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Abstract

A dichotomy theorem for counting problems due to Creignou and
Hermann states that or any finite set S of logical relations, the count-
ing problem #SAT(S) is either in FP, or #P-complete. In the present
paper we study polynomial evaluation from this dichotomic point of
view. We show that the “hard” cases in the Creignou-Hermann the-
orem give rise to VNP-complete families of polynomials, and we give
partial results for the “easy” case of this dichotomy theorem. We also
prove that several problems which were known to be #P-complete un-
der Turing reductions only are in fact #P-complete under many-one
reductions.

1 Introduction

.
In a seminal paper, Schaefer [13] proved a dichotomy theorem for boolean

constraint satisfaction problems: he showed that for any finite set S of logical
relations the satisfiability problem SAT(S) for S-formulas is either in P, or
NP-complete. Here, an S-formula over a set of n variables is a conjunction of
relations of S where the arguments of each relation are freely chosen among
the n veriables. For instance, when S is the set of all 3-clauses SAT(S)
is the canonical NP-complete problem 3-SAT; when S is the set of all 2-
clauses SAT(S) is the polynomial time problem 2-SAT. Schaefer’s result was
subsequently extended in a number of directions. In particular, dichotomy
theorems were obtained for counting problems, optimization problems and
the decision problem of quantified boolean formulas. An account of this
line of work can be found in the book by Creignou, Khanna and Sudan [5].
In a different direction, constraint satisfaction problems were also studied
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over non-boolean domains. This turned out to be a surprisingly difficult
question, and it took a long time before a dichotomy theorem over domains
of size 3 could be obtained [3].

In the present paper we study polynomial evaluation from this dichotomic
point of view. We work within Valiant’s algebraic framework: the role of
the complexity class NP in Schaefer’s dichomtomy theorem will be played
by the class VNP of “easily definable” polynomial families, and the role of
P will be played by the class VP of “easily computable” polynomial fam-
ilies [14, 2]. There is a well-known connection between counting problems
and polynomial evaluation. For instance, as shown by Valiant the perma-
nent is complete in both settings [15, 14]. In the realm of counting problems,
a dichotomy theorem was obtained by Creignou and Hermann [4, 5].

Theorem 1 For any finite set S of logical relations, the counting problem
#SAT(S) is either in FP, or #P-complete.

In fact, the sets S such that #SAT(S) is in FP are exactly the sets
containing only affine constraints (a constraint is called affine if it expressible
as a system of linear equations over Z/2Z).

Main Contributions

To a family of boolean formulas (φn) we associate the multilinear polynomial
family

P (φn)(X) =
∑

ε

φn(ε)X
ε
, (1)

whereX
ε
is the monomial Xε1

1 · · ·X
εk(n)

k(n) , and k(n) is the number of variables
of φn. Imagine that the φn are chosen among the S-formulas of a fixed finite
set S of logical relations. One would like to understand how the complexity
of the polynomials P (φn) depends on S. Note that when the variables Xi are
all set to 1, we obtain the counting problem #SAT(S). It seems therefore
reasonable to conjecture that the “easy” and “hard” cases are the same as
in Creignou and Hermann’s dichotomy theorem. We can partially prove this
conjecture.

Definition 1 A family (φn) of S-formulas is called a p-family if φn is a
conjunction of at most p(n) relations from S, for some polynomial p (in
particular, φn depends on polynomially many variables when S is finite).

Theorem 2 (Main Theorem) Let S be a finite set of logical relations
which contains at least one relation that is not affine. Then there exists
a p-family (φn) of S-formulas such that the corresponding polynomial family
P (φn) is VNP-complete.
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The only case that we could not settle, thereby preventing us from obtaining
a complete dichotomy theorem, is the case of sets S containing only affine
relations. Ironically, this is the easiest case in Creignou and Hermann’s
dichotomy theorem. Indeed, in this case a S-formula φ over a set of n
boolean variables defines an affine subspace of (Z/2Z)n. The number of
satisfying assignements is 2d, where d is the dimension of this subspace.
This dimension can be easily computed by Gaussian elimination. In our
algebraic framework we need to solve a “weighted counting” problem: each
point (ε1, . . . , εn) of the affine subspace comes with a weight Xε1

1 · · ·Xεn
n .

We give efficient evaluation algorithms in several cases, but the general case
remains open.

The remainder of this paper is mostly devoted to the proof of Theo-
rem 2. The results that we obtain along the way are in our opinion at
least as interesting as Theorem 2 by itself. First, we obtain several new
VNP-completeness results. The main ones are about:

(i) the vertex cover polynomial VCP(G) and the independent set poly-
nomial IP(G); these polynomials are associated to a vertex-weighted
graph G. Most VNP-completeness results in the litterature (and cer-
tainly all the results in Chapter 3 of [2]) are about edge-weighted
graphs rather than vertex-weighted graphs.

(ii) the antichain polynomial AP(X) and the ideal polynomial IPP(X);
these polynomials are associated to a weighted poset (X,≤).

Like in most VNP-completeness results, the reduction that we use is Valiant’s
p-projection. In his work on VNP families that are neither p-computable nor
VNP-complete, Bürgisser [1, 2] introduced the more general “c-reductions”.
They are akin to the Turing (or oracle) reductions from discrete complex-
ity theory. The c-reduction has not been used widely in VNP-completeness
proofs. The only examples that we are aware of are:

(i) A remark in [2] on probability generating functions.

(ii) The VNP-completeness of the weighted Tutte polynomial in [11]. Even
there, the power of c-reductions is used in a very restricted way since
a single oracle call is perfomed in each reduction.

By contrast, the power of Turing reductions has been put to good use in
#P-completeness theory (mostly as a tool for performing interpolation). In-
deed, as pointed out in [8], “interpolation features prominently in a majority
of #P-completeness proofs”, and “it is not clear whether the phenomenon of
#P-completeness would be as ubiquitous if many-one reducibility were to be
used in place of Turing.” We argue that the importance of Turing reductions
in #P-completeness should be revised downwards since, as a byproduct of
our VNP-completeness results, we can replace Turing reductions by many-
one reductions in several #P-completeness results from the litterature. In
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particular, we obtain a many-one version of Creignou and Hermann’s di-
chotomy theorem1. We leave it as an open problem whether the 0/1 partial
permanent is #P-complete under many-one reductions (see Section 3 for a
definition of the partial permanent, and [7] for a # P-completeness proof
under oracle reductions).

Organization of the Paper and Additional Results

Earlier in this section we gave an informal introduction to constraint sat-
isfaction problems. We give more precise definitions at the beginning of
Section 2. The remainder of that section is devoted to Valiant’s algebraic
model of computation. We then begin the proof of Theorem 2. The high-
level structure of the proof is similar to Creignou and Hermann’s proof of
#P-completeness of the corresponding counting problems in [4]. The sin-
gletons S = {OR2}, S = {OR1} and S = {OR0} play a special role in the
proof. Here OR2 denotes the negative two-clause (x, y) 7→ (x ∨ y); OR0

denotes the positive two-clause (x, y) 7→ (x ∨ y); and OR1 denotes the im-
plicative two-clause (x, y) → (x∨ y). The corresponding VNP-completeness
results are established in sections 3 and 4. These results are put together
in Section 5 to complete the proof of Theorem 2. In Section 6, we build on
our VNP-completeness results to prove #P-completeness under many-one
reductions for several problems which were only known to be #P-complete
under oracle reductions.

Some additional results are provided in the appendix. The first ap-
pendix deals with affine constraints. We present some special cases when
an efficient evaluation of P (φ) is possible. Motivated by one of these posi-
tive cases, we observe in the second appendix that the permutation function
PERMUTATIONn (the boolean function in n2 variables that accepts the
n×n permutation matrices) is not affine. This is to be expected since an effi-
cient (nonuniform) algorithm for evaluating the 0/1 permanent would other-
wise follow. The point of our (simple) observation about PERMUTATIONn

is that it does not rely on any unproven assumption. Likewise, it is possible
to prove unconditionally that treewidth-based methods cannot be used to
evaluate the permanent efficiently [9]. It would be interesting to obtain sim-
ilar impossibility results for other counting or polynomial evaluation meth-
ods.

1It was already claimed in [4, 5] that Theorem 1 holds true for many-one reductions.
This was not fully justified since the proof of Theorem 1 is based on many-reductions from
problems which were previously known to be #P-complete under oracle reductions only.
The present paper shows that this claim was indeed correct.
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2 Preliminaries

2.1 Constraint satisfaction problems

We define a logical relation to be a function from {0, 1}k to {0, 1}, for
some integer k called the rank of the relation. Let us fix a finite set S =
{φ1, . . . , φn} of logical relations. An S-formula over n variables (x1, . . . , xn)
is a conjunction of boolean formulas, each of the form gi(xji(1), . . . , xji(ki))
where each gi belongs to S and ki is the rank of gi. In words, each element in
the conjunction is obtained by applying a function from S to some variables
chosen among the n variables x1, . . . , xn.

An instance of the problem SAT(S) studied by Schaefer [13] is an S-
formula φ, and one must decide whether φ is satisfiable. For instance,
consider the 3 boolean relations OR0(x, y) = x ∨ y, OR1(x, y) = x ∨ y
and OR2(x, y) = x ∨ y. The classical problem 2-SAT is SAT(S) where
S = {OR0,OR1,OR2}. The counting problem #SAT (S) was studied by
Creignou and Hermann [4]. In this paper we study the complexity of evalu-
ating the polynomials P (φ) in (1). We would like to understand which sets
S give rise to VNP-complete polynomial families, and which one give rise
only to easy to compute families. We next define these notions precisely.

2.2 Algebraic complexity theory: Valiant’s model

In Valiant’s model one studies the computation of multivariate polynomials.
This can be done over any field. In the sequel we fix a fieldK of characteristic
6= 2. All considered polynomials are over K.

A p-family is a sequence f = (fn) of multivariate polynomials such that
the number of variables and the degree are polynomially bounded functions
of n. A prominent example of a p-family is the permanent family PER =
(PERn), where PERn is the permanent of an n×n matrix with independent
indeterminate entries.

We define the complexity of a polynomial f to be the minimum number
L(f) of nodes of an arithmetic circuit computing f . We recall that the
internal nodes of an arithmetic circuit perform additions or multiplications,
and each input node is labeled by a constant from K or a variables Xi.

Definition 2 (VP) A p-family (fn) is p-computable if L(fn) is a polyno-
mially bounded function of n. Those families constitute the complexity class
VP.

In Valiant’s model, VNP is the analogue of the class NP (or perhaps more
accurately, of #P).

Definition 3 (VNP) A p-family (fn) is called p-definable if there exists a
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p-computable family g = (gn) such that

fn(X1, . . . ,Xp(n)) =
∑

ε∈{0,1}q(n)

gn(X1, . . . ,Xp(n), ε1, . . . , εq(n))

The set of p-definable families forms the class VNP.

Clearly, VP is included in VNP. To define VNP-completeness we need
a notion of reduction:

Definition 4 (p-projection) A polynomial fn with v arguments is said
to be a projection of a polynomial gm with u arguments, and we denote it
fn ≤ gm, if f(X1, . . . ,Xv) = gm(a1, . . . , au) where each ai is a variable of
fn or a constant from K.

A p-family f = (fn) is a p-projection of g = (gm) if there exists a
polynomially bounded function t : N → N such that

∃n0∀n ≥ n0, fn ≤ gt(n).

We write f ≤p g if f is a p-projection of g.

Definition 5 (VNP-completeness) A p-family g ∈ VNP is VNP-complete
if f ≤p g for every p-family f ∈ VNP.

The VNP-completeness of the permanent under p-projections [14, 2] is a
central result in Valiant’s theory.

By Valiant’s criterion (Proposition 2.20 in [2]), for any finite S of logical
relations and any p-family (φn) of S-formulas the polynomials (P (φn)) form
a VNP family. All the work in the proof of Theorem 2 therefore goes into
the hardness proof.

3 Monotone 2-clauses

In this section we consider the set {OR2} = {(x, y) 7→ (x∨y)} and {OR0} =
{(x, y) 7→ (x∨y)}. For S = {OR2} and S = {OR0}, we show that there exists
a VNP-complete family of polynomials (P (φn)) associated to a p-family of
S-formulas (φn).

The partial permanent PER∗(A) of a matrix A = (Ai,j) is defined by
the formula:

PER∗(M) =
∑

π

∏

i∈defπ

Aiπ(i)

where the sum runs over all injective partial maps from [1, n] to [1, n]. It
is shown in [2] that the partial permanent is VNP-complete (the proof is
attributed to Jerrum). The partial permanent may be written as in (1),
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where φn is the boolean formula that recognizes the matrices of partial
maps from [1, n] to [1, n]. But φn is a p-family of {OR2}-formulas since

φn(ε) =
∧

i,j,k:j 6=k

εij ∨ εik ∧
∧

i,j,k:i6=k

εij ∨ εkj .

Here the first conjunction ensures that the matrix ε has no more than one 1
on each row; the second one ensures that ε has no more than one 1 on each
column. We have obtained the following result.

Theorem 3 The family (φn) is a p-family of {OR2}-formulas, and the poly-
nomial family (P (φn)) is VNP-complete under p-projections.

The remainder of this section is devoted to the set S = {OR0} =
{(x, y) 7→ x ∨ y}. The role played by the partial permanent in the previous
section will be played by vertex cover polynomials. There is more work to
do because the corresponding VNP-completeness result is not available from
the litterature.

Consider a vertex-weighted graph G = (V,E): to each vertex vi ∈ V is
associated a weight Xi. The vertex cover polynomial of G is

VCP(G) =
∑

S

∏

vi∈S

Xi (2)

where the sum runs over all vertex covers of G (recall that a vertex cover
of G is a set S ⊆ V such that for each edge e ∈ E, at least one of the two
endpoints of e belongs to S). The univariate vertex cover polynomial defined
in [6] is a specialization of ours; it is obtained from VCP(G) by applying the
substitutions Xi := X (for i = 1, . . . , n), where X is a new indeterminate.

Our main result regarding {OR0}-formulas is as follows.

Theorem 4 There existe a family Gn of polynomial size bipartite graphs
such that:

1. The family (VCP(Gn)) is VNP-complete.

2. VCP(Gn) = P (φn) where φn is a p-family of {OR0}-formulas.

Given a vertex-weighted graph G, let us associate to each vi ∈ V a boolean
variable εi. The interpretation is that vi is chosen in a vertex cover when εi
is set to 1. We then have

VCP(G) =
∑

ε∈{0,1}|V |

[

∧

(vi,vj)∈E

εi ∨ εj
]

X
ε
.

The second property in Theorem 4 will therefore hold true for any family
(Gn) of polynomial size graphs.
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To obtain the first property, we first establish a VNP-completeness result
for the independent set polynomial IP(G). This polynomial is defined like
the vertex cover polynomial, except that the sum in (2) now runs over all
independent sets S (recall that an independent set is a set S ⊆ V such that
there are no edges between any two elements of S).

Theorem 5 There exists a family (G′
n) of polynomial size graphs such that

IP(G′
n) = PER∗

n where PER∗
n is the n × n partial permanent. The family

IP(G′
n) is therefore VNP-complete.

Proof. The vertices of G′
n are the n2 edges ij of the complete bipartite graph

Kn,n, and the associated weight is the indeterminate Xij. Two vertices of G′
n

are connected by an edge if they share an endpoint in Kn,n. An independent
set in G′

n is nothing but a partial matching in Kn,n, and the corresponding
weights are the same. 2

Next we obtain a reduction from the independent set polynomial to the
vertex cover polynomial. The connection between these two problems is not
astonishing since vertex covers are exactly the complements of independent
sets. In particular, every graph has the same number of independent sets
and vertex covers. But we deal here with weighted counting problems, so
that there is a little more work to do. The connection between independent
sets and vertex covers does imply a relation between the polynomials IP(G)
and VCP(G). Namely,

IP(G)(X1, . . . ,Xn) = X1 · · ·Xn · VCP(G)(1/X1, . . . , 1/Xn). (3)

Indeed,

IP(G) =
∑

S independent

X1 · · ·Xn
∏

vi 6∈S Xi
= X1 · · ·Xn

∑

S′ vertex cover

1
∏

vi∈S′ Xi
.

Recall that the incidence graph of a graph G′ = (V ′, E′) is a bipartite
graph G = (V,E) where V = V ′ ∪ E′. In the incidence graph there is an
edge between e′ ∈ E′ and u′ ∈ V ′ if u′ is one the two endpoints of e′ in
G. When G′ is vertex weighted, we assign to each V ′-vertex of G the same
weight as in G and we assign to each E′-vertex of G the constant weight
−1.

Lemma 1 Let G′ be a vertex weighted graph and G its vertex weighted in-
cidence graph as defined above. We have:

VCP(G) = (−1)e(G
′)IP(G′) (4)

and
IP(G) = (−1)e(G

′)VCP(G′) (5)

where e(G′) is the number of edges of G′.
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Proof. We begin with (4). To each independent set I ′ of G′ we can injectively
associate the vertex cover C = I ′∪E′. The weight of C is equal to (−1)e(G

′)

times the weight of I ′. Moreover, the weights of all other vertex covers
of G add up to 0. Indeed, any vertex cover C which is not of this form
must contain two vertices u′, v′ ∈ V ′ such that u′v′ ∈ E′. The symmetric
difference C∆{u′v′} remains a vertex cover of G, and its weight is opposite
to the weight of C since it differs from C only by a vertex u′v′ of weight −1.

It is possible to obtain (5) by a similar argument. Here, we will deduce
this relation from (3) and (4):

IP(G)(X1, . . . ,Xn) = X1 · · ·Xn · VCP(G)(1/X1, . . . , 1/Xn)

= (−1)e(G
′)X1 · · ·Xn · IP(G′)(1/X1, . . . ,X1, . . . , 1/Xn)

= (−1)e(G
′)VCP(G′).

The first and last equalities follow from (3), and the second equality follows
from (4). 2

To complete the proof of Theorem 4 we apply Lemma 1 to the graphG′ = G′
n

of Theorem 5. The resulting graph G = Gn satisfies VCP(Gn) = IP(G′
n) =

PER∗
n since G′

n has an even number of edges: e(G′
n) = n2(n− 1).

4 Implicative 2-clauses

Here we consider the set S = {OR1} = {(x, y) → (x∨ y)}. Those logical re-
lations are called implicative, because x∨y is equivalent to y ⇒ x. The #P-
completeness of #SAT(S) was established by a chain of reductions in [12]
and [10]. Here we will follow this chain of reductions to find a VNP-complete
family associated to S-formulas. These two articles show consecutively that
the problems of counting the independent sets, the independent sets in a
bipartite graph, the antichains in partial ordered sets (posets), the ideals in
posets, and finally satisfaction of implicative 2-clauses are #P-complete. We
will start from the family (G′

n) such that IP(G′
n) = PER∗

n, whose existence
is stated in Theorem 5, and follow the reductions for the counting problems.

We first transform the family (G′
n) into a family of bipartite graphs,

without changing the independent set polynomials.

Lemma 2 There exists a family of bipartite graphs (G′′
n) such that IP(G′′

n) =
PER∗

n, the partial permanent of size n× n.

Proof. By Lemma 1, we know how to transform a graph G into a bipartite
graphG′ such that VCP(G′) = (−1)e(G)IP(G) and IP(G′) = (−1)e(G)VCP(G)
where e(G) is the number of edges of G. By applying this transformation
one more time to G′, we obtain a graph G′′ such that:

IP(G′′) = (−1)e(G
′)VCP(G′) = (−1)e(G)IP(G)
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u v

Figure 1: The transformation of Lemma 2

Thus, the transformation of G into G′′ consists in the replacement of
each edge (u, v) in G by the subgraph represented in Figure 1.

In Theorem 5 we introduced a family (G′
n) such that G′

n has an even
number of edges, and IP(G′

n) = PER∗
n. By applying the transformation

above to (G′
n), we obtain a bipartite family (G′′

n) such that IP(G′′
n) = PER∗

n.
2

In the following we will not only use the statement of this lemma: we will
also use the structure of G′′

n. More precisely, let us denote by V1 and V2 the
partite sets of G′′

n. We will use for instance the fact that in one of those two
sets, say V1, all vertices have weight −1.

It is pointed out in [12] that, given a bipartite graph, one can construct
naturally a partially ordered set. From the bipartite graph G′′

n = (V1, V2, E),
we define the partially ordered set (Xn,≤) with Xn = V1 ∪ V2, and given x
and y in Xn, x ≤ y if and only if x ∈ V1, y ∈ V2 and (x, y) ∈ E. We see
easily that ≤ is transitive and antisymmetric.

Next we recall the definition of an antichain.

Definition 6 (Antichain) An antichain A in a poset (X,≤) is a subset of
X such that for all pair (x, y) of elements of A, x and y are incomparable.

We define the antichain polynomial of a (weighted) poset (X,≤) as the
polynomial:

AP(X) =
∑

A

∏

x∈A

w(x)

where the sum runs over all antichains A of (X,≤). Let us consider a
bipartite graph G and its corresponding poset (X,≤). A set S ⊆ X is
an antichain in (X,≤) if and only if it is independent in G. We thus have:
AP(X) = IP(G). Thus, we can identify the families (AP(Xn)) and (IP(G′′

n)).
We then define the notion of ideal in a poset.
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Definition 7 (Ideal) An ideal I in a poset (X,≤) is a subset of X such
that for all x ∈ I, all y such that y ≤ x belong to I.

We can also define the ideal polynomial IPP(X) of the ideals in a poset
(X,≤):

IPP(X) =
∑

I

∏

x∈I

w(x)

where the sum runs over all ideals I of (X,≤).
Given an ideal I in a poset (X,≤), the maximal elements of I form

an antichain A: since they are maximal in I, they cannot be compared.
Conversely, given an antichain A, the set of elements x that are less than an
element of A form an ideal. One can verify easily that those transformations
are bijective and inverse of each other. We thus have a bijection between
the ideals and the antichains of a given poset. This fact suffices to the
authors of [12], since the bijection shows that a poset has the same number
of antichains and ideals; the counting problems are thus equivalent.

But for our weighted counting problems, since the ideals and the an-
tichains have different weights, we cannot identify simply AP(X) and IPP(X)
for any poset X.

We do not know how to reduce a family of antichain polynomials into
ideal polynomials in general, but in the case of the family (AP(Xn)), since
the structure of the family (G′′

n) is particular, the problem is easier. We
claim the following.

Theorem 6 For all integer n, we have: AP(Xn) = IPP(Xn)

The proof will be given at the end of this section.

Corollary 1 There exists a VNP-complete family of polynomials of the
form (IPP(Xn)).

To conclude, we note that the ideal polynomial in a poset (X,≤) may be
expressed as a polynomial associated to a S-formula. Namely, we associate
to each xi ∈ X a boolean variable εi with the intended meaning that xi

belongs to an ideal when εi is true. For every pair (xi, xj) ∈ X such that
xi ≤ xj , the condition xj ∈ I ⇒ xi ∈ I may be expressed by (εj ⇒ εi), or
(εi ∨ εj). Thus, we have

IPP(X) =
∑

ε∈{0,1}|X|

[

∧

(i,j):xi≤xj

εi ∨ εj
]

X
ε
,

and as a result:

Theorem 7 There exists a VNP-complete family of polynomials associated
to a p-family of {OR1}-formulas.
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To complete this section, we now provide the proof of Theorem 6. Let us
fix an integer n. We recall that in the bipartite graph G′′

n = (V1, V2, E)
constructed in Lemma 2, each vertex of V1 has weight −1. We also know
that |V1| is even, since the elements of V1 are added two by two in the
transformation from G′

n to G′′
n.

Fortunately, by changing the correspondence between antichains and
ideals, we can preserve the weights: we will construct in Lemma 3 a bijection
from the antichains to the ideals of Xn that preserves the weights, and thus
we have:

AP(Xn) = IPP(Xn).

Lemma 3 There exists a bijection (different from the natural one consid-
ered previously) from the antichains to the ideals of Xn, this one keeping the
weights unchanged.

Proof. To an antichain A of Xn, we associate the set I such that:

• A and I coincide on V2.

• I ∩ V1 is the complement of A ∩ V1 in V1.

The map A 7→ I is clearly injective, and one can verify that the image I is
an ideal: given x ∈ Xn and y ∈ I such that x ≤ y, we have that x ∈ V1 and
y ∈ V2. Therefore, y ∈ A, and x cannot belong to A as the elements of A
are incomparable. Thus, x belong to I. Our map is thus a bijection from
the antichains to the ideals of Xn.

Since all the elements of V1 have weight −1 and |V1| is even, the weights
of I and A differ by a factor (−1)|V1| = 1. 2

5 The general case

In this section we complete the proof of Theorem 2. The proof of this result
is an analogue of the proof of the #P-completeness of the corresponding
counting problems given in [5]. We will adapt this proof to our context. The
authors use the notion of perfect and faithful implementation (definition 5.1
in [5]):

Definition 8 A conjunction of α boolean constraints {f1, . . . , fα} over a set
of variables x = {x1, . . . , xn} and y = {y1, . . . , yn} is a perfect and faithful
implementation of a boolean formula f(x), if and only if

1. for any assignment of values to x such that f(x) is true, there exists a
unique assignment of values to y such that all the constraints fi(x, y)
are satisfied.
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2. for any assignment of values to x such that f(x) is false, no assignment
of values to y can satisfy more than (α− 1) constraints.

We refer to the set x as the function variables and to the set y as the
auxiliary variables.

We say, that a set S of logical relations implements perfectly and faithfully
a boolean formula f(x) if there is a S-formula that implements f(x) perfectly
and faithfully. We also extend the definition to logical relations: a set S of
logical relations implements perfectly and faithfully a logical relation f if
S implements perfectly and faithfully every application of f to a set of
variables x.

Let us denote F the unary relation F (x) = x. From [5], lemma 5.30, we
have:

Lemma 4 If a logical relation f is not affine, then {f,F} implements at
least one of the three logical relations OR0, OR1 or OR2 perfectly and faith-
fully.

The following lemma, analogue to lemma 5.15 from [5], shows that per-
fect and faithful implementation provide a mechanism to do projections from
the polynomials associated to sets of logical relations.

Lemma 5 Let S and S′ be two sets of logical relations such that every
relation of S can be perfectly and faithfully implemented by S′. Then every
p-family of polynomials associated to a p-family of S-formulas is a projection
of a p-family of polynomials associated to a p-family of S′-formulas.

Proof. Let (φn) be a p-family of S-formulas, and let us fix an integer n.
Let x = {x1, . . . , xp} be the set of variables of the formula φn. This

formula φn is a conjunction of logical relations fi ∈ S applied on variables
from {x1, . . . , xp}. If we replace each of those relations fi by a perfect and
faithful implementation using constraints in S′, using for each fi a new set
of auxiliary variables, we obtain a conjunction ψn of logical relations from
S′ applied on variable set x ∪ y, where y = {y1, . . . , yq} is the union of the
auxiliary variables sets added for each logical relation fi.

Since all implementations are perfect and faithful, every assignment to
x that satisfies all constraints of φn can be extended by a unique assignment
to x ∪ y that satisfies all constraints of ψn. Conversely, for an assignment
to x that does not satisfy all constraints of φn, no assignment to x ∪ y can
extend the previous one and satisfy every constraint of ψn.

Since ψn is a conjunction of logical relations from S′ applied on a set of
variables x ∪ y, ψn is a S′-formula. Furthermore, the number of constraints
of ψn is bounded by the product of the number of constraints of φn and the
maximum number of logical relations from S′ needed to implement a logical
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relation from S - which does not depend on n. The size of ψn is therefore
polynomially linear in the size of φn. We have:

P (φn)(X1, . . . ,Xp) =
∑

ε∈{0,1}p

φn(ε)X
ε

=
∑

ε∈{0,1}p,y∈{0,1}q

ψn(ε, y)X
ε

=
∑

ε∈{0,1}p,y∈{0,1}q

ψn(ε, y)X
ε
1y1 . . . 1yq

= P (ψn)(X1, . . . ,Xp, 1, . . . , 1)

Finally, the family (P (φn)) is a projection of the family (P (ψn)), which
is a p-family of polynomials associated to S′-formulas. 2

From the two previous lemmas, and from the VNP-completeness of fam-
ilies of polynomials associated to {OR0}- , {OR1}- and {OR2}-formulas, we
conclude that for every set of logical relations S such that S contains non
affine relations, there exists a VNP-complete family of polynomials associ-
ated to S ∪{F}-formulas. To get rid of the logical relation {F}, the authors
of [5] need to re-investigate the expressiveness of a non affine relation, and
distinguish various cases. For our polynomial problems, we can easily force
a boolean variable to be set to false by giving to the associated polynomial
variable the value 0. We can now give the proof of Theorem 2:

Proof. Let (φn) be a p-family of S∪{F}-formulas such that (P (φn)) is VNP-
complete. The existence of such a family is ensured by lemmas 4 and 5.

Let us consider an integer n. φn(x1, . . . , xn) is a conjunction of logical
relations from S applied to variables from x and and constraints of the
form (xi = 0). We remark, that if φn(x) contains the constraint (xi = 0),
then the variable Xi does not appear in the polynomial P (φn)(X1, . . . ,Xn):
all the monomials containing the variable Xi have null coefficients. If we
suppress from the conjunction the constraint (xi = 0), and instead replace
the corresponding variable Xi by 0, we obtain exactly the same polynomial:
the monomials such that Xi appears in it have null coefficients; the others
correspond to assignments such that xi = 0. Let us denote ψn the formula
obtained by suppressing from φn all the constraints of the form (xi = 0).

Since P (φn)(X1, . . . ,Xn) = P (ψn)(y1, . . . , yn), where yi is 0 if the con-
straint (xi = 0) was inserted in φn, and Xi otherwise, we have, that (P (φn))
is a projection from (P (ψn)). Thus, the family (P (ψn)) is VNP-complete.
Since ψn is a S-formula, we have constructed a p-family of S-formulas such
that the associated family of polynomials is VNP-complete. 2
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6 #P-completeness proofs

Up to now, we have studied vertex weighted graphs mostly from the point of
view of algebraic complexity theory. Putting weights on edges, or on vertices,
can also be useful as an intermediate step in #P-completeness proofs [15, 7].
Here we follow this method to obtain new #P-completeness results. Namely,
we prove #P-completeness under many-one reductions for several problems
which were only known to be #P-complete under oracle reductions.

Theorem 8 The following problems are #P-complete under many-one re-
ductions.

1. Vertex Cover: counting the number of vertex covers of a given a graph.

2. Independent Set: counting the number of independent sets of a given
graph.

3. Bipartite Vertex Cover: the restriction of vertex cover to bipartite
graphs.

4. Bipartite Independent Set: the restriction of independent set to bipar-
tite graphs.

5. Antichain: counting the number of antichains of a given poset.

6. Ideal: counting the number of ideals of a given poset.

7. Implicative 2-SAT: counting the number of satisfying assignments of
a conjunction of implicative 2-clauses.

8. Positive 2-SAT: counting the number of satisfying assignments of a
conjunction of positive 2-clauses.

9. Negative 2-SAT: counting the number of satisfying assignments of a
conjunction of negative 2-clauses.

Remark 1 #P-completeness under oracle reductions is established in [12]
for the first six problems, in [10] for the 7th problem and in [16] for the last
two. In Section 2, the last three problems are denoted #SAT(S) where S is
respectively equal to {OR1}, {OR0} and {OR2}.

Proof. Provan and Ball establish in [12] the equivalence of Problems 1 and 2,
3 and 4, and 5 and 6; they produce many-one reductions from 1 to 8 and
from 4 to 5, and Linial gives in [10] a many-one reduction from 6 to 7.
Problems 8 and 9 are clearly equivalent.

Therefore, to obtain #P-completeness under many-one reductions for all
those problems, we just need to show the #P-completeness of Problem 1 and
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to produce a many-one reduction from problem 1 to Problem 3 (replacing
the oracle reduction from [12]).

In order to prove the #P-completeness of Problem 1, we first estab-
lish a many-one reduction from the #P-complete problem of computing the
permanent of {0, 1}-matrices to the problem of computing the vertex cover
polynomial of a weighted graph with weights in {0, 1,−1}. In [2], Bürgisser
attributes to Jerrum a projection from the permanent to the partial perma-
nent, with the use of the constant −1. Applied to a {0, 1}-matrix, this gives
a many-one reduction from the permanent on {0, 1}-matrices to the partial
permanent on {0, 1,−1}-matrices. By Theorem 5, the n× n partial perma-
nent is equal to the independent set polynomial of the graph G′

n, which is
computable in time polynomial in n. Moreover, by Lemma 1 this polyno-
mial is the projection of the vertex cover polynomial of Gn, with the use of
the constant −1. The partial permanent on entries in {0, 1,−1} therefore
reduces to the vertex cover polynomial on graphs with weights in {0, 1,−1}.

Let G be such a vertex weighted graph, with weights in {0, 1,−1}. A
vertex cover of nonzero weight does not contain any vertex of weight 0, and
in order to cover the edges that are incident to such a vertex it must contain
every vertex u that is adjacent to a vertex of weight 0. One can therefore
remove all vertices of weight 0, and replace each edge from such a vertex v to
another vertex u by a self-loop (an edge from u to u). This transformation
does not change the vertex cover polynomial, and it is always feasible since
there are no adjacent vertices of weight zero in the graph G obtained by
the projection from Lemma 1. Thus, we obtain a graph G′ with weights in
{1,−1} such that VCP(G) = VCP(G′).

To deal with the weights −1, we use a method similar to [15]. Since
VCP(G′) is the value of a permanent on a {0, 1}-matrix, it is positive. We
will construct an integer N and a graph H such that the number of vertex
covers of H modulo N is equal to VCP(G′). This will establish a reduction
from the boolean permanent to counting vertex covers.

We choose N larger than the maximum value of the number of vertex
covers of G′: N = 2v(G′) + 1 will suit our purposes. Now that we compute
the number of vertex covers modulo N , we can replace each −1 weight in G′

by the weight N − 1 = 2v(G′). As shown in Figure 2, we can simulate such
a weight on a vertex by adding v(G′) leaves for each vertex of weight −1.

Finally, to prove the #P-completeness of Problem 3 we construct a re-
duction from vertex cover to bipartite vertex cover. From Lemma 2, we have
a projection from the vertex cover polynomial of a graph to the vertex cover
of a bipartite graph, with the use of −1 weights. To eliminate these weights,
we can follow the method used in our above proof of the #P-completeness of
Problem 1. Indeed, since the leaves added to the graph preserve bipartite-
ness, we obtain a reduction from counting vertex covers in a general graph
to counting vertex covers in a bipartite graph. 2
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w(u) = 2k
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u

Figure 2: Simulation of a weight 2k

The proof of Creignou and Hermann’s dichotomy theorem [4, 5] is based on
many-one reductions from the last 3 problems of Theorem 8. We have just
shown that these 3 problems are #P-complete under many-one reductions.
As a result, we have the following corollary to Theorem 8.

Corollary 2 Theorem 1 still holds for #P-completeness under many-one
reduction.
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A The case of affine constraints

Recall that an affine formula is a conjunction of constraints of the form
a1⊕· · ·⊕ap = 0 or a1⊕· · ·⊕ap = 1, where the ai’s are boolean variables. In
this section we study S-formulas where S contains only affine constraints.

A conjunction of affine formulas may be seen as a system of linear equa-
tions over the field Z/2Z. The number of satisfying assignments of the
conjunction is computable in polynomial time by e.g. Gaussian elimination.

More generally, we would like to know whether the evaluation of the
polynomials P (φn) associated to a p-family of affine formulas is in VP. This
problem remains open, but we provide efficient evaluation algorithms in a
couple of cases.

A.1 Evaluation at special points

Here we show that P (φn) can be evaluated efficiently when its variables take
values in {−1, 0, 1}.

Let (φn)n∈N be a family of affine formulas of polynomial size. Let us fix
an integer n, and let m the number of variables of φn. As pointed out above,
we can solve the formula φn in polynomial time. The solution set S is an
affine subspace of {0, 1}n. Its cardinality is 2k, where k is the dimension of
S. Thus we know how to compute P (φn) when all variables take the value 1.
To allow values from {0, 1}, we can simply add the constraint εi = 0 for each
Xi which takes a zero value. This brings us back to the previous case.

Next we explain how to deal with values from {−1, 1}. Since φn accepts
only the elements of S, we have:

P (φn)(X1, . . . ,Xm) =
∑

ε∈{0,1}m

φ(ε)X
ε

=
∑

ε∈S

X
ε

Let a = (a1, . . . , am) be an element of S, let k be the dimension of S,
and let (e1, . . . , ek) be a basis of the corresponding linear subspace. For all
i in [0, k], we denote ei = (ei,1, . . . , ei,k). We have

P (φn)(X1, . . . ,Xm) =
∑

η∈{0,1}k

X
a1⊕η1e1,1⊕···⊕ηkek,1

1 · · ·X
am⊕η1e1,m⊕···⊕ηkek,m
m

Since this expression has an exponential number of monomials, it is
not computable directly. We do not know how to evaluate it efficiently in
general, but the problem becomes easier in the case of entries in {1,−1}. In
this case, each Xi verifies the equation X2

i = 1. Thus,

X
a1⊕η1e1,i⊕···⊕ηkek,i

i = X
a1+η1e1,1+···+ηkek,1

i .

19



The polynomial P (φn) may be factored as follows:

P (φn) = (
∏

i=1...m

Xai

i ) · (
∏

i=1...k

∑

ηi∈{0,1}

X
ηiei,1

1 · · ·X
ηiei,m
m )

and this expression can be evaluated efficiently.
Finally, to deal with entries from {−1, 0, 1} we can use the trick explained

at the beginning of this subsection: adding the constraint εi = 0 for each
variable Xi which takes the value zero brings us back to the case of {−1, 1}-
valued variables.

A.2 Few linear equations

A second case where we have an efficient evaluation algorithm for P (φn) is
when S can be defined by a “small” number of affine equations. For the
sake of clarity, consider first the case where φ is defined by a single affine
constraint α1x1 ⊕ · · · ⊕ αmxm = b, where αi ∈ {0, 1}. We can compute
recursively the polynomials P 1

i and P 0
i associated respectively to the two

constraints

α1x1 ⊕ · · · ⊕ αixi = 1, α1x1 ⊕ · · · ⊕ αixi = 0.

Indeed, for αi = 1 we have

P 1
i (X1, . . . ,Xi) = Xi × P 0

i−1(X1, . . . ,Xi−1) + P 1
i−1(X1, . . . ,Xi−1)

and

P 0
i (X1, . . . ,Xi) = Xi × P 1

i−1(X1, . . . ,Xi−1) + P 0
i−1(X1, . . . ,Xi−1).

For αi = 0 and any ε ∈ {0, 1}, we have

P ε
i (X1, . . . ,Xi) = (1 +Xi)P

ε
i−1(X1, . . . ,Xi−1).

By dynamic programming, we can evaluate our polynomial in O(m) arith-
metic operations. This method is still valid with a conjunction of r > 1
affine constraints, but now we need to compute the intermediate polyno-
mials for all combination of possible constants (b1, . . . , br) ∈ {0, 1}r in the
right side of the linear equations defining S. So this method is efficient only
when the number r of linear equations grows logarithmically.
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B The permutation function is not affine

Let φn = PERMUTATIONn be the boolean function in n2 variables that
accepts the n × n permutation matrices. This function is the coefficient
function of the permanent. Namely, for a matrix M = (Xi,j)(i,j)∈[1,n]2 we
have

PER(M) =
∑

ε∈{0,1}n×n

φn(ε)X
ε

(6)

where as usual X
ε

represents the product
∏

(i,j)∈[1,n]2 X
εi,j

i,j .
In this section we show that φn is not affine (recall that a boolean func-

tion is affine if it expressible as a system of affine equations over Z/2Z). This
is to be expected since, by (6), the results of section A.1 would otherwise
lead to an efficient evaluation algorithm for the 0/1 permanent. The goal
of this section is to give an unconditional proof of the fact that φn is not
affine.

Proposition 1 For n ≥ 3, PERMUTATIONn is not an affine function.

Proof. Let 1-in-3(x, y, z) be the boolean function which takes the value 1
when exactly one of its 3 variables is equal to 1. We will show that this
function is a projection of φn = PERMUTATIONn, but that it is not the
projection of any affine function.

To obtain the first part of this claim, denote by φ′(x, y, z) the boolean
function obtained by applying φn to the boolean matrix

























x y z 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . . z

z 0
. . .

. . . y
y z 0 · · · 0 x

























.

Since a permutation matrix has exactly one 1 in each row and each
column, φ′ will accept exactly the entries (1, 0, 0), (0, 1, 0) or (0, 0, 1). Hence
φ′ is nothing but the 1-in-3 function.

On the other hand, let ψ′(x, y, z) be a projection of a boolean function ψ:
this means that ψ′ is obtained from ψ by replacing its variables by variables
from {x, y, z}, or by boolean constants. If ψ is affine, ψ′ must be affine too.
The set of its satisfying assignements is therefore a linear space over Z/2Z,
and its cardinality must be a power of two. As a result, such a ψ′ cannot
accept the set {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. 2
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The bound n ≥ 3 in this proposition is optimal since φ2 is an affine function.
Note also that when the matrix used in the definition of φ′ is the matrix of
a permutation, it is also the matrix of a Hamilton cycle; when it is not, it
is not even the matrix of an injective partial map from [1, n] to [1, n]. The
same reasoning therefore provides two other examples of non affine functions:
the boolean function that accepts the matrices of Hamilton cycles, and the
boolean function that accepts the matrices of injective maps from [1, n] to
[1, n] (these boolean functions are the coefficient functions of the Hamilton
cycle polynomial and of the partial permanent).
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