (cde) 〈2〉

)
〈1〉 ⊕ f (Rule 3 applied to ⊕ )

=
(
(ab) 〈3〉 + (cde) 〈3〉

)
⊕ f (Rule 4 and Rule 2)

= (ab) 〈4〉 + (cde) 〈4〉 + f 〈4〉 (Rules 3, 4, 2 and 1).

We now need a proposition to bound the error corresponding to a given value of the
error counter:

Proposition 2. Let z ∈ R and let ẑ be a floating-point number. We suppose that k ∈ N

satisfies ku < 1 and that we can write ẑ = z 〈k〉. Then

∃θk ∈ R, such that ẑ = z(1 + θk) with |θk| ≤ γk =
ku

1− ku.

In particular, as soon as ku ≤ 1/2, γk ≤ 2ku.

Using this proposition, we can write Ŝ = (a b)(1 + θ4) + (c d e)(1 + θ′4) + f(1 + θ′′4). Finally,
we get ∣∣∣Ŝ − S

∣∣∣ ≤ γ4 (|a b|+ |c d e|+ |f |) .

Note the importance of S̃ = |a b|+ |c d e|+ |f |. If the terms of the sum are all non-negative,
S = S̃ and the relative error for the computation of the sum is bounded by γ4. If some terms
are negative, the relative error is bounded by γ4S̃/S. The ratio S̃/S may be extremely large:
this quantifies the phenomenon of cancellation, when terms of the sum cancel out while the
errors accumulate.

4 Practical implementation

4.1 General scheme

We now describe the practical details of the implementation of the three formulas for the
evaluation of erf and erfc. For each formula, we follow the same general scheme, described in
Section 2.1.

We first derive a bound εN (x) of the remainder in function of N and x. By (rigorously)
inverting this bound in function of N , we obtain an estimation of the necessary truncation
rank N − 1. This estimation is rough, but it is surely overestimated.

In a second time, we perform an error analysis of the algorithm (similar to the example
presented in Section 3) and get a bound on the final roundoff error. It will typically be of the
form

|S − Ŝ| ≤ γaN S̃
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where a is an integer (the order of magnitude of a is 1 to 10 approximately), S is the exact
sum, Ŝ is the computed value and S̃ is the sum of the absolute values. Therefore it is sufficient
to choose t such that (2aN)21−t S̃ ≤ 2−t

′−1 g(x) (where g is a lower approximation of | erf(x)|
or | erfc(x)|). Equivalently this leads to

t ≥ t′ + 3 + log2(a) + log2(N) + log2(S̃)− log2(g(x)).

Finally, we evaluate the sum using the algorithm described in Figure Algorithm 2. The
parameter L is chosen as L =

√
N . When evaluating the sum, an on-the-fly stopping criterion

is used. This allows us to stop the computation with an (almost) optimal number N⋆ of terms.
The fact that N is a rough estimation of N⋆ is not a severe issue. Suppose for instance that

N is an overestimation of N⋆ by a factor 4. By choosing L ≃
√
N =

√
4N⋆ we will eventually

perform N⋆/L + L ≃ 5
√
N⋆/2 slow multiplications, which is only 25% greater than the

optimal number 2
√
N⋆. Moreover, since only the logarithm of N is useful for choosing the

working precision t, an overestimation by a factor 4 will only lead to use 2 extra bits, which
is insignificant.

We shall now give the details of the implementation of Equations (1), (2) and (3). In
order to ease the description of the implementation, we report all technical lemmas and all
the proofs in an appendix at the end of the article. They are not mandatory to understand
the main ideas of what follows.

4.2 Practical implementation of Equation (1)

Here, we assume that Equation (1) is used to obtain an approximate value of erf(x) (and
we suppose, without loss of generally, that x > 0):

erf(x) =
2x√
π

(
N−1∑

n=0

(−1)n
(x2)n

(2n+ 1)n!

)
+ ε

(1)
N (x)

where ε
(1)
N (x) is the remainder.

We first express a relation that ensures that ε
(1)
N (x) is smaller than 2−t

′−1 erf(x) (remember
that t′ is the target precision, given as an input).

Proposition 3. Let E be the exponent of x. If N satisfies

N

ex2
log2

(
N

ex2

)
≥ t
′ + max(0, E)

ex2
,

the remainder ε
(1)
N is bounded by 2−t

′−1 erf(x).

We then estimate N in function of the inputs t′ and x. This estimation is obtained by
rigorously inverting the equation given in Proposition 3. This leads to the following recipe:

Recipe 1. We first evaluate a = (t′+ max(0, E))/(ex2). In fact, when performing the evalu-
ation, the rounding modes are carefully chosen in such a way that one gets an overestimation
au of a: au ≥ a. Then, N is chosen according to the following recipe:

– if au ≥ 2, N ≥ (ex2) 2au/ log2(au) ;

– if au ∈ [0, 2], N ≥ (ex2) 21/4 2au/2.

These formulas are evaluated with appropriate rounding modes, in order to ensure that N
is really greater than the actual value.
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Once an overestimation N − 1 of the truncation rank is known, we need to choose a
working precision t. This precision depends on the errors that will be accumulated during the
evaluation. So, we first sketch the details of the evaluation.

We compute

S(x) =
N−1∑

n=0

(−1)n
2√
π
· x2n+1

(2n+ 1)n!

using Algorithm 2 with parameters y = x2, α0 = 2x/
√
π and for k ≥ 1, αk =

−1

k
· 2k − 1

2k + 1
.

In the following, the variables acc, i, k, etc. are the variables introduced in Algorithm 2 on
page 9.

In practice, we do not compute the ratio (2k−1)/(2k+ 1). In the product α0 · · ·αk, these
ratios simplify in cascade. In fact, we define a sequence (βn) by β0 = α0 and βk = 1/k. Hence,

α0 · · ·αk = (−1)kβ0 · · ·βk
1

2k + 1
.

We use the variable acc to compute (yL)⌊k/L⌋β0 · · ·βk and we use a temporary variable tmp

for the division by 2k + 1. Si is updated by alternatively adding or subtracting tmp (instead
of acc).

In the beginning, y = x2 and z = yL are computed with rounding upwards. When
computing α0, the rounding modes are chosen in such a way that the computed value is
greater than the exact value 2x/

√
π. The variables acc and tmp are also updated with rounding

upwards. Hence, the following always holds:

tmp · yi & 2√
π
· x

2k+1

(2k + 1)k!
.

Let F be the exponent of y: y < 2F . Using the fact that erf(x) ≥ x/2 when x < 1 and
erf(x) ≥ 1/2 when x ≥ 1 (cf. Lemma 9, in the appendix), it is easy to show that we can stop
the loop as soon as

k ≥ N or tmp · 2Fi < 2−t
′+min(E−1, 0)−2.

The complete algorithm is summed up in Figure Algorithm 3.

The roundoff errors are bounded using the following proposition.

Proposition 4. If Algorithm 3 is used to compute an approximation Ŝ(x) of the sum S(x),
the following holds:

Ŝ(x) =
N−1∑

n=0

(−1)n
2x√
π
· x2n

(2n+ 1)n!
〈8N〉 .

Thus
∣∣∣Ŝ(x)− S(x)

∣∣∣ ≤ γ8N
(

2x√
π

N−1∑

n=0

x2n

(2n+ 1)n!

)
≤ γ8N

2√
π

∫ x

0
ev

2

dv.

The bound γ8N could be made tighter. However, we cannot hope a better value than γN
since we do O(N) operations. Only the logarithm of this value will be of interest for choosing
the working precision t. By working more carefully, we would not get more than replacing
log(8N) by log(N) and it would not be of any practical benefit.
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Input: a floating-point number x,
the working precision t,
the target precision t’,
L ∈ N⋆, N ∈ N⋆.

Output: an approximation of erf(x) with relative error less than 2−t
′

obtained using
Equation (1)

/* each operation is performed in precision t */

y← x ∗ x ; // rounded upwards1

F← exponent(y) ;2

if x < 1 then G← exponent(x)− 1 else G← 0 ;3

z← power(y, L) ; // computed with rounding upwards4

S← [0, . . . , 0] ;5

acc← √π ; // rounded downwards6

acc← 2 ∗ x/acc ; // rounded upwards7

i← 0 ;8

k← 0 ;9

tmp← acc ;10

repeat11

if (k mod 2) = 0 then S[i]← S[i] + tmp else S[i]← S[i]− tmp ;12

k← k + 1;13

if i = L− 1 then14

i← 0 ;15

acc← acc ∗ z ; // rounded upwards16

else17

i← i + 1 ;18

end19

acc← acc/k ; // rounded upwards20

tmp← acc/(2 ∗ k + 1) ; // rounded upwards21

until k = N or exponent(tmp) < G− t’− 2− F ∗ i ;22

/* now S(y) is evaluated from the Si by Horner’s rule */

R← S[L− 1] ;23

for i← L− 2 downto 0 do24

R← S[i] + y ∗ R ;25

end26

return R;27

Algorithm 3: erfByEquation1()
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This proposition allows us to choose an appropriate working precision t: the greater t is,
the smaller γ8N is. In practice, it suffices to use the following recipe:

Recipe 2. Let E be the exponent of x. For the evaluation of erf(x) by Equation (1), an
appropriate working precision t is

– when x < 1, t ≥ t′ + 9 + ⌈log2N⌉ ;

– when x ≥ 1, t ≥ t′ + 9 + ⌈log2N⌉ − E + x2 log2(e).

In practice log2(e) is replaced by a value precomputed with rounding upwards. The factor
x2 log2(e) that appears when x > 1 highlights the fact that the series is ill-conditioned for
large values of x.

4.3 Practical implementation of Equation (2)

Here, we assume that Equation (2) is used to obtain an approximate value of erf(x) (again
we suppose that x > 0):

erf(x) =
2xe−x

2

√
π

(
N−1∑

n=0

(2x2)n

1 · 3 · 5 · · · (2n+ 1)

)
+ ε

(2)
N (x)

where ε
(2)
N (x) is the remainder.

We follow the same method as for Equation (1). The relation between N and t′ is given
by the following proposition:

Proposition 5. Let E be the exponent of x. If N satisfies N ≥ 2x2 and

N

ex2
log2

(
N

ex2

)
≥ t
′ + 3 + max(0, E)− x2 log2(e)

ex2

the remainder is bounded by erf(x) 2−t
′−1.

In order to compute an overestimation of N , we proceed as we did for the implementation
of Equation (1). We first evaluate

a =
t′ + 3 + max(0, E)− x2 log2(e)

ex2
.

As in the previous section, the rounding modes are chosen carefully in order to get an over-
estimation au of the actual value a.

Recipe 3. We deduce the formulas for computing an overestimation of N :

– if au ≥ 2, take N ≥ (ex2) 2au/ log2(au) ;

– if au ∈ [0, 2], take N ≥ (ex2) 21/4 2au/2 ;

– if au < 0, let N0 ≥ (ex2) 2au and perform the following test:

– if N0 ≥ 2x2, take N = N0,

– else take N = ⌈2x2⌉.

Only the case au < 0 could lead to a value N smaller than 2x2. If it is the case, we take
N = ⌈2x2⌉, in order to ensure the hypothesis of Proposition 5.
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Input: a floating-point number x,
the working precision t,
the target precision t’,
L ∈ N⋆, N ∈ N⋆.

Output: an approximation of erf(x) with relative error less than 2−t
′

obtained using
Equation (2)

/* each operation is performed in precision t */

y← 2 ∗ x ∗ x ; // rounded upwards1

E← exponent(x) ;2

F← exponent(y) ;3

if x < 1 then G← E− 1 else G← 0 ;4

z← power(y, L) ; // computed with rounding upwards5

S← [0, . . . , 0] ;6

acc← √π ; // rounded downwards7

acc← 2 ∗ x/acc ; // rounded upwards8

tmp← x ∗ x ; // performed in precision t + max(2E, 0), rounded downwards9

tmp← exp(−tmp) ; // rounded upwards10

acc← acc ∗ tmp ; // rounded upwards11

i← 0 ;12

k← 0 ;13

repeat14

S[i]← S[i] + acc ;15

k← k + 1;16

if i = L− 1 then17

i← 0 ;18

acc← acc ∗ z ; // rounded upwards19

else20

i← i + 1 ;21

end22

acc← acc/(2 ∗ k + 1) ; // rounded upwards23

until k = N or ((k ≥ y) and (exponent(acc) < G− t’− 3− F ∗ i)) ;24

/* now S(y) is evaluated from the Si by Horner’s rule */

R← S[L− 1] ;25

for i← L− 2 downto 0 do26

R← S[i] + y ∗ R ;27

end28

return R;29

Algorithm 4: erfByEquation2()
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We evaluate the sum

S(x) =
N−1∑

n=0

2xe−x
2

√
π
· (2x2)n

1 · 3 · · · (2n+ 1)

using Algorithm 2 with parameters y = 2x2, α0 = 2xe−x
2

/
√
π and for k ≥ 1, αk = 1/(2k+1).

As in the implementation of Equation (1), we use upward rounding and a test for stopping
the loop as soon as possible. In this case, the criterion becomes

k ≥ N or
(
k ≥ 2x2 and acc · 2Fi < 2−t

′+min(E−1, 0)−3
)
.

The complete algorithm is summed up in Figure Algorithm 4.
The roundoff errors are bounded using the following proposition.

Proposition 6. If Algorithm 4 is used to compute an approximation Ŝ(x) of the sum S(x),
the following holds:

Ŝ(x) =
N−1∑

n=0

2xe−x
2

√
π
· (2x2)n

1 · 3 · · · (2n+ 1)
〈16N〉 .

Thus ∣∣∣Ŝ(x)− S(x)
∣∣∣ ≤ γ16N S(x) ≤ γ16N erf(x).

Finally, an appropriate precision t is given by the following recipe:

Recipe 4. When Equation (2) is used to evaluate erf(x), an appropriate working precision t
is given by

t ≥ t′ + 7 + ⌈log2N⌉ .

4.4 Implementation of erfc using Equation (1) or (2)

In this section, we do not suppose that x > 0 anymore.
Since erfc(x) = 1− erf(x), we can use the previous algorithms to evaluate erfc. However,

we have to take care of two things:

❼ firstly, the approximation of erf(x) should be computed with an appropriate relative
error 2−s. Since erf(x) and erfc(x) do not have the same order of magnitude, 2−s has
no reason to be the same as the target relative error 2−t

′

;

❼ secondly, contrary to erf, erfc is not odd (nor even). In particular, erfc(−x) and erfc(x)
do not have the same order of magnitude and this should be considered when estimating
the relative error.

We evaluate erfc(x) in two steps: first we compute an approximation R of erf(x) with a
relative error less than a bound 2−s (this is performed with one of the previous algorithms).
Then, we compute 1⊖R with precision t′ + 3.

Lemma 1. If s is chosen according to the following recipe, |R− erf(x)| ≤ 2−t
′−1 erfc(x).

– If x ≤ −1, s ≥ t′ + 1 ;

– if − 1 < x < 0, s ≥ t′ + 2 + E ;

– if 0 ≤ x < 1, s ≥ t′ + 5 + E ;

– if x ≥ 1, s ≥ t′ + 3 + E + x2 log2(e).
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As a consequence of the lemma,

|(1−R)− erfc(x)| ≤ 2−t
′−1 erfc(x).

It follows that |(1−R)| ≤ 2 erfc(x). Now, since (1⊖R) = (1−R) 〈1〉,
∣∣(1⊖R)− (1−R)

∣∣ ≤ |(1−R)| 21−(t′+3) ≤ 2−t
′−1 erfc(x).

Finally
∣∣(1 ⊖ R) − erfc(x)

∣∣ ≤
∣∣(1 ⊖ R) − (1 − R)

∣∣ +
∣∣(1 − R) − erfc(x)

∣∣ ≤ 2−t
′

erfc(x) which

proves that (1⊖R) is an approximation of erfc(x) with a relative error bounded by 2−t
′

.
Important remark: in the case when −1 < x < 0 and when t′ + 2 + E ≤ 1, it is actually
not necessary to perform any computation: in this case, 1 is an approximation to erfc(x) with
a relative error less than 2−t

′

. More precisely, we have |x| ≤ 2E ≤ 2−t
′−1, so

|1− erfc(x)| = | erf(x)| = | erf(|x|)|.

We can bound | erf(|x|)| by 2x (see Lemma 9 in Appendix). Moreover, since x < 0, erfc(x) > 1.
So we have |1− erfc(x)| ≤ 2−t

′

erfc(x).
The same remark holds in the case when 0 < x < 1 and t′ + 5 + E ≤ 1.

4.5 Practical implementation of Equation (3)

We now show how to use Equation (3) for obtaining an approximate value of erfc(x) (we
suppose again that x > 0):

erfc(x) =
e−x

2

x
√
π

(
1 +

N−1∑

n=1

(−1)n
1 · 3 · 5 · · · (2n− 1)

(2x2)n

)
+ ε

(3)
N (x)

where ε
(3)
N (x) is the remainder, bounded thanks to Inequality (4).

The particularity of this formula comes from the fact that the remainder cannot be made
arbitrarily small. In fact, x being given, the bound (4) is first decreasing until it reaches an
optimal value with N = ⌊x2 + 1/2⌋. For larger values of N , it increases. Hence, given a
target relative error 2−t

′

, it may be possible that no value of N is satisfying. In this case,
Equation (3) cannot be used. We note in particular that this formula is useless for 0 < x < 1.
Until the end of this section, we will suppose that x ≥ 1.

Conversely, when the relative error can be achieved, we can choose any value of N between
two values Nmin and Nmax. Obviously, we are interested in the smallest one.

Proposition 7. If N satisfies

N

ex2
log2

(
N

ex2

)
≤ −t

′ − 3

ex2

the remainder is bounded by erfc(x) 2−t
′−1.

Using this proposition, it is possible to compute an overestimation N of Nmin. However,
it is possible that this estimation N could be even greater than Nmax. In order to avoid
this possibility, let us remark two things: firstly, we never need to consider values N greater
than x2 (since we know the bound given by Equation (4) is minimal for N = ⌊x2 − 1/2⌋)
and, secondly, given a candidate value N , it is always possible to check if the inequality of
Proposition (7) holds.
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Recipe 5. The rule for computing N is the following: first, we compute a = (−t′ − 3)/ex2

choosing the rounding modes for obtaining a underestimation ad of a and then we choose N
according to the following recipe:

– if ad < − log2(e)/e, Equation (3) cannot be used;

– else let N0 ≥ (ex2) ad/ log2(−ad) and perform the following test:

– if N0 ≤ x2, let N = N0,

– else let N1 ≃ x2 and perform the following test:

– if
N1

ex2
log2

(
N1

ex2

)
≤ ad, let N = N1,

– else, Equation (3) cannot be used.

Of course the value − log2(e)/e is evaluated in such a way that we get an overestimation
of the actual value. Also, in the test N0 ≤ x2, the value x2 is replaced by an underestimation.

If a suitable value N has been computed, we evaluate the sum

S(x) =
e−x

2

x
√
π

+
N−1∑

n=1

(−1)n
e−x

2

x
√
π
· 1 · 3 · · · (2n− 1)

(2x2)n

using Algorithm 2 with parameters y = 1/(2x2), α0 = e−x
2

/(x
√
π) and for k ≥ 1, αk =

−(2k − 1). In practice, we use αk = 2k − 1 and we alternatively add and subtract acc to the
partial sum (again the variables acc, i, k, etc. are the variables introduced in Algorithm 2 on
page 9).

When computing α0, the rounding modes are chosen in such a way that the computed
value is an upper bound for the actual value. Besides, when acc is updated, rounding upwards
is used. Hence, we can stop the loop as soon as

k = N or acc · 2Fi < 2−t
′−1 e−x

2

/(4x)

where F is the exponent of y. The algorithm is summed up in Figure Algorithm 5.

The roundoff errors are bounded using the following proposition:

Proposition 8. If Algorithm 5 is used to compute an approximation Ŝ(x) of the sum S(x),
the following holds:

∣∣∣Ŝ(x)− S(x)
∣∣∣ ≤ γ16N

e−x
2

x
√
π
· 3

2
.

Recipe 6. Using this proposition, we obtain a suitable working precision t for computing
erfc(x) with Equation (3):

t ≥ t′ + 9 + ⌈log2(N)⌉ .

4.6 Implementation of erf with Equation (3)

We finish our study by briefly explaining how Equation (3) is used to compute erfc(x)
when x ≤ −1 and to compute erf(x) for x ≥ 1 (the symmetrical case x < −1 is the same).
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Input: a floating-point number x,
the working precision t,
the target precision t’,
L ∈ N⋆, N ∈ N⋆.

Output: an approximation of erfc(x) with relative error less than 2−t
′

obtained using
Equation (3)

/* each operation is performed in precision t */

E← exponent(x);1

G← ⌈x ∗ x ∗ log2(e)⌉ ; // computed with rounding upwards2

acc← x ∗ x ; // performed in precision t + 2E, rounded downwards3

y = 2 ∗ acc;4

y← 1/y ; // rounded upwards5

acc← exp(−acc) ; // rounded upwards6

tmp← x ∗ √π ; // rounded downwards7

acc← acc/tmp ; // rounded upwards8

F← exponent(y) ;9

z← power(y, L) ; // computed with rounding upwards10

S← [0, . . . , 0] ;11

i← 0 ;12

k← 0 ;13

repeat14

if (k mod 2) = 0 then S[i]← S[i] + acc else S[i]← S[i]− acc ;15

k← k + 1;16

if i = L− 1 then17

i← 0 ;18

acc← acc ∗ z ; // rounded upwards19

else20

i← i + 1 ;21

end22

acc← acc ∗ (2 ∗ k− 1) ; // rounded upwards23

until k = N or exponent(acc) < −t’− 3− F ∗ i−G− E ;24

/* now S(y) is evaluated from the Si by Horner’s rule */

R← S[L− 1] ;25

for i← L− 2 downto 0 do26

R← S[i] + y ∗ R ;27

end28

return R;29

Algorithm 5: erfcByEquation3()
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Note that erfc(x) = 1 − erf(x) = 1 + erf(−x) = 2 − erfc(−x). When x ≤ −1, we obtain
erfc(x) by computing an approximation R of erfc(−x) with a relative error smaller than an
appropriate bound 2−s and computing 2⊖R in precision t′ + 3.

The same way, since erf(x) = 1−erfc(x), we obtain erf(x) by computing an approximation
R of erfc(x) with a relative error smaller than an appropriate bound 2−s and computing 1⊖R
in precision t′ + 3.

The appropriate values for s are given in the two following lemmas.

Lemma 2. If x ≥ 1, the inequality |R− erfc(x)| ≤ 2−t
′−1 erfc(−x) holds when s is chosen

according to the following recipe:

s ≥ t′ + 2− E − x2 log2(e).

Remark that whenever t′ + 2 − E − x2 log2(e) ≤ 1, it is not necessary to compute an
approximation of erfc(x) and to perform the subtraction: 2 can be directly returned as a
result. Indeed, t′ + 2− E − x2 log2(e) ≤ 1 implies that e−x

2

/x ≤ 2−t
′

and hence

erfc(x) ≤ 2−t
′ ≤ 2−t

′

erfc(−x).

Since erfc(x) = 2− erfc(−x), it means that 2 is an approximation of erfc(−x) with a relative
error less than 2−t

′

.

Lemma 3. If x ≥ 1 the inequality |R− erfc(x)| ≤ 2−t
′−1 erf(x) holds when s is chosen

according to the following recipe:

s ≥ t′ + 3− E − x2 log2(e).

The same remark holds: if t′+ 3−E−x2 log2(e) ≤ 1, the value 1 can be directly returned
as an approximation of erf(x) with a relative error less than 2−t

′

.

5 Experimental results

We have given all the details necessary for implementing each of the three equations (1), (2),
and (3). They can be used for obtaining approximate values of either erf(x) or erfc(x). We
also gave estimations of the order of truncation N − 1 and of the working precision t. In each
case O(

√
N) multiplications at precision t and O(N) additions and multiplications/divisions

by small integers are needed for evaluating the sum. Hence, for each equation, the binary
complexity of the algorithm is O(

√
N M(t) +Nt) where M(t) denotes the binary complexity

of a product of two numbers of precision t.
However, quite different behaviors are hidden behind this complexity. Indeed, the inputs

of our algorithms are the point x and the target precision t′. Hence, N and t are functions of
x and t′. As can be seen in previous sections, these functions highly depend on the equation
used to evaluate erf(x) or erfc(x).

5.1 Choosing the best equation

Of course, given an input couple (x, t′), we would like to automatically choose the equation
to be used, in order to minimize the computation time. For this purpose, we need to compare
the complexity of the three equations. It seems quite hard to theoretically perform such a
comparison:
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❼ firstly, the estimations of N and t are different for each equation. They depend on x
and t′ in a complicated way. Besides, they are defined piecewise, which implies that
there are many cases to study;

❼ secondly, comparing the three methods requires to set some assumptions on the imple-
mentation of the underlying arithmetic (e.g. complexity of the multiplication; complex-
ity of the evaluation of exp).

Usually, the multiplication between two numbers of precision t is performed differently
whether t is large or not: see [9, Section 2.4] for an overview of what is used in MPFR.
Three different algorithms are used in MPFR, and each one depends on the underlying integer
multiplication. The GMP library, used to perform the integer multiplications, uses at least four
different algorithms depending on the sizes of the input data. Hence, the effective complexity
M(t) is very hard to accurately estimate.

In MPFR, the evaluation of exp(x) is performed by three different algorithms, depending
on the required precision t (see [9, end of Section 2.5] for a brief overview).

❼ A naive evaluation of the series is used when t is smaller than a parameter t0;

❼ the concurrent series technique of Smith is used when t lies between t0 and a second
threshold t1;

❼ finally, if t ≥ t1, a binary splitting method [3] is used.

The values t0 and t1 have been tuned (and are thus different) for each architecture.
This shows that choosing the best equation between the three equations proposed in

this paper is a matter of practice and not of theoretical study. We implemented the three
algorithms in C, using MPFR for the floating-point arithmetic. Our code is distributed under
the LGPL and freely available at http://prunel.ccsd.cnrs.fr/ensl-00356709/.

In order to experimentally see which equation is the best for each couple (x, t′), we ran
the three implementations for a large range of values x and t′. For each couple, we compared
the execution time of each implementation when evaluating erf(x). The experimental results
are summed up in Figure 3. The colors indicate which implementation is the fastest. The
experiments were performed on a 32-bit 3.00 GHz Intel Pentium D with 2.00 GB of RAM
running Linux 2.6.26 and MPFR 2.3.1 and gcc 4.3.3. The thresholds used by MPFR for this
architecture are t0 = 528 and t1 = 47 120.

The boundary between Equations (1) and (2) seems to exhibit three phases, depending
on t′. These phases approximately match the thresholds used by MPFR for the implementation
of exp. Since Equation (2) relies on the evaluation of exp(−x2) whereas Equation (1) does not,
this is probably not a coincidence and we just see the impact of the evaluation of exp(−x2)
on the whole computation time.

The boundary between Equations (2) and (3) is more regular. In fact, we experimentally
observe that as soon as Equation (3) is usable, it is more interesting than the other equations.
Figure 4 shows the timings for t′ = 632 in function of x. This is a typical situation: for small
values of x, Equation (3) cannot achieve the target precision; but for x ≃ 15, it becomes usable
and is immediately five times faster than the others. Hence, the domain where Equation (3)
should be used is given by the points where the inequality of Proposition 7 has a solution, i.e.
if and only if

−s− 3

ex2
≥ − log2(e)

e
,

http://prunel.ccsd.cnrs.fr/ensl-00356709/
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Figure 3: Comparison of the execution times of the three implementations of erf (the scale is
logarithmic)
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where s & t′ + 3 − E − x2 log2(e) is the intermediate precision given in Lemma 3. Thus
the equation of the boundary is approximately log(t′) ≃ 2 log(x), which corresponds to the
observations.

Figure 4: Execution times of the three implementations, in function of x, when t′ = 632 (the
x-axis has a logarithmic scale).

5.2 Comparison with other implementations

We compared our implementation of erf and erfc with two others reference implemen-
tations: MPFR and Maple. MPFR is probably the most relevant since we indeed compare two
comparable things: since our implementation is written using MPFR, the underlying arithmetic
is the same in both cases. Therefore, the difference of timings between our implementation
and MPFR is completely due to the difference between the algorithms used.

Maple uses a decimal floating-point format. Besides, it is an interpreted language. Hence,
the comparison between our implementation and Maple is not completely relevant. However,
Maple is widely used and provides one of the rare implementations of erf and erfc in arbitrary
precision.

The results of our experiments are given in table Figure 5. The experiments were per-
formed on a 32-bit 2.40 GHz Intel Xeon with 2.00 GB of RAM running Linux 2.6.22. We
used MPFR 2.3.1, gcc 4.1.2 and Maple 11. The values of x are chosen randomly with the same
precision t′ as the target precision. The table only indicates an approximate value. The target
precision t′ is expressed in bits. Maple is run with the variable Digits set to ⌊t′/ log2(10)⌋. This
corresponds approximately to the same precision expressed in a decimal arithmetic. Maple
remembers the values already computed. It is thus impossible to repeat the same evaluation
several times for measuring the time of one single evaluation by considering the average tim-
ing. In order to overcome this difficulty we chose to successively evaluate erf(x), erf(x + h),
erf(x+ 2h), etc. where h is a small increment.

The cases when Equation (3) cannot achieve the target precision are represented by the
symbol “-”. Our implementation is the fastest except in a few cases. In small precisions and
small values of x, MPFR is the fastest because it uses a direct evaluation that is a bit faster
when the truncation rank is small.

The case x ≃ 88.785777 and t′ = 7139 has another explanation. Actually, the situation
corresponds to the remark following Lemma 3: t′ + 3 − E − x2 log2(e) ≤ 1. Hence, there is
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x t′ Eq. 1 Eq. 2 Eq. 3 MPFR Maple

0.000223 99 29 µs 47 µs - 14 µs 283 µs

0.005602 99 34 µs 48 µs - 17 µs 282 µs

0.140716 99 40 µs 53 µs - 25 µs 287 µs

3.534625 99 96 µs 84 µs - 125 µs 382 µs

88.785777 99 277 520 µs 6181 µs < 1 µs 2 µs 18 µs

0.000223 412 55 µs 87 µs - 76 µs 739 µs

0.005602 412 62 µs 94 µs - 104 µs 783 µs

0.140716 412 88 µs 109 µs - 186 µs 870 µs

3.534625 412 246 µs 198 µs - 663 µs 1 284 µs

88.785777 412 289 667 µs 9 300 µs < 1 µs 2 µs 21 µs

0.000223 1 715 311 µs 562 µs - 1 769 µs 2 513 µs

0.005602 1 715 393 µs 616 µs - 2 490 µs 2 959 µs

0.140716 1 715 585 µs 748 µs - 4 263 µs 3 968 µs

3.534625 1 715 1 442 µs 1 260 µs - 11 571 µs 8 850 µs

88.785777 1 715 343 766 µs 22 680 µs < 1 µs 2 µs 42 µs

0.000223 7 139 3 860 µs 7 409 µs - 28 643 µs 38 846 µs

0.005602 7 139 4 991 µs 7 959 µs - 40 066 µs 51 500 µs

0.140716 7 139 7 053 µs 9 227 µs - 64 975 µs 79 308 µs

3.534625 7 139 14 744 µs 14 144 µs - 157 201 µs 191 833 µs

88.785777 7 139 628 527 µs 96845 µs 46 µs 2 µs 213 µs

0.000223 29 717 63 ms 108 ms - 654 ms 1 140 ms

0.005602 29 717 79 ms 119 ms - 881 ms 1 539 ms

0.140716 29 717 108 ms 137 ms - 1 375 ms 2 421 ms

3.534625 29 717 202 ms 198 ms - 2 968 ms 5 320 ms

88.785777 29 717 2 005 ms 898 ms - 39 760 ms 243 690 ms

Figure 5: Timings of several implementations of erf
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nothing to compute and 1 can be returned immediately. In our implementation t′ + 3−E −
x2 log2(e) is computed using MPFR in small precision. This takes 46 µs. MPFR performs the
same kind of test but using hardware arithmetic. This explains that it can give an answer
in 2 µs.

6 Conclusion and perspectives

We proposed three algorithms for efficiently evaluating the functions erf and erfc in ar-
bitrary precision. These algorithms are based on three different summation formulas whose
coefficients have the same general recursive structure. For evaluating the sum, we take advan-
tage of this structure by using an algorithm due to Smith that makes it possible to evaluate
the sum with the binary complexity O(Nt + M(t)

√
N) (this should be compared to the

complexity O(N M(t)) of the straightforward evaluation algorithm).

We gave closed formulas for upper-bounding the truncation rank N−1 and we completely
studied the effects of roundoff errors in the summation. We derived from this study closed
formulas for the required working precision.

An interesting feature of our work comes from the fact that the errors are rigorously
bounded (and not only roughly estimated): to our best knowledge, the MPFR library is the only
other library providing implementations with such guaranteed bounds. However, there was no
complete documentation explaining how to write such an implementation. The general scheme
exposed in this article can be used for the implementation of other functions: we completely
detailed the proofs and the algorithms in order to allow one to reproduce the same steps when
implementing other functions. Examples of functions that could be implemented using this
scheme include Fresnel integrals, Exponential integrals or Airy functions when x ≥ 0. The
scheme would require slight modifications for other functions such as Airy functions when
x < 0 or Bessel functions because these functions have several zeros. Due to these zeros, it
is not possible to find an underestimation g (as required in our general scheme in page 4).
Nevertheless, even for such vanishing functions, the techniques used for the error analysis and
the evaluation algorithm remain valid and can be reused.

We implemented the three algorithms in C and compared the efficiency of the three meth-
ods in practice. This shows that the asymptotic expansion is the best method to use, as soon
as it can achieve the target accuracy. Whenever the asymptotic expansion cannot be used,
one must choose between the two others equations. The domain where it is interesting to
use one rather than the other depends on the underlying arithmetic. In practice, well-chosen
thresholds must be chosen for each architecture. We also compared our implementation with
the implementation of erf provided in MPFR and Maple. Our implementation is almost al-
ways the fastest one. It represents a considerable improvement for intermediate and large
precisions.

However, a few remarks could lead to further improvements of our implementation. Firstly,
we must remark that our analysis is based on the hypothesis that no underflow or overflow
occurs during the evaluation. This assumption is reasonable since the range of exponents
available in MPFR is really wide and can often be considered as almost unbounded in practice.
However, in order to be completely rigorous, we should take this possibility into account for
really guaranteeing the quality of the final result.

As shown (see Figure 4 on page 24) the formula given by Equation (3) is much more
efficient than the others whenever it can be used. Thus it is interesting to extend the domain
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where this formula can be used. Such an extension can be obtained the following way: let
x be a point such that Equation (3) does not provide enough accuracy at this point. We
suppose further that x can be written as x = x0− h where h > 0 is fairly small and where x0

is in the domain where Equation (3) is useful. Hence, an approximate value of erf(x) can be
computed with a Taylor development of erf with center x0:

erf(x) = erf(x0) +
+∞∑

i=1

ai(−h)i where ai =
erf(i)(x0)

i!
.

Since h is fairly small, only a few terms of this series are necessary for obtaining a good
approximation. The coefficients ai have all the same form pi(x0)e−x

2

0 where pi is a polynomial
of degree 2i−2 satisfying a simple recurrence formula. The coefficients ai are henceforth easily
computable. The value erf(x0) is efficiently computed using Equation (3) (we remark that
the value e−x

2

0 is already computed during this computation, and does need to be recomputed
when evaluating the coefficients ai).

In other words, though the asymptotic expansion can not be used to directly evaluate
erf(x) with the required accuracy, it can be used to evaluate erf(x0). From the latter, the
value erf(x) is easily recovered by analytic continuation. This continuation is easy to compute
because the coefficients ai satisfy a simple recurrence. In fact, this is true for a large class of
functions, called holonomic functions (or D-finite functions). A function is called holonomic
when it is solution of a linear differential equation with polynomial coefficients. For instance,
erf is a solution of the equation

d2y

dx2
+ 2x

dy

dx
= 0.

When a holonomic function is analytical at point x0, the coefficients of its series at x0 satisfy
a recurrence.

D. V. Chudnovsky and G. V. Chudnovsky proposed [6] a quasi-linear algorithm (with
binary complexity O(M(t) log(t)3)) for evaluating holonomic functions with a precision of t
bits. This algorithm is called the bit-burst algorithm and is based on two ideas:

1. When x0 is a rational number p/q where p and q are small integers, it is possible to
efficiently sum N terms of the Taylor series of a holonomic function using a technique
called binary splitting.

2. For a generic value x, the idea of analytic continuation is recursively used: x is written
x = x0 + h where x0 = p/q. This leads to the evaluation of f(x0) (by binary splitting)
and the evaluation of a series in h. The coefficients of this series only depend on f(x0)
(and possibly the first derivatives of f at x0). The evaluation of this series uses the
same technique recursively: h is decomposed as h = h0 + h′ with h0 = p′/q′, etc.

Brent already proposed in 1976 an algorithm based on the binary splitting for evaluating
the exponential function [3]. In fact, the bit-burst algorithm is a generalization of this algo-
rithm to any holonomic function. However, in practice, the constant hidden behind the “O”
is not negligible and the algorithm is only interesting for fairly high precisions. Nevertheless,
it is an improvement that we plan to implement.

Another remark concerns the practical efficiency of the methods exposed in this article
when the precision becomes very high. Both Smith’s algorithm and the bit-burst algorithm
require extra space for storing intermediate results. It can be a problem for very high preci-
sions, if it implies that the memory be swapped on the hard disk. In this case, it would be
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more interesting to use a straightforward algorithm: e.g. compute iteratively the coefficients
of the sum and accumulate the result on the fly. This is slower in theory but it does not
require extra memory. Hence, in practice, it could be worth using it.

Finally, the functions erf and erfc could be evaluated by other means than series. For
instance, these functions have nice continued fractions developments. Such developments
could be used for the evaluation in arbitrary precision. This is a promising technique that we
did not study yet.
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Appendix: technical results

General purpose lemmas

Lemma 4 (Propagation of errors through a square root). Let k ∈ N⋆, z and z′ two numbers
such that we can write z′ = z 〈k〉. Then we can write

√
z′ =

√
z 〈k〉.

Proof. By hypothesis, z′ = z
k∏
i=1

(1 + δi)
si with |δi| ≤ u and si ∈ {−1, 1}. Hence,

√
z′ =

√
z
k∏

i=1

(√
1 + δi

)si
.

Now, by the mean value theorem,

√
1 + δi = 1 + δi

1

2
√

1 + ξi
,

where ξi lies between 0 and δi. In particular, |ξi| ≤ u ≤ 1/2. Hence,
√

1 + ξi ≥
√

1/2. It
follows that ∣∣∣∣δi

1

2
√

1 + ξi

∣∣∣∣ ≤ u
√

2

2
≤ u.

It proves the result.

Lemma 5 (Propagation of errors through exp). Let z ∈ R. We denote by E its exponent:
2E−1 ≤ z < 2E. Let t be a precision. We note y = z2 and we suppose that ŷ = ⋄(z2), the
operation being performed with a precision larger than t+ 2E. Then

e−ŷ = e−z
2

(1 + δ)s where |δ| ≤ 21−t and s ∈ {−1, 1}.

In other words, we can write e−ŷ = e−z
2 〈1〉 in precision t.

Proof. Since ŷ is a rounding of z2 in precision t+2E, we have ŷ = z2 (1+θ) with |θ| ≤ 21−t−2E .
In other words, ŷ = z2 + h where |h| ≤ z2 21−t−2E ≤ 21−t. Hence, we have

e−ŷ = e−z
2

e−h.

We distinguish two cases:

❼ If h ≥ 0, by the mean value theorem, exp(−h) = 1 + (−h) exp(ξ) where ξ ∈ [−h, 0]. In
particular | − h exp(ξ)| ≤ |h| ≤ 21−t.

❼ If h ≤ 0, by the mean value theorem, 1/ exp(−h) = exp(h) = 1 + h exp(ξ) where
ξ ∈ [h, 0]. In particular |h exp(ξ)| ≤ |h| ≤ 21−t.

In both cases, we can write e−h as (1 + δ)s with |δ| ≤ 21−t and s ∈ {−1, 1}.

To bound the remainder of the series, we need to approximate n!. We use the following
estimations:
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Lemma 6 (Rough estimation of n!). The following inequalities hold for all n ≥ 1:

√
2πn

(
n

e

)n
≤ n! ≤ e

√
n

(
n

e

)n
.

Proof. Consider the sequence defined for n ≥ 1 by

un =

√
2πn(n/e)n

n!
.

One sees that this sequence is increasing by considering un+1/un. It is well known (Stirling
formula) that un → 1 as n → +∞. Therefore, for all n ≥ 1, u1 ≤ un ≤ 1. This gives the
result.

The rough estimation of N is obtained by inverting a certain relation. This relation in-
volves the function v 7→ v log2(v). Hence we need to estimate its reciprocal ϕ. The functions ϕ
is closely related to the Lambert W function (defined as the reciprocal of x 7→ x ex). The
function W has been well studied [7, 11]; however, the known bounds for W do not allow
us to determine accurate lower and upper bounds for ϕ on its whole domain. The following
lemmas give such estimates.

Lemma 7 (Inverse of v log2(v)). The function v 7→ v log2(v) is increasing for v ≥ 1/e. We
denote by ϕ its inverse: ϕ : w 7→ ϕ(w) defined for w ≥ − log2(e)/e and such that for all w,
ϕ(w) log2(ϕ(w)) = w. The function ϕ is increasing.

The following inequalities hold:

if w ∈ [− log2(e)/e, 0], 2ew ≤ ϕ(w) ≤ 2w ;

if w ∈ [0, 2], 2w/2 ≤ ϕ(w) ≤ 21/4 2w/2 ;

if w ≥ 2, w/ log2(w) ≤ ϕ(w) ≤ 2w/ log2(w).

Proof. Showing that v 7→ v log2(v) is increasing for v ≥ 1/e does not present any difficulty.
We only prove the second inequality. The others are proved using the same technique.

We denote ϕ(w) by v for convenience. If w ∈ [0, 2], it is easy to see that v ∈ [1, 2]. Now,
since log2(v) = w/v, we get w/2 ≤ log2(v) ≤ w. Therefore

2w/2 ≤ v ≤ 2w, (7)

which gives the lower bound.
We can refine this identity: using again that log2(v) = w/v, we get

w

2w
≤ log2(v) ≤ w

2w/2
and thus v ≤ 2(w 2−w/2).

For finishing the proof, we only need to show that for any w ∈ [0, 2],

w 2−w/2 ≤ 1

4
+
w

2
.

The Taylor expansion of 2−w/2 is

2−w/2 =
+∞∑

n=0

(−1)n
(w ln(2))n

2n n!
.
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The series is alternating with a decreasing general term when w ∈ [0, 2]. Hence

2−w/2 ≤ 1− w ln(2)

2
+
w2 ln(2)2

8
.

From this inequality, we deduce

w 2−w/2 − w
2
≤ w

(
1

2
− w ln(2)

2
+
w2 ln(2)2

8

)
.

Studying the variations of the right-hand term of this inequality, we get

w 2−w/2 − w
2
≤ 4

27 ln(2)
≃ 0.2137 · · · ≤ 1/4.

It finishes the proof.
Remark: the last inequality is proved using v ≤ v log2(v) ≤ v2 for v ≥ 2. We rewrite it√
w ≤ v ≤ w and then we apply the same technique.

Figure 6: Graph of the function v 7→ v log2(v).

Lemma 8 (Inverse of v log2(v), the other branch). The function v 7→ v log2(v) is decreasing
for 0 ≤ v ≤ 1/e. We denote by ϕ2 its inverse: ϕ2 : w 7→ ϕ2(w) such that ϕ2(w) log2(ϕ2(w)) =
w. The value ϕ2(w) is defined for − log2(e)/e ≤ w ≤ 0 and is decreasing.

The following inequalities give an estimate of ϕ2(w):

∀w ∈
[
− log2(e)

e
, 0

)
,

1

3
· w

log2(−w)
≤ ϕ2(w) ≤ w

log2(−w)
.

Proof. Showing that v 7→ v log2(v) is decreasing for v ∈ [0, 1/e] does not present any difficulty.
We will use the following notations that are more convenient:

ω = 1/(−w),

ν = 1/ϕ2(w).

Hence ω ≥ e/ log2(e) and ν ≥ e. Moreover, by hypothesis, ν/ log2(ν) = ω. It is easy to show
that for any ν ≥ e,

ν1/3 ≤ ν

log2(ν)
≤ ν.
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Therefore, ω ≤ ν ≤ ω3 and thus log2(ω) ≤ log2(ν) ≤ 3 log2(ω). We conclude by using
ν = ω log2(ν).

(a) Graph of ϕ and its bounds (b) Graph of ϕ2 and its bounds

Figure 7: Illustration of Lemmas 7 and 8

When bounding relative errors, we need to estimate the values of erf(x) and erfc(x). The
next lemma gives such estimates.

Lemma 9. The following inequalities hold:

if 0 < x < 1, x/2 ≤ erf(x) ≤ 2x,

1/8 ≤ erfc(x) ≤ 1;

if x ≥ 1, 1/2 ≤ erf(x) ≤ 1,

e−x
2

/(4x) ≤ erfc(x) ≤ e−x
2

/(x
√
π).

Proof. When 0 < x < 1, the series given in Equation (1) is alternating with a decreasing
general term. Hence

2x√
π

(
1− x

2

3

)
≤ erf(x) ≤ 2x√

π
.

The inequalities for erf(x) are easily obtained from it.

Since erfc is decreasing, erfc(1) ≤ erfc(x) ≤ erfc(0) = 1. Taking one more term in the
series of erf(x), we get

erf(x) ≤ 2x√
π

(
1− x

2

3
+
x4

10

)
.

Applying it at x = 1, we get erfc(1) = 1− erf(1) ≥ 1/8.

When x > 1, since erf is increasing and goes to 1 as x→ +∞, we have erf(1) ≤ erf(x) ≤ 1.
This gives the inequalities for erf(x).
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We now prove the last two inequalities of the lemma. By definition,

erfc(x) =
2√
π

∫ +∞

x
e−v

2

dv

=
2√
π

∫ +∞

x

−2v e−v
2

−2v
dv

=
2√
π

(
e−x

2

2x
−
∫ +∞

x

e−v
2

2v2
dv

)
.

This gives the upper bound. For the lower bound, we use the change of variable v ← v + x:

∫ +∞

x

e−v
2

2v2
dv =

∫ +∞

0

e−x
2−2vx−v2

2(v + x)2
dv.

Since (v + x)2 ≥ x2 and −v2 ≤ 0,

∫ +∞

0

e−x
2−2vx−v2

2(v + x)2
dv ≤ e

−x2

2x2

∫ +∞

0
e−2vx dv =

e−x
2

4x3
.

Therefore,

erfc(x) ≥ e−x
2

x
√
π

(
1− 1

2x2

)

≥ e−x
2

x 2
√
π

since x ≥ 1.

We conclude by remarking that 2
√
π ≃ 3.544 ≤ 4.

Results related to the implementation of Equation (1)

Proposition 3. Let E be the exponent of x. If N satisfies

N

ex2
log2

(
N

ex2

)
≥ t
′ + max(0, E)

ex2
,

the remainder ε
(1)
N is bounded by 2−t

′−1 erf(x).

Proof. Remark first that for N ≥ 1,

2√
π
· 1

(2N + 1)
√

2πN
≤ 1

4
. (8)

We distinguish the cases when x < 1 and when x ≥ 1:

❼ if x < 1, E ≤ 0 and erf(x) is greater than x/2. The hypothesis becomes (ex2/N)N ≤ 2−t
′

and thus
x2N+1

2

(
e

N

)N
≤ 2−t

′

erf(x). (9)
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❼ if x ≥ 1, E > 0 and erf(x) is greater than 1/2. The hypothesis becomes (ex2/N)N ≤
2−t

′−E and thus
x2N

2

(
e

N

)N
≤ 2−t

′−E erf(x).

Since x < 2E we obtain Inequality (9) again.

From Inequalities (8) and (9) we deduce that

2√
π
· x

2N+1

2N + 1

(
e

N

)N 1√
2πN

≤ 2−t
′−1 erf(x).

Using Lemma 6, we get

2√
π
· x2N+1

(2N + 1)N !
≤ 2−t

′−1 erf(x).

Remark that the left term of the inequality is the absolute value of the general term of
the series. Since it is smaller than 2−t

′−1 erf(x), it is in particular smaller than 1/2. Since the
series is alternating, we can bound the remainder by the absolute value of the first neglected
term as soon as the term decreases in absolute value.

In our case, the absolute value of the general term may begin by increasing before de-
creasing. But when it increases, it is always greater than 1. Therefore, since here it is smaller

than 1/2, we are in the decreasing phase and we can write ε
(1)
N (x) ≤ 2−t

′−1 erf(x).

Recipe 1. We first evaluate a = (t′+ max(0, E))/(ex2). In fact, when performing the evalu-
ation, the rounding modes are carefully chosen in such a way that one gets an overestimation
au of a: au ≥ a. Then, N is chosen according to the following recipe:

– if au ≥ 2, N ≥ (ex2) 2au/ log2(au) ;

– if au ∈ [0, 2], N ≥ (ex2) 21/4 2au/2.

These formulas are evaluated with appropriate rounding modes, in order to ensure that N
is really greater than the actual value.

Proof. Proposition 3 gives a sufficient condition on N that ensures that ε
(1)
N is bounded by

2−t
′−1 erf(x). We reason by sufficient conditions:

❼ from Proposition 3, it suffices that

N

ex2
log2

(
N

ex2

)
≥ a ;

❼ hence, it suffices that
N

ex2
log2

(
N

ex2

)
≥ au ;

❼ this inequality can be inverted with help of function ϕ (defined in Lemma 7). Namely,
we have N/(ex2) ≥ ϕ(au);

❼ for obtaining this inequality, it suffices that N/(ex2) be greater than an upper bound
of ϕ(au). Such an upper bound is given by Lemma 7. The recipe follows.
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Proposition 4. If Algorithm 3 is used to compute an approximation Ŝ(x) of the sum S(x),
the following holds:

Ŝ(x) =
N−1∑

n=0

(−1)n
2x√
π
· x2n

(2n+ 1)n!
〈8N〉 .

Thus
∣∣∣Ŝ(x)− S(x)

∣∣∣ ≤ γ8N
(

2x√
π

N−1∑

n=0

x2n

(2n+ 1)n!

)
≤ γ8N

2√
π

∫ x

0
ev

2

dv.

The bound γ8N could be made tighter. However, we cannot hope a better value than γN
since we do O(N) operations. Only the logarithm of this value will be of interest for choosing
the working precision t. By working more carefully, we would not get more than replacing
log(8N) by log(N) and it would not be of any practical benefit.

Proof. To prove this result, we use the same techniques as those presented in the example of
Section 3. The main arguments are the following.

❼ Line 1 of the algorithm leads to one error;

❼ Line 4 is obtained by binary exponentiation: by counting the number of multiplications,
it is easy to show that ẑ = z 〈2L− 1〉;

❼ Line 6 involves an approximation of π (π̂ = π 〈1〉) and a square root. Using Lemma 4
we get acc = ⋄(

√
π̂) = ⋄(√π 〈1〉) =

√
π 〈2〉;

❼ Line 7 involves a division (the multiplication by 2 is exact);

❼ acc is updated at lines 16 and 20 of the algorithm. At line 16, it accumulates 2L errors
(2L − 1 due to z and one due to the multiplication itself). At line 20, it accumulates
one error. It is hence easy to show that we can always write

âcc = acc 〈 3︸︷︷︸
initialization

+ N︸︷︷︸
line 20 occurs at most N times

+ 2L⌊N/L⌋︸ ︷︷ ︸
line 16 occurs at most ⌊N/L⌋ times

〉.

We simplify it in âcc = acc 〈3 + 3N〉;

❼ We can always write t̂mp = tmp 〈4 + 3N〉 since tmp is obtained from acc by one division
(2k + 1 is computed exactly in integer arithmetic);

❼ Eventually, S[i] is obtained by less than N additions using variable tmp which allows
to write

Si = tmpi 〈4N + 4〉+ tmpi+L 〈4N + 4〉+ · · ·+ tmpi+N−L 〈4N + 4〉

where tmpk denotes the value of variable tmp at step k of the algorithm;

❼ The evaluation by Horner’s rule at line 25 accumulates 3 more errors per step (one comes
from the fact that y = x2 〈1〉, one comes from the multiplication and one comes from
the addition). Therefore, during the complete loop, 3(L−1) errors are accumulated per
term of the sum. We bound it by 3N − 3 and finally get the result with 〈7N + 1〉. We
bound it by 〈8N〉.
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The value
(∫ x

0 e
v2

dv
)

quantifies the catastrophic cancellations that appear when Equa-

tion (1) is used for evaluating erf(x). The following lemma allows us to bound it.

Lemma 10. The following inequalities hold:

if 0 < x < 1, x ≤
∫ x

0
ev

2

dv ≤ 2x;

if x ≥ 1,
1

e2
· e
x2

x
≤

∫ x

0
ev

2

dv ≤ ex
2

x
.

Proof. For the first inequality, the lower bound is obtained by replacing ev
2

by 1 in the integral.
The upper bound is obtained by replacing ev

2

by e0.552

on [0, 0.55] and by e on [0.55, 1].
For the second inequality, the upper bound is obtained by replacing ev

2

by evx in the
integral. The lower bound is obtained by considering the integral restricted to the interval
[x− 1/x, x].

Recipe 2. Let E be the exponent of x. For the evaluation of erf(x) by Equation (1), an
appropriate working precision t is

– when x < 1, t ≥ t′ + 9 + ⌈log2N⌉ ;

– when x ≥ 1, t ≥ t′ + 9 + ⌈log2N⌉ − E + x2 log2(e).

In practice log2(e) is replaced by a value precomputed with rounding upwards. The factor
x2 log2(e) that appears when x > 1 highlights the fact that the series is ill-conditioned for
large values of x.

Proof. We show the result for the first inequality. The second one is obtained the same way.
We suppose that 0 < x < 1 and t ≥ t′ + 9 + ⌈log2N⌉. Thus

2−t+8N ≤ 2−t
′−1.

Using the fact that γ8N ≤ 16Nu (Proposition 2), we get

2γ8N (2x) ≤ 2−t
′−1 x

2
.

We conclude by using (x/2) ≤ erf(x) (Lemma 9), (2/
√
π) ≤ 2 and

∫ x

0
ev

2

dv ≤ 2x (Lemma 10).

Results related to the implementation of Equation (2)

The first thing we need is a way of bounding the remainder. This is achieved by the
following lemma:

Lemma 11. If N ≥ 2x2, the following inequality holds:

ε
(2)
N (x) ≤ 2

2xe−x
2

√
π
· (2x2)n

1 · 3 · · · (2N + 1)
.
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Proof. By definition,

ε
(2)
N (x) =

2xe−x
2

√
π

+∞∑

n=N

(2x2)n

1 · 3 · · · (2n+ 1)

=
2xe−x

2

√
π
· (2x2)N

1 · 3 · · · (2N + 1)

(
1 +

2x2

2N + 3
+

(2x2)2

(2N + 3)(2N + 5)
+ · · ·

)
.

We bound it by the geometric series with a common ratio of (2x2)/(2N + 3) and a first term
equal to 1:

ε
(2)
N (x) ≤ 2xe−x

2

√
π
· (2x2)N

1 · 3 · · · (2N + 1)

(
1 +

2x2

2N + 3
+

(2x2)2

(2N + 3)(2N + 3)
+ · · ·

)

Since N ≥ 2x2, (2x2)/(2N + 3) ≤ 1/2 and the sum of the series is bounded by 2.

Proposition 5. Let E be the exponent of x. If N satisfies N ≥ 2x2 and

N

ex2
log2

(
N

ex2

)
≥ t
′ + 3 + max(0, E)− x2 log2(e)

ex2

the remainder is bounded by erf(x) 2−t
′−1.

Proof. We use the same kind of arguments as for Proposition 3. The product 1 ·3 · · · (2N +1)
is equal to (2N + 1)!/(2N N !). This lets us write

∣∣∣ε(2)
N (x)

∣∣∣ ≤ 4
xe−x

2

√
π
· (2x2)N N ! 2N

(2N + 1)!
≤ 4
xe−x

2

√
π
· (2x2)N N ! 2N

(2N)!
.

We conclude using Lemmas 6 and 9.

Recipe 3. We deduce the formulas for computing an overestimation of N :

– if au ≥ 2, take N ≥ (ex2) 2au/ log2(au) ;

– if au ∈ [0, 2], take N ≥ (ex2) 21/4 2au/2 ;

– if au < 0, let N0 ≥ (ex2) 2au and perform the following test:

– if N0 ≥ 2x2, take N = N0,

– else take N = ⌈2x2⌉.

Only the case au < 0 could lead to a value N smaller than 2x2. If it is the case, we take
N = ⌈2x2⌉, in order to ensure the hypothesis of Proposition 5.

Proof. The proof is similar to the proof of Recipe 1.

Proposition 6. If Algorithm 4 is used to compute an approximation Ŝ(x) of the sum S(x),
the following holds:

Ŝ(x) =
N−1∑

n=0

2xe−x
2

√
π
· (2x2)n

1 · 3 · · · (2n+ 1)
〈16N〉 .

Thus ∣∣∣Ŝ(x)− S(x)
∣∣∣ ≤ γ16N S(x) ≤ γ16N erf(x).
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Proof. In fact, using the same techniques as in Proposition 4, one proves that

Ŝ(x) =
N−1∑

n=0

2xe−x
2

√
π
· (2x2)n

1 · 3 · · · (2n+ 1)
〈7N + 3〉 .

We bound it by 〈16N〉 because it is more convenient to use powers of 2.
Note that at line 9 of the algorithm, x2 is computed in precision t + max(2E, 0). Using

Lemma 5, it allows for writing α̂0 = α0 〈6〉.

Results related to the evaluation of erfc(x) by Equations (1) and (2)

Lemma 1. If s is chosen according to the following recipe, |R− erf(x)| ≤ 2−t
′−1 erfc(x).

– If x ≤ −1, s ≥ t′ + 1 ;

– if − 1 < x < 0, s ≥ t′ + 2 + E ;

– if 0 ≤ x < 1, s ≥ t′ + 5 + E ;

– if x ≥ 1, s ≥ t′ + 3 + E + x2 log2(e).

Proof.
First case.

We suppose x ≤ −1 and s ≥ t′ + 1. From the hypotheses we get

∣∣R− erf(x)
∣∣ ≤ 2−s | erf(x)| ≤ 2−t

′−1 | erf(x)|.

Since x < 0, erfc(x) ≥ 1. Moreover, | erf(x)| ≤ 1. This gives the result.

Second case.

We suppose −1 < x < 0 and s ≥ t′ + 2 + E. From the hypotheses we get

∣∣R− erf(x)
∣∣ ≤ 2−s | erf(x)| ≤ 2−t

′−1 2−E−1 | erf(x)|.

Since x < 0, erfc(x) ≥ 1. Moreover, | erf(x)| = erf(|x|) ≤ 2|x| ≤ 2E+1. This gives the result.

Third case.

It is the same as the second case but using erfc(x) ≥ 1/8.

Fourth case.

Here x ≥ 1 and s ≥ t′ + 3 + E + x2 log2(e). Hence

∣∣R− erf(x)
∣∣ ≤ 2−s erf(x) ≤ 2−t

′−1 2−E−2 e−x
2 | erf(x)|.

Since x ≥ 1, erf(x) ≤ 1 and erfc(x) ≥ e−x2

/(4x) ≥ e−x2

/(4 2E). This gives the result.

Results related to the implementation of Equation (3)

Lemma 12. The following inequality holds for any x ≥ 1:

|ε(3)
N (x)| ≤ e

−x2

x

(
N

ex2

)N
.
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Proof. The result is obtained from the bound given in Equation (4). The product 1·3 · · · (2N−
1) is equal to (2N)!/(2N N !). We conclude using the bounds given in Lemma 6.

Proposition 7. If N satisfies

N

ex2
log2

(
N

ex2

)
≤ −t

′ − 3

ex2

the remainder is bounded by erfc(x) 2−t
′−1.

Proof. We use the previous lemma and the inequality erfc(x) ≥ e−x2

/(4x) given in Lemma 9.

Recipe 5. The rule for computing N is the following: first, we compute a = (−t′ − 3)/ex2

choosing the rounding modes for obtaining a underestimation ad of a and then we choose N
according to the following recipe:

– if ad < − log2(e)/e, Equation (3) cannot be used;

– else let N0 ≥ (ex2) ad/ log2(−ad) and perform the following test:

– if N0 ≤ x2, let N = N0,

– else let N1 ≃ x2 and perform the following test:

– if
N1

ex2
log2

(
N1

ex2

)
≤ ad, let N = N1,

– else, Equation (3) cannot be used.

Of course the value − log2(e)/e is evaluated in such a way that we get an overestimation
of the actual value. Also, in the test N0 ≤ x2, the value x2 is replaced by an underestimation.

Proof. It is the same technique as in the proof of Recipe 1. Lemma 8 is used to invert the
equation of Proposition 7.

Proposition 8. If Algorithm 5 is used to compute an approximation Ŝ(x) of the sum S(x),
the following holds:

∣∣∣Ŝ(x)− S(x)
∣∣∣ ≤ γ16N

e−x
2

x
√
π
· 3

2
.

Proof. In this algorithm, ŷ = y 〈2〉, hence the binary exponentiation leads to

ẑ = z 〈3L− 1〉 .

Using the same technique as in the proof of Proposition 4, we get the bound

Ŝ(x) =
e−x

2

x
√
π
〈8N + 3〉+

N−1∑

n=1

(−1)n
e−x

2

x
√
π
· 1 · 3 · · · (2n− 1)

(2x2)n
〈8N + 3〉 .

We bound 〈8N + 3〉 by 〈16N〉 and thus obtain

∣∣∣Ŝ(x)− S(x)
∣∣∣ ≤ γ16N

e−x
2

x
√
π

(
1 +

N−1∑

n=1

1 · 3 · · · (2n− 1)

(2x2)n

)
.
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We now prove that

1 +
N−1∑

n=1

1 · 3 · · · (2n− 1)

(2x2)n
≤ 3

2
for N ≤ ⌊x2 + 1/2⌋.

Since N ≤ ⌊x2 + 1/2⌋, N ≤ x2 + 1. Moreover, the general term is decreasing. Hence, we can
write

N−1∑

n=1

1 · 3 · · · (2n− 1)

(2x2)n
≤ (N − 1)

1

2x2
≤ 1

2
.

Results related to the implementation of erf(x) by Equation (3)

Lemma 2. If x ≥ 1, the inequality |R− erfc(x)| ≤ 2−t
′−1 erfc(−x) holds when s is chosen

according to the following recipe:

s ≥ t′ + 2− E − x2 log2(e).

Proof. Since s ≥ t′+ 2−E− x2 log2(e), we have 2−s ≤ 2−t
′−1 2E−1 ex

2

. Moreover, we always
have 2E−1 ≤ x and by Lemma 9

erfc(x) ≤ e
−x2

x
√
π
≤ e
−x2

x
.

By definition, |R − erfc(x)| ≤ 2−s erfc(x), thus |R − erfc(x)| ≤ 2−t
′−1. We conclude by

remarking that erfc(−x) ≥ 1 since x ≥ 0.

Lemma 3. If x ≥ 1 the inequality |R− erfc(x)| ≤ 2−t
′−1 erf(x) holds when s is chosen

according to the following recipe:

s ≥ t′ + 3− E − x2 log2(e).

Proof. We proceed the same way as in the previous proof. Hence we get

|R− erfc(x)| ≤ 2−t
′−1 1

2
.

Since x ≥ 1, Lemma 9 indicates that erf(x) ≥ 1/2, which concludes the proof.


	1 Introduction
	2 General overview of the algorithms
	2.1 General scheme used for the evaluation in arbitrary precision
	2.2 Approximation formulas for `39`42`"613A``45`47`"603Aerf and `39`42`"613A``45`47`"603Aerfc
	2.3 Evaluation scheme
	2.3.1 Particular form of the sums
	2.3.2 Straightforward algorithm
	2.3.3 Concurrent Series Algorithm
	2.3.4 Stopping criterion in the concurrent series algorithm


	3 Error analysis
	4 Practical implementation
	4.1 General scheme
	4.2 Practical implementation of Equation (1)
	4.3 Practical implementation of Equation (2)
	4.4 Implementation of `39`42`"613A``45`47`"603Aerfc using Equation (1) or (2)
	4.5 Practical implementation of Equation (3)
	4.6 Implementation of `39`42`"613A``45`47`"603Aerf with Equation (3)

	5 Experimental results
	5.1 Choosing the best equation
	5.2 Comparison with other implementations

	6 Conclusion and perspectives

