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Abstract

The error function erf is a special function. It is widely used in statistical
computations for instance, where it is also known as the standard normal
cumulative probability. The complementary error function is defined as
erfc(x) = erf(x)− 1.
In this paper, the computation of erf(x) and erfc(x) in arbitrary precision
is detailed: our algorithms take as input a target precision t′ and deliver
approximate values of erf(x) or erfc(x) with a relative error bounded
by 2−t′ .
We study three different algorithms for evaluating erf and erfc. These
algorithms are completely detailed. In particular, the determination of
the order of truncation, the analysis of roundoff errors and the way of
choosing the working precision are presented.
We implemented the three algorithms and studied experimentally what
is the best algorithm to use in function of the point x and the target
precision t′.

Keywords: Error function, complementary error function, erf, erfc, floating-point
arithmetic, arbitrary precision, multiple precision

Résumé

La fonction d’erreur erf est une fonction spéciale. Elle est couramment
utilisée en statistiques par exemple. La fonction d’erreur complémentaire
est définie comme erfc(x) = erf(x)− 1.
Dans cet article, nous détaillons l’évaluation de erf(x) et erfc(x) en préci-
sion arbitraire : nos algorithmes prennent en entrée une précision cible t′

et fournissent en retour une valeur approchée de erf(x) ou erfc(x) avec
une erreur relative bornée par 2−t′ .
Nous étudions trois algorithmes différents pour évaluer erf et erfc. Ces
algorithmes sont expliqués en détails. En particulier, nous décrivons com-
ment déterminer l’ordre de troncature et la précision intermédiaire de
travail. De plus, nous fournissons une analyse rigoureuse des erreurs
d’arrondis.
Nous avons implémenté les trois algorithmes ; nous concluons par une
étude expérimentale qui montre quel algorithme est le plus rapide en
fonction du point x et de la précision cible t′.

Mots-clés: fonctions d’erreur, erf, erfc, arithmétique flottante, précision arbitraire,
multiprécision
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1 Introduction

The error function, generally denoted by erf is defined as

erf : x 7→ 2√
π

∫ x

0
e−v2

dv.

Sometimes, it is called the probability integral, in which case, erf denotes the integral itself
without the normalisation factor 2/

√
π [8]. The complementary error function denoted by

erfc is defined as erfc = 1 − erf. These two functions are defined and analytic on the whole
complex plane. Nevertheless we will consider them only on the real line herein.

These functions are important because they are encountered in many branches of applied
mathematics, in particular probability theory. Namely, if X is a gaussian random variable
with mean 0 and standard deviation 1/

√
2, the probability P (−x ≤ X ≤ x) is equal to erf(x)

(Figure 1). See [8] for instance for other applications.

Figure 1: erf(x) is the probability that a certain gaussian random variable lies in [−x, x]

In this article we describe the numerical implementation of erf and erfc in floating-point
arithmetic with arbitrary precision. Such an arbitrary precision implementation is useful in
several cases including:

• when highly accurate values of the functions are needed;

• for testing the quality of lower precision libraries;

• for building good approximating polynomials with a given accuracy.

A good overview of the applications of arbitrary precision is given in the introduction of [4].
We approximate the real numbers by floating-point numbers with arbitrary precision with

radix 2; more precisely: let t ∈ N⋆, the set of floating-point numbers with precision t is the
set

Ft = {0}∪
{
± m

2t
· 2e, e ∈ Z, m ∈ J2t−1, 2t − 1K

}
where J2t−1, 2t−1K = [2t−1, 2t−1]∩Z.

The integer e is called the exponent of the floating-point number. For practical reasons, it is
usually bounded in the implementation. However, in general, in multiple precision libraries,
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its range is extremely large (typically e ∈ [−232; 232]) and may be considered as practically
unbounded. We will assume in this paper that e is unbounded. The number m/2t is called
the mantissa and is more conveniently written as 0.1b2 . . . bt where b2, . . . , bt are the bits of
its binary representation. The mantissa lies in the interval [1/2, 1): this is the convention
used by the library MPFR and we will adopt it here. Note that the IEEE-754 standard takes
another convention and suppose that the mantissa lies in [1, 2).

Our goal is the following: given t and t′ in N⋆ and x ∈ Ft, compute a value y approximating
erf(x) with a relative error less than 2−t′ . More formally,

∃δ ∈ R, erf(x) = y(1 + δ) where |δ| ≤ 2−t′ .

Arbitrary precision floating-point arithmetic is already implemented in several software
tools and libraries. Let us cite Brent’s historical Fortran package MP [3], Bailey’s Arprec C++
library [2], the MPFR library [6], and the famous tools Mathematica and Maple. MPFR
provides correct rounding of the functions: four rounding-modes are provided (rounding up,
down, towards zeros, and to nearest) and the returned value y is the rounding of the exact
value erf(x) to the target precision t′. Other libraries and tools usually only ensure that the
relative error between y and the exact value is O(2−t′).

Remark that MPFR may not finish on some inputs. Assume for instance that rounding
downwards is used and that f is a function implemented in MPFR. Moreover, suppose that
there exist t and t′ and x ∈ Ft and y ∈ Ft′ such that y = f(x). Except if the case is known in
advance and managed separately this will lead to an infinite loop. Indeed, in general MPFR
uses Ziv’ strategy [10]: an intermediate precision t1 ≥ t′ is chosen and an approximation
y1 of f(x) is computed using working precision t1. Simultaneously, a bound ε1 is computed
such that y1 ∈ [f(x) − ε1, f(x) + ε1]. If f(x) − ε1 and f(x) + ε1 round to the same value
in precision t′, this value is to be returned. Otherwise, one cannot decide the value to be
returned. A new precision t2 > t1 is chosen, a new approximation y2 is computed, together
with a bound ε2. The test is performed again, etc. This process eventually stops if and only
if f(x) is not exactly representable with a finite number of bits. This is known as the Table
Maker’s Dilemma (TMD) and is illustrated in Figure 2.

(a) Rounding may not be decided (b) Rounding may be decided

Figure 2: Illustration of the Table Maker’s Dilemma with rounding downwards

For functions such as exp, sin, log, etc. the list of exact cases is known (namely, exp(0) = 1,
sin(0) = 0, log(1) = 0, etc.). For erf and erfc, 0 is an obvious exact case, but there is no proof
that other exact cases do not exist (though it is unlikely). On such unknown exact cases,
MPFR would run indefinitely.

This is why we chose to provide an implementation that guarantees that the relative error
is less than 2−t′ . This is a stronger condition than asking for the error to be O(2−t′) since it
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gives an explicit bound on the error. Unlike MPFR, our implementation is proven to finish
on all inputs.

The novelty of our work does not lie in the techniques used: we use classical formulas
for approximating erf and erfc, we implement a summation technique proposed by Smith
in 1989 [9] and we analyse the roundoff errors using classical techniques. The originality
comes from a careful study of each approximation method. We compare them in order to
have a very efficient final implementation. It may also be considered as a detailed example
than can be used as a general scheme for the implementation of other functions.

Section 2 of the paper is a general discussion about erf and erfc and the ways of computing
them with arbitrary precision. Section 3 is devoted to some reminders on classical techniques
required for performing the roundoff analysis. In Section 4 the algorithms are completely
described and the roundoff analysis is detailed. Our implementation is written in C and
built on top of MPFR. It is distributed under the GPL and freely available. Section 5 shows
which algorithm is the best in function of the point x and the target precision t′, based on
experimental results.

2 General overview of the algorithms

It is easy to see that erf is odd and increasing. Thus we restrict to computing erf(x) when
x > 0 without loss of generality. Except if it is explicitly mentioned, x will always be positive
in the following. Moreover, erf(0) = 0 and erf(x) approaches 1 as x → +∞. Thus for large
x, the binary representation of erf(x) looks like

0. 11 . . . 11︸ ︷︷ ︸
many 1s

b1b2b3 . . .

This is why, for large x, it is more convenient to consider the complementary error function
erfc(x) = 1− erf(x). The graphs of these two functions are represented in Figure 3.

(a) Graph of erf (b) Graph of erfc

Figure 3: Graphs of the functions erf and erfc

Among the formulas given in [1] we retain the following ones, suited for the computation
in arbitrary precision (Equations 7.1.5, 7.1.6, 7.1.23 and 7.1.24 of [1]):
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erf(x) =
2x√
π

+∞∑

n=0

(−1)n x2n

(2n + 1) · n!
, (1)

erf(x) =
2xe−x2

√
π

+∞∑

n=0

(2x2)n

1 · 3 · 5 · · · (2n + 1)
, (2)

erfc(x) =
e−x2

x
√

π

(
1 +

N−1∑

n=1

(−1)n · 1 · 3 · 5 · · · (2n− 1)

(2x2)n

)
+ ε

(3)
N (x) (3)

where |ε(3)
N (x)| ≤ e−x2

x
√

π
· 1 · 3 · 5 · · · (2N − 1)

(2x2)N
. (4)

Equation (1) is mostly interesting for small values of x. The series is alternating and the
remainder is thus bounded by the first neglected term. The ratio between two consecutive
terms is, roughly speaking, x2/n. Thus, if x < 1, both x2 and n contribute to reduce
the magnitude of the term and the convergence is really fast. For larger values of x, the
convergence is slower since only the division by n ensures that the term decreases. Though,
the main problem with large arguments is not the speed of the convergence.

The main drawback of (1) for large arguments comes from the fact that the series is
alternating: this implies cancellation of bits during the subtractions that occur in the com-
putation. This leads to an important loss of accuracy. Hence, the computations must be
performed with a much higher precision than the target precision. We will quantify this
phenomenon in Section 4.3: as we will see, as x increases, the use of Equation (1) becomes
quickly impractical.

Equation (2) does not exhibit the problem of cancellations. Its evaluation does not require
much more precision than the target precision. However, the convergence is a bit slower.
Besides, it requires to compute e−x2

(the complexity of computing it is somewhat the same
as computing erf itself).

Equation (3) gives a very efficient way of evaluating erfc and erf for large arguments.

However ε
(3)
N (x) cannot be made arbitrary small by increasing N (there is an optimal value

reached at ⌊x2 +1/2⌋). If erfc(x) is to be computed with a bigger precision, one has to switch
back to Equation (1) or (2).

2.1 Evaluation scheme

The three sums described above exhibit the same general structure: they are polynomials
or series (in the variable x2, 2x2 or 1/(2x2)) with coefficients given by a simple recurrence
involving multiplications or divisions by integers.

Note that these integers will fit in a 32-bit or 64-bit machine integer. It is well known [3]
that the multiplication (or division) of a t-bit floating-point number by a machine integer
can be performed in time O(t). This should be compared with the multiplication of two
t-bit floating-point numbers which is O(t log(t) log(log(t))) asymptotically (and only O(t2) in
practice for small precisions). Additions and subtractions of two t-bit floating-point numbers
are also done in time O(t). Hence the cost of an algorithm is generally mainly given by the
number of high-precision multiplications.
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We may take advantage of the structure of the sums involved here and reduce the numbers
of high precision multiplications. This technique has been described by Smith [9] as a con-
current series summation. Let us assume that we want to evaluate the following polynomial
in y:

S(y) = α0 + α0α1 · y + . . . + α0α1 · · ·αN−1 · yN−1. (5)

We suppose that αi (i = 0, . . . , N − 1) are small integers or inverse of integers. Hence,
a multiplication by one of the αi is fast. Let L be an integer parameter. For the sake of
simplicity, we will assume that N is a multiple of L. The general case is easy to deduce from
this particular case. Smith remarks that S(y) may be expressed as follows:

S(y) = 1 ·
(

α0 + α0 · · ·αL(yL) + . . . + α0 · · ·αN−L(yL)N/L−1
)

+ y ·
(

α0α1 + α0 · · ·αL+1(y
L) + . . . + α0 · · ·αN−L+1(y

L)N/L−1
)

+ . . .

+ yL−1 ·
(

α0 · · ·αL−1 + α0 · · ·α2L−1(y
L) + . . . + α0 · · ·αN−1(y

L)N/L−1
)
.

We denote by Si the sum between the parentheses of the i-th line of this array: thus

S(y) = S0 + S1 · y + · · ·+ SL−1 · yL−1.

The sums Si are computed concurrently: a variable is used to compute successively

α0, α0α1, . . . , α0 · · ·αL−1, α0 · · ·αL(yL), etc.

and the sums Si are accumulated accordingly. The power yL is computed once in the beginning
in time log(L). The multiplications (or divisions) involved are all multiplications by integers,
except the multiplications by yL that occur N/L− 1 times.

Finally, the polynomial S(y) = S0 +S1 · y + · · ·+SL−1 · yL−1 is evaluated by Horner’s rule
and requires L− 1 high-precision multiplications.

The complete algorithm requires N/L + L − 2 high-precision multiplications (and O(N)
additions and multiplications/divisions by small integers). The optimal value is obtained
with L ≃

√
N . The total cost is then approximately 2

√
N slow multiplications whereas a

straightforward evaluation would lead to approximately N slow multiplications. Note that
this method requires extra space to store the values Si until they are used in the final Horner
evaluation (Lt bits are needed). The algorithm is summed up in Figure Algorithm 1.

Let us do a final remark about this algorithm: consider the value of the variable acc just
after the line 6 of the algorithm was performed. Note that k = ⌊k/L⌋L + i. The variable
acc is an approximation to α0 · · ·αk(y

L)⌊k/L⌋. Therefore (acc · yi) is an approximation to
the coefficient of order k of the polynomial S(y). This means that N does not really need
to be known precisely in advance: a test of the form sum the terms until finding one whose
absolute value is smaller than a given bound can be used. Of course, (acc · yi) is only an
approximation of the actual coefficient. If we are not careful enough, we might underestimate
the absolute value and stop the summation too soon. Hence, the rounding mode should be
chosen carefully when updating acc, in order to be sure to always get an upper-estimation of
the absolute value.

3 Error analysis

Since the operations in Algorithm 1 are performed with floating-point arithmetic, they
are not exact and roundoff errors must be taken into account. We have to choose carefully
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Input: y, L, N, t

Output: the sum S(y) of Equation (5)
/* each operation is performed in precision t */

z← power(y, L) ; /* obtained by binary exponentiation */1

S← [0, . . . , 0] ; /* array of L floating-point numbers */2

acc← 1 ;3

i← 0 ; /* indicates the Si currently updated */4

for k← 0 to N− 1 do5

acc← acc ∗ αk ;6

S[i]← S[i] + acc ;7

if i = L− 1 then8

i← 0 ;9

acc← acc ∗ z ;10

else11

i← i + 1 ;12

end13

end14

/* now S(y) is evaluated from the Si by Horner’s rule */

R← S[L− 1] ;15

for i← L− 2 downto 0 do16

R← S[i] + y ∗ R ;17

end18

return R;19

Algorithm 1: ConcurrentSeries()
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the precision t that is used for the computations in order to keep the roundoff errors small
enough. Techniques make it possible to bound such roundoff errors rigorously. In his book
Accuracy and Stability of Numerical Algorithms [7], Higham explains in great details what
should be known in this domain. We recall a few facts here.

Definition 1. If x ∈ R, we denote by ⋄(x) a rounding of x (i.e. x itself if x is a floating-point
number and one of the two floating-point numbers enclosing x otherwise).

If t denotes the current precision, the quantity u = 21−t is called the unit roundoff.
We will use the convenient notation z = z′ 〈k〉 for meaning that

∃δ1, . . . , δk ∈ R, s1, . . . , sk ∈ {−1, 1}, such that z = z′ ·
k∏

i=1

(1 + δi)
si with |δi| ≤ u.

Remark that for any k and k′ such that k′ ≥ k, if we can write z′ = z 〈k〉, we can also write
z′ = z 〈k′〉.

This notation corresponds to the accumulation of k successive relative errors. The follow-
ing proposition justifies it.

Proposition 1. For any x ∈ R, there exists δ ∈ R, |δ| ≤ u such that ⋄(x) = x · (1 + δ). If ⊕
denotes the correctly rounded addition, the following holds:

∀(x, y) ∈ R2, x⊕ y = ⋄(x + y) = (x + y)(1 + δ) for a given |δ| ≤ u.

The same holds for the other correctly rounded operations ⊖, ⊗, ⊘, etc.

Let us do a complete analysis on a simple example. Consider a, b, c, d, e f six floating-
point numbers. We want to compute S = a · b + c · d · e + f . In practice, we may compute
for instance Ŝ = ((a ⊗ b) ⊕ ((c ⊗ d) ⊗ e)) ⊕ f . We can analyse the roundoff errors with the
following simple argument:

Ŝ =
(
(a⊗ b) ⊕ ((c⊗ d)⊗ e)

)
⊕ f

=
(
(ab) 〈1〉 ⊕ (cde) 〈2〉

)
⊕ f

=
(
(ab) 〈2〉 ⊕ (cde) 〈2〉

)
⊕ f

=
(
(ab) 〈2〉 + (cde) 〈2〉

)
〈1〉 ⊕ f

=
(
(ab) 〈3〉 + (cde) 〈3〉

)
⊕ f

= (ab) 〈4〉 + (cde) 〈4〉 + f 〈4〉 .

We now need another proposition:

Proposition 2. Let z ∈ R and let z′ be a floating-point number. We suppose that k ∈ N

satisfies ku < 1 and that we can write z′ = z 〈k〉. Then

∃θk ∈ R, such that z′ = z(1 + θk) with |θk| ≤ γk =
ku

1− ku
.

In particular, as soon as ku ≤ 1/2, γk ≤ 2ku.

Using this proposition, we can write Ŝ = (a · b)(1 + θ4) + (c · d · e)(1 + θ′4) + f(1 + θ′′4).
Finally, we get ∣∣∣Ŝ − S

∣∣∣ ≤ γ4 · (|a · b|+ |c · d · e|+ |f |) .
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Note the importance of S̃ = |a·b|+|c·d·e|+|f |. If the terms of the sum are all nonnegative,
S = S̃ and the relative error for the computation of the sum is bounded by γ4. If some terms
are negative, the relative error is bounded by γ4S̃/S. The ratio S̃/S may be extremely large:
this corresponds to the phenomenon of catastrophic cancellations [5], when terms of the sum
cancel with each other while the errors accumulate.

4 Practical implementation

4.1 General scheme

The implementation of the three formulas will follow the same general scheme. The inputs
are the point x ∈ R where erf or erfc must be evaluated and the target relative error t′.

Whatever the formula we use, we have to truncate the sum at a certain order N − 1.
Hence, we will have two errors of different natures:

• the approximation error: it comes from the fact that we ignore the remainder of the

series (Equation (3) is not actually a series but ε
(3)
N (x) plays the role of a remainder);

• the roundoff error: it comes from the accumulation of errors when using floating-point
arithmetic for the evaluation of the finite sum.

The final relative error must be smaller that 2−t′ , that is to say that the absolute error
must be smaller than 2−t′ ·erf(x) (or 2−t′ ·erfc(x) for erfc). We split it into two equal parts and
choose the truncation rank N and the working precision t in such a way that both absolute
approximation error and roundoff error are smaller than 2−t′−1 · erf(x) (or 2−t′−1 · erfc(x)).

The approximation error is controlled by the truncation rank. Assume that we know an
upper-bound εN on the remainder and a positive lower bound f(x) of erf(x) (or erfc(x)). It
is sufficient to find N such that εN ≤ 2−t′−1 · f(x).

In a first step, we invert this formula and obtain a rough upper-estimation of N . This
estimation does not need to be very accurate: we will use it to choose the parameter L of
Algorithm 1 and to choose the working precision. When running Algorithm 1, we will loop
over k until εk ≤ 2−t′−1 · f(x) (εk will be easily expressed with the coefficient of order k of
the series). This way, we will sum approximately the optimal number N⋆ of terms.

Suppose for instance that N is an upper-estimation of N⋆ by a factor 4. By choosing
L ≃

√
N =

√
4N⋆ we will eventually perform N⋆/L + L ≃ 5

√
N⋆/2 slow multiplications,

which is not so far from the optimal. As we will see, only the logarithm of N is useful for
choosing the working precision t. Hence, an upper-estimation by a factor 4 will only lead to
use 2 extra bits, which is insignificant.

In a second time, we perform an error analysis of the algorithm (similar to the example
presented in Section 3) and get a bound on the final roundoff error. It will typically be of the
form

|S − Ŝ| ≤ γaN S̃

where a is an integer (the order of magnitude of a is 1 to 10 approximately), S is the exact
sum, Ŝ is the computed value and S̃ is the sum of the absolute values. Therefore it is sufficient
to choose t such that (2aN)21−t · S̃ ≤ 2−t′−1 · f(x) or equivalently

t ≥ t′ + 3 + log2(a) + log2(N) + log2(S̃)− log2(f(x)).
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4.2 Important technical results

Before giving the details of the implementation of Equations (1), (2) and (3), we need a
few technical lemmas.

Lemma 1 (Propagation of errors through a square root). Let k ∈ N⋆, z and z′ two numbers
such that we can write z′ = z 〈k〉. Then we can write

√
z′ =

√
z 〈k〉.

Proof. Left to the reader.

Lemma 2 (Propagation of errors through exp). Let z ∈ R. We denote by E its exponent:
2E−1 ≤ z < 2E. Let t be a precision. We note y = z2 and we suppose that ŷ = ⋄(z2), the
operation being performed with a precision larger than t + 2E. Then

e−by = e−z2

(1 + δ)s where |δ| ≤ 21−t and s ∈ {−1, 1}.

In other words, we can write e−by = e−z2 〈1〉 in precision t.

Proof. Left to the reader.

For bounding the remainder of the series, we will need to approximate n!. We use the
following estimations:

Lemma 3 (Rough estimation of n!). The following inequalities hold for all n ≥ 1:

√
2πn

(n

e

)n
≤ n! ≤ e

√
n
(n

e

)n
.

Proof. Consider the sequence defined for n ≥ 1 by

un =

√
2πn(n/e)n

n!
.

We show that this sequence is increasing by considering un+1/un. It is well known (Stirling
formula) that un → 1 as n → +∞. Therefore, for all n ≥ 1, u1 ≤ un ≤ 1. This gives the
result.

The rough estimation of N will be obtained by inverting a certain relation. This relation
involves the function v 7→ v log2(v). The following lemmas gives an estimation of the inverse
of this function.

Lemma 4 (Inverse of v log2(v)). The function v 7→ v log2(v) is increasing for v ≥ 1/e. We
denote by ϕ its inverse: ϕ : w 7→ ϕ(w) defined for w ≥ − log2(e)/e and such that for all w,
ϕ(w) log2(ϕ(w)) = w. The function ϕ is increasing.

The following inequalities hold:

if w ∈ [− log2(e)/e, 0], 2ew ≤ ϕ(w) ≤ 2w ;

if w ∈ [0, 2], 2w/2 ≤ ϕ(w) ≤ 21/4 · 2w/2 ;
if w ≥ 2, w/ log2(w) ≤ ϕ(w) ≤ 2w/ log2(w).
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Proof. Showing that v 7→ v log2(v) is increasing for v ≥ 1/e is easy and left to the reader. We
only prove the second inequality. The others are proven using the same technique.

We denote ϕ(w) by v for convenience. If w ∈ [0, 2], it is easy to see that v ∈ [1, 2]. Now,
since log2(v) = w/v, we get w/2 ≤ log2(v) ≤ w. Therefore

2w/2 ≤ v ≤ 2w, (6)

which gives the lower bound.
We can refine this identity: using again that log2(v) = w/v, we get

w

2w
≤ log2(v) ≤ w

2w/2
and thus v ≤ 2(w·2−w/2).

For finishing the proof, we only need to show that for any w ∈ [0, 2], w ·2−w/2 ≤ 1/4+w/2.
The Taylor expansion of 2−w/2 is

2−w/2 =
+∞∑

n=0

(−1)n (w ln(2))n

2n · n!
.

The series is alternating with a decreasing general term when w ∈ [0, 2]. Hence

2−w/2 ≤ 1− w ln(2)

2
+

w2 ln(2)2

8
.

From this inequation, we deduce w · 2−w/2 − w/2 ≤ 4/(27 ln(2)) ≃ 0.2137 . . . . It finishes the
proof.
Remark: the last inequality is proved using v ≤ v log2(v) ≤ v2 for v ≥ 2. We rewrite it√

w ≤ v ≤ w and then we apply the same technique.

Figure 4: Graph of the function v 7→ v log2(v).

Lemma 5 (Inverse of v log2(v), the other branch). The function v 7→ v log2(v) is decreasing
for 0 ≤ v ≤ 1/e. We denote by ϕ2 its inverse: ϕ2 : w 7→ ϕ2(w) such that ϕ2(w) log2(ϕ2(w)) =
w. The value ϕ2(w) is defined for − log2(e)/e ≤ w ≤ 0 and is decreasing.

The following inequalities give an estimate of ϕ2(w):

∀w ∈
[
− log2(e)

e
, 0

)
,

1

3
· w

log2(−w)
≤ ϕ2(w) ≤ w

log2(−w)
.
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Proof. Showing that v 7→ v log2(v) is decreasing for v ∈ [0, 1/e] is easy and left to the reader.
We will use the following notations that are more convenient:

ω = 1/(−w),
ν = 1/ϕ2(w).

Hence ω ≥ e/ log2(e) and ν ≥ e. Moreover, by hypothesis, ν/ log2(ν) = ω. It is easy to show
that for any ν ≥ e,

ν1/3 ≤ ν

log2(ν)
≤ ν.

Therefore, ω ≤ ν ≤ ω3 and thus log2(ω) ≤ log2(ν) ≤ 3 · log2(ω). We conclude by using
ν = ω · log2(ν).

(a) Graph of ϕ and its bounds (b) Graph of ϕ2 and its bounds

Figure 5: Illustration of Lemmas 4 and 5

When bounding relative errors, we need to estimate the values of erf(x) and erfc(x). The
next lemma gives such estimates.

Lemma 6. The following inequalities hold:

if 0 < x < 1, x/2 ≤ erf(x) ≤ 2x,
1/8 ≤ erfc(x) ≤ 1;

if x ≥ 1, 1/2 ≤ erf(x) ≤ 1,

e−x2

/(4x) ≤ erfc(x) ≤ e−x2

/(x
√

π).

Proof. When 0 < x < 1, the series given in Equation (1) is alternating with a decreasing
general term. Hence

2x√
π
·
(

1− x2

3

)
≤ erf(x) ≤ 2x√

π
.

The inequalities for erf(x) are easily obtained from it.
Since erfc is decreasing, erfc(1) ≤ erfc(x) ≤ erfc(0) = 1. Taking one more term in the

series of erf(x), we get

erf(x) ≤ 2x√
π
·
(

1− x2

3
+

x4

10

)
.
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Applying it at x = 1, we get erfc(1) = 1− erf(1) ≥ 1/8.
When x > 1, since erf is increasing and goes to 1 as x→ +∞, we have erf(1) ≤ erf(x) ≤ 1.

This gives the inequalities for erf(x).
We now prove the last two inequalities of the lemma. By definition,

erfc(x) =
2√
π

∫ +∞

x
e−v2

dv

=
2√
π

∫ +∞

x

−2v · e−v2

−2v
dv

=
2√
π
·
(

e−x2

2x
−
∫ +∞

x

e−v2

2v2
dv

)
.

This gives the upper-bound. For the lower-bound, we use the change of variable v ← v + x:

∫ +∞

x

e−v2

2v2
dv =

∫ +∞

0

e−x2−2vx−v2

2(v + x)2
dv.

Since (v + x)2 ≥ x2 and −x2 ≤ 0,

∫ +∞

0

e−x2−2vx−v2

2(v + x)2
dv ≤ e−x2

2x2
·
∫ +∞

0
e−2vx dv =

e−x2

4x3
.

Therefore,

erfc(x) ≥ e−x2

x
√

π
·
(

1− 1

2x2

)

≥ e−x2

x · 2√π
since x ≥ 1.

We conclude by remarking that 2
√

π ≃ 3.544 ≤ 4.

4.3 Practical implementation of Equation (1)

Here, we assume that Equation (1) is used to obtain an approximate value of erf(x) (as
before, we suppose x > 0):

erf(x) =
2x√
π

(
N−1∑

n=0

(−1)n (x2)n

(2n + 1)n!

)
+ ε

(1)
N (x)

where ε
(1)
N (x) is the remainder.

We first express a relation that ensures that ε
(1)
N (x) is smaller than 2−t′−1·erf(x) (remember

that t′ is the target precision, given as an input).

Proposition 3. Let E be the exponent of x. If N satisfies

N

ex2
log2

(
N

ex2

)
≥ t′ + max(0, E)

ex2
,

the remainder is bounded by erf(x) · 2−t′−1.
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Proof. Remark first that for N ≥ 1,

2√
π
· 1

(2N + 1)
√

2πN
≤ 1

4
. (7)

We distinguish the cases when x < 1 and when x ≥ 1:

• if x < 1, E ≤ 0 and erf(x) is greater than x/2. The hypothesis becomes (ex2/N)N ≤ 2−t′

and thus
x2N+1

2
·
( e

N

)N
≤ 2−t′ · erf(x). (8)

• if x ≥ 1, E > 0 and erf(x) is greater than 1/2. The hypothesis becomes (ex2/N)N ≤
2−t′−E and thus

x2N

2
·
( e

N

)N
≤ 2−t′−E · erf(x).

Since x < 2E we obtain Inequality (8) again.

From Inequalities (7) and (8) we deduce that

2√
π
· x2N+1

2N + 1
·
( e

N

)N
· 1√

2πN
≤ 2−t′−1 · erf(x).

Using Lemma 3, we get

2√
π
· x2N+1

(2N + 1)N !
≤ 2−t′−1 · erf(x).

Remark that the left term of the inequality is the absolute value of the general term of the
series. Since it is smaller than 2−t′−1 · erf(x), it is in particular smaller than 1/2. Since the
series is alternating, we can bound the remainder by the absolute value of the first neglected
term as soon as the term decreases in absolute value.

In our case, the absolute value of the general term may begin by increasing before to
decrease. But when it increases, it is always greater than 1. Therefore, since here it is smaller

than 1/2, we are in the decreasing phase and we can write ε
(1)
N (x) ≤ 2−t′−1 · erf(x).

We use this proposition and Lemma 4 for obtaining an upper-estimation of N . We first
evaluate a = (t′ + max(0, E))/(ex2). In fact, the evaluation is performed twice, choosing
carefully the rounding modes in such a way that one gets both an under-estimation ad and
an upper-estimation au of a: ad ≤ a ≤ au. Then we choose N using this recipe.

If au ≥ 2, N ≥ 2(t′ + max(0, E))/ log2(ad)

If au ∈ [0, 2], N ≥ ex2 21/4 2au/2

These formulas are evaluated with appropriate rounding modes, in order to ensure that
N is really greater than the actual value.

Then, we need to choose a working precision t. This precision depends on the errors that
will be accumulated during the evaluation. So, we first sketch the details of the evaluation.

We compute

S(x) =
N−1∑

n=0

(−1)n 2√
π
· x2n+1

(2n + 1) · n!
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using Algorithm 1 with parameters y = x2, α0 = 2x/
√

π and for k ≥ 1, αk =
−1

k
· 2k − 1

2k + 1
. In

the following, the variables acc, tmp, i, k, etc. are the variables introduced in Algorithm 1 on
page 6.

In practice, we do not compute the ratio (2k − 1)/(2k + 1). We use the variable acc to
compute (yL)⌊k/L⌋/k! and we use a temporary variable tmp for the division by 2k + 1. Si is
updated by alternatively adding or subtracting tmp (instead of acc).

In the beginning, y = x2 and z = yL are computed with rounding upwards. When
computing α0, the rounding modes are chosen in such a way that the computed value is
greater than the exact value 2x/

√
π. The variables acc and tmp are also updated with rounding

upwards. Hence, the following always holds:

yi · tmp ≥ 2√
π
· x2k+1

(2k + 1)k!
.

Let F be the exponent of y: y < 2F . Using the fact that erf(x) ≥ x/2 when x < 1 and
erf(x) ≥ 1/2 when x ≥ 1, it is easy to show that we can stop the loop as soon as

k ≥ N or tmp · 2Fi < 2−t′+min(E−1, 0)−2.

The complete algorithm is summed up in Figure Algorithm 2.

The roundoff errors are bounded using the following proposition.

Proposition 4. If Algorithm 2 is used to compute an approximation Ŝ(x) of the sum S(x),
the following holds:

Ŝ(x) =
N−1∑

n=0

(−1)n 2x√
π
· x2n

(2n + 1) · n!
〈8N〉 .

Thus
∣∣∣Ŝ(x)− S(x)

∣∣∣ ≤ γ8N

(
2x√
π

N−1∑

n=0

x2n

(2n + 1) · n!

)
≤ γ8N

2√
π

∫ x

0
ev2

dv.

The bound γ8N could be made tighter. However, we cannot hope a better value than γN

since we do O(N) operations. As we will see, only the logarithm of this value will be of interest
for choosing the working precision t. By working more carefully, we would not get more than
replacing log(8N) by log(N) and it would not be of any practical benefit.

Proof. For proving this result, we use the same techniques as those presented in the example
of Section 3. The main arguments are the following.

• Line 1 of the algorithm leads to one error;

• Line 4 is obtained by binary exponentiation: by counting the number of multiplications,
it is easy to show that ẑ = z 〈2L− 1〉;

• Line 6 involves an approximation of π (π̂ = π 〈1〉) and a square root. Using Lemma 1
we get acc = ⋄(

√
π̂) = ⋄(√π 〈1〉) =

√
π 〈2〉;

• Line 7 involves a division (the multiplication by 2 is exact);
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Input: a floating-point number x,
the working precision t,
the target precision t’,
L ∈ N⋆, N ∈ N⋆.

Output: an approximation of erf(x) with relative error less than 2−t′−1 obtained
using Equation (1)

/* each operation is performed in precision t */

y← x ∗ x ; // rounded upwards1

F← exponent(y) ;2

if x < 1 then G← exponent(x)− 1 else G← 0 ;3

z← power(y, L) ; // computed with rounding upwards4

S← [0, . . . , 0] ;5

acc← √π ; // rounded downwards6

acc← 2 ∗ x/acc ; // rounded upwards7

i← 0 ;8

k← 0 ;9

tmp← acc ;10

repeat11

if (k mod 2) = 0 then S[i]← S[i] + tmp else S[i]← S[i]− tmp ;12

k← k + 1;13

if i = L− 1 then14

i← 0 ;15

acc← acc ∗ z ; // rounded upwards16

else17

i← i + 1 ;18

end19

acc← acc/k ; // rounded upwards20

tmp← acc/(2 ∗ k + 1) ; // rounded upwards21

until k = N or exponent(tmp) < G− t’− 2− F ∗ i ;22

/* now S(y) is evaluated from the Si by Horner’s rule */

R← S[L− 1] ;23

for i← L− 2 downto 0 do24

R← S[i] + y ∗ R ;25

end26

return R;27

Algorithm 2: erfByEquation1()
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• acc is updated at lines 16 and 20 of the algorithm. At line 16, it accumulates 2L errors
(2L − 1 due to z and one due to the multiplication itself). At line 20, it accumulates
one error. It is hence easy to show that we can always write

âcc = acc 〈 3︸︷︷︸
initialization

+ N︸︷︷︸
line 20 occurs at most N times

+ 2L⌊N/L⌋︸ ︷︷ ︸
line 16 occurs at most ⌊N/L⌋ times

〉.

We simplify it in âcc = acc 〈3 + 3N〉;

• We can always write t̂mp = tmp 〈4 + 3N〉 since tmp is obtained from acc by one division
(2k + 1 is computed exactly in integer arithmetic);

• Eventually, S[i] is obtained by less than N additions using variable tmp which allows
to write

Si = tmpi 〈4N + 4〉+ tmpi+L 〈4N + 4〉+ · · ·+ tmpi+N−L 〈4N + 4〉

where tmpk denotes the value of variable tmp at step k of the algorithm;

• The evaluation by Horner’s rule at line 25 accumulates 3 more errors per step (one comes
from the fact that y = x2 〈1〉, one comes from the multiplication and one comes from
the addition). Therefore, during the complete loop, 3(L−1) errors are accumulated per
term of the sum. We bound it by 3N − 3 and finally get the result with 〈7N + 1〉. We
bound it by 〈8N〉.

We just need to see how to choose the working precision t and we will be done. We
estimate it with the following lemma.

Lemma 7. The following inequalities hold:

if 0 < x < 1, x ≤
∫ x

0
ev2

dv ≤ 2x;

if x ≥ 1,
1

e2
· e

x2

x
≤

∫ x

0
ev2

dv ≤ ex2

x
.

Proof. For the first inequality, the lower-bound is obtained by replacing ev2

by 1 in the integral.
The upper bound is obtained by replacing ev2

by e0.552

on [0, 0.55] and by e on [0.55, 1].

For the second inequality, the upper bound is obtained by replacing ev2

by evx in the
integral. The lower bound is obtained by considering the integral restricted to the interval
[x− 1/x, x].

Finally, an appropriate working precision t is given by the following recipe (remember
that E is the exponent of x).

t ≥ t′ + 9 + ⌈log2 N⌉ when x < 1

t ≥ t′ + 9 + ⌈log2 N⌉ − E + x2 log2(e) when x ≥ 1
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Proof. We show the result for the first inequality. The second one is obtained the same way.
We suppose that 0 < x < 1 and t ≥ t′ + 9 + ⌈log2 N⌉. Thus

2−t+8 ·N ≤ 2−t′−1.

Using the fact that γ8N ≤ 16Nu (Proposition 2), we get

2γ8N (2x) ≤ 2−t′−1 · x
2
.

We conclude by using (x/2) ≤ erf(x) (Lemma 6), (2/
√

π) ≤ 2 and

∫ x

0
ev2

dv ≤ 2x (Lemma 7).

In practice log2(e) is replaced by a value precomputed with rounding upwards. The factor
x2 log2(e) that appears when x > 1 highlights the fact that the series is ill-conditioned for
large values of x.

4.4 Practical implementation of Equation (2)

Here, we assume that Equation (2) is used to obtain an approximate value of erf(x):

erf(x) =
2xe−x2

√
π

(
N−1∑

n=0

(2x2)n

1 · 3 · 5 · · · (2n + 1)

)
+ ε

(2)
N (x)

where ε
(2)
N (x) is the remainder.

We follow the same method as for Equation (1). The first thing we need is a way of
bounding the remainder. This is achieved by the following lemma.

Lemma 8. If N ≥ 2x2, the following inequality holds:

ε
(2)
N (x) ≤ 2 · 2xe−x2

√
π
· (2x2)n

1 · 3 · · · (2N + 1)
.

Proof. By definition,

ε
(2)
N (x) =

2xe−x2

√
π
·

+∞∑

n=N

(2x2)n

1 · 3 · · · (2n + 1)

=
2xe−x2

√
π
· . (2x2)N

1 · 3 · · · (2N + 1)

(
1 +

2x2

2N + 3
+

(2x2)2

(2N + 3)(2N + 5)
+ · · ·

)
.

We bound it by the geometric series with a common ratio of (2x2)/(2N + 3) and a first term
equal to 1:

ε
(2)
N (x) ≤ 2xe−x2

√
π
· . (2x2)N

1 · 3 · · · (2N + 1)

(
1 +

2x2

2N + 3
+

(2x2)2

(2N + 3)(2N + 3)
+ · · ·

)

Since N ≥ 2x2, (2x2)/(2N + 3) ≤ 1/2 and the sum of the series is bounded by 2.

The relation between N and t′ is given by the following proposition.
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Proposition 5. Let E be the exponent of x. If N satisfies N ≥ 2x2 and

N

ex2
log2

(
N

ex2

)
≥ t′ + 3 + max(0, E)− x2 log2(e)

ex2

the remainder is bounded by erf(x) · 2−t′−1.

Proof. We use the same kind of arguments as for Proposition 3. The product 1 ·3 · · · (2N +1)
is equal to (2N + 1)!/(2N ·N !). This lets us write

∣∣∣ε(2)
N (x)

∣∣∣ ≤ 4 · xe−x2

√
π
· (2x2)N ·N ! · 2N

(2N + 1)!
≤ 4 · xe−x2

√
π
· (2x2)N ·N ! · 2N

(2N)!
.

We conclude using Lemmas 3 and 6.

We first evaluate b = t′+3+max(0, E)−x2 log2(e). As in previous section, the evaluation
is performed twice, choosing carefully the rounding modes for getting an under-estimation bd

and an upper-estimation bu of the actual value b. The formula a = b/ex2 is evaluated the
same way: hence ad ≤ a ≤ au. We deduce the formulas for computing an upper-estimation
of N :

If au ≥ 2, N ≥ 2bu/ log2(ad)

If au ∈ [0, 2], N ≥ ex2 21/4 2au/2

Otherwise, N ≥ ex2 2au

The third case may lead to a value N that is smaller than 2x2. In this case, we take N = ⌈2x2⌉,
for ensuring our hypothesis.

We compute

S(x) =
N−1∑

n=0

2xe−x2

√
π
· (2x2)n

1 · 3 · · · (2n + 1)

using Algorithm 1 with parameters y = 2x2, α0 = 2xe−x2

/
√

π and for k ≥ 1, αk = 1/(2k+1).
As in the implementation of Equation (1), we use upward roundings and a test for stopping
the loop as soon as possible. In this case, the criterion becomes

k ≥ N or
(
k ≥ 2x2 and acc · 2Fi < 2−t′+min(E−1, 0)−3

)
.

The complete algorithm is summed up in Figure Algorithm 3.

The roundoff errors are bounded using the following proposition.

Proposition 6. If Algorithm 3 is used to compute an approximation Ŝ(x) of the sum S(x),
the following holds:

Ŝ(x) =

N−1∑

n=0

2xe−x2

√
π
· (2x2)n

1 · 3 · · · (2n + 1)
〈16N〉 .

Thus ∣∣∣Ŝ(x)− S(x)
∣∣∣ ≤ γ16N · S(x) ≤ γ16N · erf(x).
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Input: a floating-point number x,
the working precision t,
the target precision t’,
L ∈ N⋆, N ∈ N⋆.

Output: an approximation of erf(x) with relative error less than 2−t′−1 obtained
using Equation (2)

/* each operation is performed in precision t */

y← 2 ∗ x ∗ x ; // rounded upwards1

E← exponent(x) ;2

F← exponent(y) ;3

if x < 1 then G← E− 1 else G← 0 ;4

z← power(y, L) ; // computed with rounding upwards5

S← [0, . . . , 0] ;6

acc← √π ; // rounded downwards7

acc← 2 ∗ x/acc ; // rounded upwards8

tmp← x ∗ x ; // performed in precision t + max(2 · E, 0), rounded downwards9

tmp← exp(−tmp) ; // rounded upwards10

acc← acc ∗ tmp ; // rounded upwards11

i← 0 ;12

k← 0 ;13

repeat14

S[i]← S[i] + acc ;15

k← k + 1;16

if i = L− 1 then17

i← 0 ;18

acc← acc ∗ z ; // rounded upwards19

else20

i← i + 1 ;21

end22

acc← acc/(2 ∗ k + 1) ; // rounded upwards23

until k = N or ((k ≥ y) and (exponent(acc) < G− t’− 3− F ∗ i)) ;24

/* now S(y) is evaluated from the Si by Horner’s rule */

R← S[L− 1] ;25

for i← L− 2 downto 0 do26

R← S[i] + y ∗ R ;27

end28

return R;29

Algorithm 3: erfByEquation2()
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Proof. In fact, using the same techniques as in Proposition 4, one proves that

Ŝ(x) =
N−1∑

n=0

2xe−x2

√
π
· (2x2)n

1 · 3 · · · (2n + 1)
〈7N + 3〉 .

We bound it by 〈16N〉 because it is more convenient to use powers of 2.
Note that at line 9 of the algorithm, x2 is computed in precision t + max(2E, 0). Using

Lemma 2, it allows for writing α̂0 = α0 〈6〉.

Finally, an appropriate precision t is given by the following recipe:

t ≥ t′ + 7 + ⌈log2 N⌉

4.5 Implementation of erfc using Equation (1) or (2)

In this section, we do not suppose that x > 0 anymore.
Since erfc(x) = 1−erf(x), we can use the previous algorithms for evaluating erfc. However,

we have to take care of two things:

• firstly, the approximation of erf(x) should be computed with an appropriate relative
error 2−s. Since erf(x) and erfc(x) do not have the same order of magnitude, 2−s has
no reason to be the same as the target relative error 2−t′ ;

• secondly, contrary to erf, erfc is not odd (nor even). In particular, erfc(−x) and erfc(x)
do not have the same order of magnitude and this should be considered when estimating
the relative error.

We evaluate erfc(x) in two steps: first we compute an approximation R of erf(x) with
a relative error less than a certain bound 2−s (this is performed by one of the previous
algorithms). Then, we compute 1⊖R with precision t′ + 3.

Lemma 9. If s is chosen according to the following recipe, |R− erf(x)| ≤ 2−t′−1 · erfc(x).

s ≥ t′ + 1 when x ≤ −1

s ≥ t′ + 2 + E when − 1 < x < 0

s ≥ t′ + 5 + E when 0 ≤ x < 1

s ≥ t′ + 3 + E + x2 log2(e) when x ≥ 1

Proof.
First case.

We suppose x ≤ −1 and s ≥ t′ + 1. From the hypotheses we get

∣∣R− erf(x)
∣∣ ≤ 2−s · | erf(x)| ≤ 2−t′−1 · | erf(x)|.

Since x < 0, erfc(x) ≥ 1. Moreover, | erf(x)| ≤ 1. This gives the result.

Second case.

We suppose −1 < x < 0 and s ≥ t′ + 2 + E. From the hypotheses we get

∣∣R− erf(x)
∣∣ ≤ 2−s · | erf(x)| ≤ 2−t′−1 · 2−E−1 · | erf(x)|.
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Since x < 0, erfc(x) ≥ 1. Moreover, | erf(x)| = erf(|x|) ≤ 2|x| ≤ 2E+1. This gives the result.

Third case.

It is the same as the second case but using erfc(x) ≥ 1/8.

Fourth case.

Here x ≥ 1 and s ≥ t′ + 3 + E + x2 log2(e). Hence

∣∣R− erf(x)
∣∣ ≤ 2−s · erf(x) ≤ 2−t′−1 · 2−E−2 · e−x2 · | erf(x)|.

Since x ≥ 1, erf(x) ≤ 1 and erfc(x) ≥ e−x2

/(4x) ≥ e−x2

/(4 · 2E). This gives the result.

As a consequence of the lemma,

|(1−R)− erfc(x)| ≤ 2−t′−1 · erfc(x).

It follows that |(1−R)| ≤ 2 erfc(x). Now, since (1⊖R) = (1−R) 〈1〉,
∣∣(1⊖R)− (1−R)

∣∣ ≤ |(1−R)| · 21−(t′+3) ≤ 2−t′−1 · erfc(x).

Finally
∣∣(1 ⊖ R) − erfc(x)

∣∣ ≤
∣∣(1 ⊖ R) − (1 − R)

∣∣ +
∣∣(1 − R) − erfc(x)

∣∣ ≤ 2−t′ erfc(x) which

proves that (1⊖R) is an approximation of erfc(x) with a relative error bounded by 2−t′ .

4.6 Practical implementation of Equation (3)

Here, we assume that Equation (3) is used to obtain an approximate value of erfc(x) (we
suppose again that x > 0):

erfc(x) =
e−x2

x
√

π

(
1 +

N−1∑

n=1

(−1)n · 1 · 3 · 5 · · · (2n− 1)

(2x2)n

)
+ ε

(3)
N (x)

where ε
(3)
N (x) is the remainder, bounded thanks to Inequality (4).

The particularity of this formula comes from the fact that the remainder cannot be made

arbitrarily small. In fact, x being given, ε
(3)
N (x) is first decreasing until it reaches an optimal

value with N = ⌊x2 +1/2⌋. For larger values of N , it increases. Hence, given a target relative
error 2−t′ , it may be possible that no value of N is satisfying. In this case, Equation (3)
cannot be used. Note in particular that this formula is useless for 0 < x < 1. Until the end
of this section, we will suppose that x ≥ 1.

Conversely, when the relative error can be achieved, we can choose any value of N between
two values Nmin and Nmax. Obviously, we are interested in the smallest one. For finding an
upper bound of Nmin we will use Lemma 5.

We just give the main results needed for the implementation. The techniques for proving
them are exactly the same as the one used with Equations (1) and (2).

Lemma 10. The following inequality holds for any x ≥ 1:

|ε(3)
N (x)| ≤ e−x2

x

(
N

ex2

)N

.
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Proof. The result is obtained from the bound given in Equation (4). The product 1·3 · · · (2N−
1) is equal to (2N)!/(2N ·N !). We conclude using the bounds given in Lemma 3.

Proposition 7. If N satisfies

N

ex2
· log2

(
N

ex2

)
≤ −t′ − 3

ex2

the remainder is bounded by erfc(x) · 2−t′−1.

Proof. We use the previous lemma and the inequality erfc(x) ≥ e−x2

/(4x) given in Lemma 6.

Using this proposition and Lemma 5 we obtain an upper-estimation of N . We compute
a = (−t′ − 3)/ex2 choosing the rounding modes for obtaining an under-estimation ad of a.

If ad ∈ [− log2(e)/e, 0[, N ≥ (−t′ − 3)/ log2(−ad)

Otherwise Equation (3) cannot be used

The value −t′ − 3 is computed exactly in integer arithmetic; the value − log2(e)/e is
evaluated in such a way that we get an upper-estimation of the actual value. When evaluating
(−t′ − 3)/ log2(−ad), the logarithm and the division are performed with rounding upwards
and hence N is an upper-estimation of the actual value.

Remark that this estimation may be too large because of the overestimation of ϕ2. It
is possible that we get a value N that is larger than Nmin (which we want) but even larger
than Nmax. However, we are always sure that ⌊x2 + 1/2⌋ is an upper bound for N since this
is the value that minimizes the quantity of Equation (4). So we actually take the minimum
of (−t′ − 3)/ log2(−a) and ⌊x2 + 1/2⌋.

We evaluate the sum

S(x) =
e−x2

x
√

π
+

N−1∑

n=1

(−1)n · e
−x2

x
√

π
· 1 · 3 · · · (2n− 1)

(2x2)n

using Algorithm 1 with parameters y = 1/(2x2), α0 = e−x2

/(x
√

π) and for k ≥ 1, αk =
−(2k − 1). In practice, we use αk = (2k − 1) and we alternatively add and subtract acc

to the partial sum (again the variables acc, tmp, i, k, etc. are the variables introduced in
Algorithm 1 on page 6).

When computing α0, the rounding modes are chosen in such a way that the computed
value is an upper bound for the actual value. Besides, when acc is updated, rounding upwards
is used. Hence, we can stop the loop as soon as

k = N or acc · 2Fi < 2−t′−1 · e−x2

/(4x)

where F is the exponent of y. The algorithm is summed up in Figure Algorithm 4.
The roundoff errors are bounded using the following proposition.

Proposition 8. If Algorithm 4 is used to compute an approximation Ŝ(x) of the sum S(x),
the following holds:

Ŝ(x) =
e−x2

x
√

π
〈16N〉+

N−1∑

n=1

(−1)n · e
−x2

x
√

π
· 1 · 3 · · · (2n− 1)

(2x2)n
〈16N〉 .
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Input: a floating-point number x,
the working precision t,
the target precision t’,
L ∈ N⋆, N ∈ N⋆.

Output: an approximation of erfc(x) with relative error less than 2−t′−1 obtained
using Equation (3)

/* each operation is performed in precision t */

E← exponent(x);1

G← ⌈x ∗ x ∗ log2(e)⌉ ; // computed with rounding upwards2

acc← x ∗ x ; // performed in precision t + 2 · E, rounded downwards3

y = 2 ∗ acc;4

y← 1/y ; // rounded upwards5

acc← exp(−acc) ; // rounded upwards6

tmp← x ∗ √π ; // rounded downwards7

acc← acc/tmp ; // rounded upwards8

F← exponent(y) ;9

z← power(y, L) ; // computed with rounding upwards10

S← [0, . . . , 0] ;11

i← 0 ;12

k← 0 ;13

repeat14

if (k mod 2) = 0 then S[i]← S[i] + acc else S[i]← S[i]− acc ;15

k← k + 1;16

if i = L− 1 then17

i← 0 ;18

acc← acc ∗ z ; // rounded upwards19

else20

i← i + 1 ;21

end22

acc← acc ∗ (2 ∗ k− 1) ; // rounded upwards23

until k = N or exponent(acc) < −t’− 3− F ∗ i−G− E ;24

/* now S(y) is evaluated from the Si by Horner’s rule */

R← S[L− 1] ;25

for i← L− 2 downto 0 do26

R← S[i] + y ∗ R ;27

end28

return R;29

Algorithm 4: erfcByEquation3()
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Thus

∣∣∣Ŝ(x)− S(x)
∣∣∣ ≤ γ16N ·

e−x2

x
√

π

(
1 +

N−1∑

n=1

1 · 3 · · · (2n− 1)

(2x2)n

)
≤ γ16N ·

e−x2

x
√

π
· 3
2
.

Proof. In this algorithm, ŷ = y 〈2〉, hence the binary exponentiation leads to ẑ = z 〈3L− 1〉.
The final bound is

Ŝ(x) =
e−x2

x
√

π
〈8N + 3〉+

N−1∑

n=1

(−1)n · e
−x2

x
√

π
· 1 · 3 · · · (2n− 1)

(2x2)n
〈8N + 3〉 .

We bound 〈8N + 3〉 by 〈16N〉.
We now prove that

1 +
N−1∑

n=1

1 · 3 · · · (2n− 1)

(2x2)n
≤ 3

2
for N ≤ ⌊x2 + 1/2⌋.

Since N ≤ ⌊x2 + 1/2⌋, N ≤ x2 + 1. Moreover, the general term is decreasing. Hence, we can
write

N−1∑

n=1

1 · 3 · · · (2n− 1)

(2x2)n
≤ (N − 1)

1

2x2
≤ 1

2
.

Using this proposition, we obtain a suitable working precision t:

t ≥ t′ + 6 + ⌈log2(N)⌉

4.7 Implementation of erf with Equation (3)

We finish our study by explaining briefly how Equation (3) is used to compute erfc(x)
when x ≤ −1 and to compute erf(x) for x ≥ 1 (the symmetrical case x < −1 is the same).

Note that erfc(x) = 1 − erf(x) = 1 + erf(−x) = 2 − erfc(−x). We obtain erfc(x) by
computing an approximation R of erfc(−x) with a relative error smaller than an appropriate
bound 2−s and computing 2⊖R in precision t′ + 3.

The same way, since erf(x) = 1−erfc(x), we obtain erf(x) by computing an approximation
R of erfc(x) with a relative error smaller than an appropriate bound 2−s and computing 1⊖R
in precision t′ + 3.

The appropriate values for s are given in the two following lemmas. The proofs are left
to the reader.

Lemma 11. If x ≥ 1 and if s is chosen according to the following recipe, |R− erfc(x)| ≤
2−t′−1 · erfc(−x).

s ≥ t′ + 2− E − x2 log2(e)

Remark that whenever t′ + 2 − E − x2 log2(e) ≤ 1, it is not necessary to compute an
approximation of erfc(x) and to perform the subtraction: 2 can be directly returned as a
result. Indeed, t′ + 2− E − x2 log2(e) ≤ 1 implies that e−x2

/x ≤ 2−t′ and hence

erfc(x) ≤ 2−t′ ≤ 2−t′ erfc(−x).
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Since erfc(x) = 2− erfc(−x), it means that 2 is an approximation of erfc(−x) with a relative
error less than 2−t′ .

Lemma 12. If x ≥ 1 and if s is chosen according to the following recipe, |R− erfc(x)| ≤
2−t′−1 · erf(x).

s ≥ t′ + 3− E − x2 log2(e)

The same remark holds: if t′ +3−E−x2 log2(e) ≤ 1, the value 1 can be directly returned
as an approximation of erf(x) with a relative error less than 2−t′ .

5 Experimental results

We gave all the details necessary for implementing each of the three equations (1), (2),
and (3). They can be used for obtaining approximate values of either erf(x) or erfc(x). We
also gave estimations of the order of truncation N and of the working precision t. In each
case O(

√
N) multiplications at precision t and O(N) additions and multiplications/divisions

by small integers are needed for evaluating the sum. Hence, for each equation, the complexity
of the algorithm is O(

√
N ·M(t)) where M(t) denotes the complexity of a product of two

numbers of precision t.

However, quite different behaviours are hidden behind this complexity. Indeed, the inputs
of our algorithms are the point x and the target precision t′. Hence, N and t are functions of
x and t′. As can be seen in previous sections, these functions highly depend on the equation
used to evaluate erf(x) or erfc(x).

5.1 Choosing the best equation

Of course, given an input couple (x, t′), we would like to choose automatically the equation
to be used, in order to minimise the computation time. For this purpose, we need to compare
the complexity of the three equations. It seems quite hard to perform such a comparison
theoretically:

• firstly, the estimations of N and t are different for each equation. They depend on x
and t′ in a complicated way. Besides, they are defined piecewise, which implies that
there are many cases to study;

• secondly, comparing the three methods requires to set some assumptions on the imple-
mentation of the underlying arithmetic (e.g. complexity of the multiplication; complex-
ity of the evaluation of exp).

Usually, the multiplication between two numbers of precision t is performed differently
whether t is large or not: see Section 2.4 of [6] for an overview of what is used in MPFR.
Three different algorithms are used in MPFR, each one depending on the underlying integer
multiplication (that can be performed by at least four different algorithms).

In MPFR, the evaluation of exp(x) is performed by three different algorithms, depending
on the required precision t (see the end of Section 2.5 of [6] for a brief overview).

• A naive evaluation of the series is used when t is smaller than a parameter t0;
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• the grouping technique of Smith is used when t lies between t0 and a second threshold
t1;

• finally, if t ≥ t1, a binary splitting method is used. The values t0 and t1 have been tuned
for each architecture.

This shows that choosing the best equation between the three equations proposed in
this paper is a matter of practice and not of theoretical study. We implemented the three
algorithms in C, using MPFR for the floating-point arithmetic. Our code is distributed under
the GPL and freely available.

Figure 6: Comparison of the execution times of the three implementations of erf

In order to see experimentally which equation is the best for each couple (x, t′), we ran
the three implementations for a large range of values x and t′. For each couple, we compared
the execution time of each implementation when evaluating erf(x). The experimental results
are summed up in Figure 6. The colours indicate which implementation is the fastest. The
experiments were performed on a 32-bit 3.00 GHz Intel Pentium D with 2.00 GB of RAM
running Linux 2.6.26 and MPFR 2.3.1 and gcc 4.3.3. The thresholds used by MPFR for this
architecture are t0 = 528 and t1 = 47 120.

The boundary between Equations (1) and (2) seems to exhibit three phases, depending
on t′. These phases approximately match the thresholds used by MPFR for the implemen-
tation of exp. Since Equation (2) relies on the evaluation of exp(−x2) whereas Equation (1)
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does not, this is probably not a coincidence and we just see the impact of the evaluation of
exp(−x2) on the whole computation time.

The boundary between Equations (2) and (3) is more regular. In fact, we experimentally
observe that as soon as Equation (3) is useable, it is more interesting than the other equations.
Figure 7 shows the timings for t′ = 632 in function of x: for small values of x, Equation (3)
cannot achieve the target precision. But for x ≃ 15, it becomes useable and is immediately
five times faster than the others. Hence, the domain where Equation (3) should be used is
given by the points where the inequality of Proposition 7 has a solution, i.e. if and only if

−s− 3

ex2
≥ − log2(e)

e
,

where s & t′ + 3 − E − x2 log2(e) is the intermediate precision given in Lemma 12. Thus
the equation of the boundary is approximately log(t′) ≃ 2 log(x), which corresponds to the
observations.

Figure 7: Execution times of the three implementations, in function of log(x), when t′ = 632.

5.2 Comparison with other implementations

We compared our implementation of erf and erfc with two others reference implemen-
tations: MPFR and Maple. MPFR is probably the most relevant since we indeed compare
two comparable things: since our implementation is written using MPFR, the underlying
arithmetic is the same in both cases. Therefore, the difference of timings between our imple-
mentation and MPFR is completely due to the difference between the algorithm used.

Maple uses a decimal floating-point format. Besides, it is an interpreted language. Hence,
the comparison between our implementation and Maple is not completely relevant. However,
Maple is widely used and is one of the rare implementations of erf and erfc in arbitrary
precision.

Our experiments are related in table Figure 8. The experiments were performed on a 32-
bit 2.40 GHz Intel Xeon with 2.00 GB of RAM running Linux 2.6.22. We used MPFR 2.3.1,
gcc 4.1.2 and Maple 11. The values of x are chosen randomly with the same precision t′ as
the target precision. The table only indicates an approximate value. The target precision t′ is
expressed in bits. Maple is run with the variable Digits set to ⌊t′/ log2(10)⌋. This corresponds
approximately to the same precision expressed in a decimal arithmetic. Maple remembers the
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values already computed. It is thus impossible to repeat the same evaluation several times
for measuring the time of one single evaluation by considering the average timing. In order
to overcome this difficulty we chose to evalute successively erf(x), erf(x+h), erf(x+2h), etc.
where h is a small increment.

x t′ Eq. 1 Eq. 2 Eq. 3 MPFR Maple

0.000223 99 29 µs 47 µs - 14 µs 283 µs
0.005602 99 34 µs 48 µs - 17 µs 282 µs
0.140716 99 40 µs 53 µs - 25 µs 287 µs
3.534625 99 96 µs 84 µs - 125 µs 382 µs

88.785777 99 277 520 µs 6181 µs < 1 µs 2 µs 18 µs

0.000223 412 55 µs 87 µs - 76 µs 739 µs
0.005602 412 62 µs 94 µs - 104 µs 783 µs
0.140716 412 88 µs 109 µs - 186 µs 870 µs
3.534625 412 246 µs 198 µs - 663 µs 1 284 µs

88.785777 412 289 667 µs 9 300 µs < 1 µs 2 µs 21 µs

0.000223 1 715 311 µs 562 µs - 1 769 µs 2 513 µs
0.005602 1 715 393 µs 616 µs - 2 490 µs 2 959 µs
0.140716 1 715 585 µs 748 µs - 4 263 µs 3 968 µs
3.534625 1 715 1 442 µs 1 260 µs - 11 571 µs 8 850 µs

88.785777 1 715 343 766 µs 22 680 µs < 1 µs 2 µs 42 µs

0.000223 7 139 3 860 µs 7 409 µs - 28 643 µs 38 846 µs
0.005602 7 139 4 991 µs 7 959 µs - 40 066 µs 51 500 µs
0.140716 7 139 7 053 µs 9 227 µs - 64 975 µs 79 308 µs
3.534625 7 139 14 744 µs 14 144 µs - 157 201 µs 191 833 µs

88.785777 7 139 628 527 µs 96845 µs 46 µs 2 µs 213 µs

0.000223 29 717 63 ms 108 ms - 654 ms 1 140 ms
0.005602 29 717 79 ms 119 ms - 881 ms 1 539 ms
0.140716 29 717 108 ms 137 ms - 1 375 ms 2 421 ms
3.534625 29 717 202 ms 198 ms - 2 968 ms 5 320 ms

88.785777 29 717 2 005 ms 898 ms - 39 760 ms 243 690 ms

Figure 8: Timings of several implementations of erf

The cases when Equation (3) cannot achieve the target precision are represented by the
symbol “-”. Our implementation is the fastest except in a few cases. In small precisions and
small values of x, MPFR is the fastest because it uses a direct evaluation that is a bit faster
when the truncation rank is small.

The case x ≃ 88.785777 and t′ = 7139 has another explanation. Actually, the situation
corresponds to the remark following Lemma 12: t′ + 3− E − x2 log2(e) ≤ 1. Hence, there is
nothing to compute and 1 can be returned immediately. In our implementation t′ + 3−E −
x2 log2(e) is computed using MPFR in small precision. This takes 46 µs. MPFR performs
the same kind of test but using hardware arithmetic. This explains that it can give an answer
in 2 µs.
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6 Conclusion and perspectives

We proposed three algorithms for efficiently evaluating the functions erf and erfc in ar-
bitrary precision. These algorithms are based on three different summation formulas whose
coefficients have the same general recursive structure. For evaluating the sum, we take advan-
tage of this structure by using an algorithm due to Smith that makes it possible to perform
only O(

√
N) slow multiplications instead of the generic O(N) classical approach.

We gave closed formulas for upper-bounding the truncation rank N and we completely
studied the effects of roundoff errors in the summation. We derived from this study closed
formulas for the required working precision.

We implemented the three algorithms in C and compared the efficiency of the three meth-
ods in practice. This shows that the asymptotic expansion is the best method to use, as soon
as it can achieve the target accuracy. Whenever the asymptotic expansion cannot be used,
one must choose between the two others equations. The domain where it is more interesting
to use one than the other depends on the underlying arithmetic. In practice, well-chosen
thresholds must be chosen for each architecture. We also compared our implementation with
the implementation of erf provided in MPFR and Maple. Our implementation is almost al-
ways the fastest one. It represents a condiderable improvement for intermediate and large
precisions.

We must remark that our analysis is based on the hypothesis that no underflow or overflow
occurs during the evaluation. Though unlikely, this could happen and should be taken into
account for really guaranteeing the quality of the final result.

Since the method of evaluation used in this paper requires extra space for storing partial
sums, the algorithms may become inefficient for very large precisions, if the memory has to
be swapped on the hard disk. In this case, the sums may be evaluated by the straightforward
algorithm: compute iteratively the coefficients of the sum and accumulate the result on the
fly. This is slower but does not require extra memory. Besides, for large precisions, techniques
based on binary splitting are usually faster and should be prefered.

There is another idea that may lead to a significant improvement: if the point x is of the
form p/q where p and q are small integers, the sums of the three equations may be evaluated
by the straightforward method using only additions, and multiplications/divisions by small
integers. The corresponding complexity is O(tN) (instead of O(

√
NM(t))). This is interesting

in itself but it may also be used to obtain efficiently an approximate value of erf(x) or erfc(x)
for any value x. Indeed, x can be written x = x0 +h where x0 has the previous form and h is
small. An approximate value of erf(x) could be obtained by considering the Taylor expansion
of erf at x0:

erf(x) = erf(x0) +
+∞∑

i=1

aih
i where ai =

erf(i)(x0)

i!
.

Since h is small, only a few terms are necessary to obtain a good approximation. The coef-
ficients ai are of the form pi(x0)e

−x2

0 where pi is a polynomial of degree 2i − 2 satisfying a
simple recurrence. The value e−x2

0 is computed only once and the coefficients are then quite
easy to obtain (remark that when using Equation (2) or (3), the value e−x2

0 has already been
computed when evaluating erf(x0)). We did not implement this technique yet but it seems
to be a promising future work.
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