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Abstract

We measure the mechanical thermal noise of soft silicon atomic force microscopy cantilevers. Using
an interferometric setup, we have a resolution down to 10−14 m/

√

Hz on a wide spectral range (3Hz to
105 Hz). The low frequency behavior depends dramatically on the presence of a reflective coating: almost
flat spectrums for uncoated cantilevers versus 1/f like trend for coated ones. The addition of a viscoelastic
term in models of the mechanical system can account for this observation. Use of Kramers-Kronig relations
validate this approach with a complete determination of the response of the cantilever: a power law with
a small coefficient is found for the frequency dependence of viscoelasticity due to the coating, whereas the
viscous damping due to the surrounding atmosphere is accurately described by the Sader model.
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1 Introduction

The interest to study micro-cantilevers, at first related to its use in atomic force microscopy (AFM), is even
increased as it represent a fundamental part of microelectromechanical systems (MEMS). Functionality of
MEMS as AFM sensors is based on mechanical movements and deformation of the cantilever. Their thermal
noise represent one of the most important noise sources and finally determines the ultimate deflection sensitivity
of the sensor [1, 2, 3, 4, 5, 6, 7]. This mechanical-thermal noise can also be important in the study of macroscopic
systems, and has been shown for instance to be a relevant term in the sensitivity limitations of interferometric
detectors for gravitational waves [8, 9, 10, 11]. Several observations have shown that surface effects can play a
significant part in understanding the origin of these thermal fluctuations [7, 10, 11, 12, 13, 14].

As shown by the fluctuation dissipation theorem (FTD) [15], these thermal induced mechanical fluctuations
are linked to the losses of energy occurring during deformations of the system. Many models have been proposed
to account for the numerous physical sources of dissipation: viscous damping in the surrounding fluid [16],
clamping losses [3], thermoelastic dissipation [17, 18, 19], etc. In his pioneering paper Saulson [1] proposed a
model of mechanical-thermal noise for a simple harmonic oscillator with viscoelastic damping. In particular he
showed that, considering only structural damping as the dissipation mechanism, the power spectrum density
(PSD) of fluctuations presents a 1/f trend at low frequencies. This is the viscoelastic model. In general, a key
difference between all these models is the frequency dependence of the noise or dissipation. It is however a great
challenge to measure thermal noise or small damping on a wide range of frequency, and very few experiments
[8, 9, 10, 20] have succeed so far in directly measuring fluctuations out of resonances, notably at low frequency.

We propose here a direct measurement of a mechanical-thermal noise of a microcantilever, realized with
an interferometric technique. A principal advantage of our setup is that offers, thanks to its sensitivity, the
possibility to resolve not only the resonances of the PSD as in the standard AFM optical lever technique, but
the whole spectrum from 3Hz to 4 × 104 Hz. In this paper, we will first present a short introduction to a few
useful models for the cantilever noise: simple harmonic oscillator with viscous damping, viscoelastic model,
Sader model. We will then present measurements on a raw silicon cantilever and a golden coated one, with
clear 1/f like noise for the latter. Vacuum experiments to reduce the viscous effects due to the surrounding
atmosphere will demonstrate that this behavior is an intrinsic property of the cantilever. With the use of
FDT and Kramers-Kronig relations, we will eventually rebuild the full mechanical response function from the
measured PSD. We will then propose a phenomenological model to closely mach the observations, adding a
frequency dependent viscoelasticity for inner dissipation to the Sader’s approach for surrounding atmosphere.

2 Thermal noise of a damped harmonic oscillator

When a mechanical system is in equilibrium with a thermal bath at temperature T , there is a continuous
exchange between the mechanical energy accumulated in the system and the thermal energy of the environment.
The thermal fluctuations of an observable d are described by the Fluctuation-Dissipation Theorem [15], which
relates the power spectrum density (PSD1) Sd(f) to the response function G of the system:

Sd(f) =
〈d2〉

∆f
= −

4kBT

ω
ℑ

[

1

G(ω)

]

(1)

where kB, ∆f and ω = 2πf are the Boltzmann constant, the spectral bandwidth and the pulsation corresponding
to frequency f . ℑ stand for the imaginary part of its argument. G(ω) is defined as

G(ω) =
F (ω)

d(ω)
(2)

where F is the variable coupled to d in the Hamiltonian of the system.
Let us consider the case of a simple harmonic oscillator (SHO) with viscous damping as a simple model of

a mechanical dissipative system, where d and F are the displacement and the force applied to the system. It
responds to the equation of motion:

md̈ = −κd − γḋ + F (3)

1In this paper we will use one sided power spectrum densities function of frequency f , such that < d2 >=
R

∞

0
Sd(f)df , for easier

comparison to experiments, whereas response functions G will be given as a function of the pulsation ω.
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where m is the mass, κ the spring constant and γ the damping coefficient. In Fourier space this equation can
be rewritten as

GSHO(ω) = κ

[

1 −
ω2

ω2
0

+ i
ω

Qω0

]

(4)

where we introduced the resonant pulsation ω0 =
√

κ/m and the quality factor Q = mω0/γ. In this case, from
equations 1 and 4, the PSD of thermal fluctuations is given by

SSHO
d

(f) =
4kBT

κω0

1/Q

(1 − u2)
2

+ (u/Q)2
(5)

where u = ω/ω0 is the reduced frequency.
Up to now, we have considered only viscous damping (proportional to velocity). In a more general case we

can consider another dissipation source: the spring itself may be viscoelastic. This can be modeled by a complex
spring constant [1] κ∗ = κ(1+ iφ) in the Fourier space. The imaginary part of complex spring constant κφ takes
into account the dissipation because it includes a component of the restoring force which is out of phase with
the displacement. As we are interested in resonant systems, we will generally assume that φ ≪ 1. If we only
consider the viscoelastic damping, eq. 4 and 5 turn into:

Gκ
∗

(ω) = κ

[

1 −
ω2

ω2
0

+ iφ

]

(6)

Sκ
∗

d
(f) =

4kBT

κω0

φ/u

(1 − u2)2 + φ2
(7)

In this model the resonance can be characterized by an effective quality factor Q∗ = 1/φ. If we consider both
the viscoelastic and the viscous damping, we have:

GSHO∗

(ω) = κ

[

1 −
ω2

ω2
0

+ i

(

ω

Qω0

+ φ

)]

(8)

SSHO∗

d
(f) =

4kBT

κω0

1/Q + φ/u

(1 − u2)2 + (u/Q + φ)2
(9)

The effective quality factor Qeff of the resonance is here a combination of both dissipation processes:

1

Qeff

=
1

Q
+

1

Q∗
(10)

If we reduce viscous damping to zero (Q → ∞), Q∗ represent the upper bound of achievable effective quality
factor.

The models with and without viscoelasticity present significant differences at low frequencies: the viscous
damping model (labelled SHO) produces a constant spectrum, while the viscoelastic models (labelled κ∗ and
SHO∗) give rise to a 1/f trend (for a frequency independent κ∗, a common observation for many material
[21, 22, 23, 24] usually referred to as strucutral damping is the literature). They can be useful to study the
thermal noise driven fluctuations of a microcantilever around and below its first resonance. Indeed, the expansion
theorem states that the response of a continuous system to an applied force is equal to the superposition of
the responses of each of the normal mode of the system [1], hence it is usual to modelize the first mode as a
simple harmonic oscillator. This classic assumption has been validated by Sader [16] around resonances with
high quality factors, which is common for cantilevers in vacuum or air. Nevertheless, the Sader model [16] is
much richer to describe the off resonance behavior and will be useful to understand our measurements, hence
we will quickly recall its main lines here.

When a cantilever is moving inside a fluid, it is subject to a force corresponding to the hydrodynamic load
Fhydro(ω) due to the motion of the fluid around the beam. Following Sader’s approach [16], this hydrodynamic
load can be approximated by

Fhydro(ω) =
π

4
ρω2b2Γ(ω)d(ω) (11)

where ρ is the density of the fluid and Γ(ω) the hydrodynamic function corresponding to a thin rectangular
cantilever beam of width b and length L. An explicit formula of Γ for a infinitely thin cantilever much longer
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than wide is given in ref. [16]. Considering only the first resonance and measuring the deflection d at the free
extremity of the cantilever, it can be shown that the response function GSader(ω) is [25]

GSader(ω) = 1.03κc −
1

4
mc (1 + τ(ω)) ω2 (12)

with κc and mc the static spring constant and mass of the cantilever, and τ(ω) = πρb2LΓ(ω)/4mc. The real
part τr of τ corresponds to the added mass due the fluid moving along with the cantilever during its motion
(normalized to the cantilever mass mc), and the imaginary part τi to the viscous drag. The correspondence
to the SHO model is immediate : in vacuum (Q → ∞ and τ(ω) = 0), we identify the effective mass of the
oscillator to a quarter of the cantilever mass (m = mc/4) and the spring constant to κ = 1.03κc. Reporting the
above expression of GSader(ω) into eq. 1 directly gives the expected spectrum in this model:

SSader
d

(f) =
4kBT

κω0

τi(ω)u

(1 − (1 + τr(ω))u2)2 + τ2
i
(ω)u4

(13)

The low frequency behavior of this model is a little different from the SHO model: instead of a constant spectrum
at low frequency, the noise is expected to slowly vanish as f → 0 [25].

Just as for the simple viscoelastic model (SHO∗), one can include an internal dissipation in the Sader model
by considering a complex spring constant κ∗ (corresponding to a complex young modulus). This extended Sader
model will be labelled as Sader∗:

GSader∗(ω) = κ(1 + iφ) − m(1 + τr(ω) + iτi(ω))ω2 (14)

SSader∗

d
(f) =

4kBT

κω0

τi(ω)u + φ/u

(1 − (1 + τr(ω))u2)2 + (τi(ω)u2 + φ)2
(15)

This last model will be equivalent to the simple viscoelastic oscillator (κ∗) for low frequencies and to the Sader
model at higher frequencies.

We plot in Fig. 1 the typical behavior we can expect from the 5 different models. The presence of a
viscoelastic behavior is evidenced at low frequency by a none vanishing imaginary part of the response function
G, which induces a divergence of the power spectrum of fluctuations when f goes to 0. The resonance is also
influenced by the chosen model: viscoelasticity alone will produce sharper resonance, and the additional inertia
due the fluid taken into account with Sader model shifts it to lower frequencies.

3 Experiments and results

We use BudgetSensors Atomic Force Microscopy (AFM) cantilevers (BS-Cont) with and without gold coating.
They present a nominal rectangular geometry: 450µm long, 50µm wide and 2µm thick, with an optional 70 nm
gold layer on both sides. The measurement is performed with a home made interferometric deflection sensor
[26], inspired by the original design of Schonenberger [27] with a quadrature phase detection technique [28]:
the interferences between the reference laser beam reflecting on the base of the cantilever and the sensing laser
beam on the free end of the cantilever directly gives a calibrated measurement of the deflection d, with very
high accuracy. A first advantage of the technique is that it offers a calibrated measurement of the deflection,
without conversion factor from Volt to meter as in the standard optical lever technique common in AFM. We
illustrate in Fig.2 the performance of our detection system with the power spectrum density of a rigid mirror
(bottom black line on each graph): the light intensities on the photodiodes are tuned exactly as during the
measurement on the cantilever, but since the mirror is still the measured spectrum reflects only the detection
noise. This background noise is as low as 8 × 10−28 m2/Hz for the golden coated cantilever measurement, just
30% higher than the shot noise limit of our detection. At frequencies smaller than 100Hz, the electronic noise
starts dominating the spectrum but the noise keeps smaller than 2 × 10−26 m2/Hz at 3 Hz. The noise is a bit
higher for the raw silicon cantilever measurement, as its reflectivity is smaller and shot noise thus increases.

We plot in Fig.2 the PSD of thermal noise driven deflection at the free end of the cantilevers (with and without
gold coating) in air at atmospheric pressure. The thermal excitation operates like a white noise force on the
cantilever. Within the frequency bandwidth of our acquisition card (0 − 100 kHz), the two resonances present
in each spectrum correspond to the first two modes of oscillation of the cantilever modeled as a mechanical
embedded-free beam. In agreement with the Euler-Bernoulli model [29] these frequencies satisfy the relation
f1/f0 = 6.26. We also have a lot of information around the first resonance as the measurements are always above
the background noise of the system, notably at low frequency. If we subtract the background noise spectrums
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from the measurements, we have an estimation of the thermal noise of the first resonance of the system on the
whole 3Hz to 40 kHz frequency interval, which we can compare to the theoretical expectation of the models
presented in the previous section.

The low frequency part of the spectra of the two cantilevers is completely different. For the uncoated
cantilever, the trend is a slow decrease as f goes to 0, while the spectrum increases in 1/f like fashion when a
coating is present. Let us first focus on the raw silicon cantilever. As shown on Fig.3(a), if the SHO model of eq.
(5) is fine to fit the resonance, it looses its pertinency at low frequency, where the value of the plateau cannot
be tuned without degrading the fit of the resonance. In fact, once matched the resonance frequency (f0), width
(∝ 1/Q) and height (∝ Q/κ), there are no adjustable parameters left. The Sader model, introducing a frequency
dependance in the viscous dissipation, sticks much closer to the measurement. To compute this prediction, we
used the tabulated values for the properties of silicon and air at room temperature, and the explicit formula of
ref.[16] for the hydrodynamic function. The physical dimensions of the cantilever (length, width and thickness)
were tuned within the manufacturer tolerance to match the experimental observation. The agreement is very
good till frequencies much smaller than the resonance, and present a validation of Sader’s approach outside the
resonances where it had been tested up to now [30, 31, 32].

For the coated cantilever, as shown on Fig.3(b), viscous damping is clearly inappropriate to interpret the
low frequency part of the spectrum. This 1/f like behavior was reproducible with cantilevers from various
manufacturers and with various metallic coatings, although the stronger effect was obtained with gold. The
viscoelastic contribution introduced in the SHO∗ and Sader∗ model supplies a qualitatively good description of
the spectrum. Here a new free parameter is introduced to adjust the data: the loss tangent φ, which is of order
10−3 . As for the raw cantilever, Sader’s approach for viscous dissipation gives better results when we leave the
immediate surroundings of the resonance, allowing a better match with the measurement in the few kHz range.

To make sure that the low frequency part of the spectrum of the golden coated cantilever doesn’t depend
on the viscous damping due to the surrounding atmosphere, we made a measurement in vacuum at 10−5 mbar.
Fig. 4 shows that, in agreement with the viscoelastic models, the only effect of reducing pressure is an increase
of the effective quality factor Qeff, the low frequency part is unchanged and therefore related to an inner
behavior of the cantilever. It is also worth mentioning that in vacuum the effective quality factor of the coated
cantilever is about one order of magnitude smaller than that of the raw cantilever, pointing also to some higher
inner dissipation. This last point has been studied as a function of the gold layer thickness and surrounding
atmosphere pressure in ref. [14], with similar observations.

4 Discussion

In the viscoelastic model we made the implicit hypothesis of a frequency independent complex elastic constant
κ∗. This is an approximation as this can’t satisfy the Kramers Kronig relations [33]. In order to improve our
understanding of the properties of the system we need to estimate this dependance. We will use for this the
Fluctuation-Dissipation Theorem [15] and the Kramers-Kronig relations [33], which allow from the knowledge
of the real or the imaginary part of a transfer function to rebuild entirely this function. Indeed, thanks to the
sensitivity of our apparatus, we resolve the power spectrum of fluctuation from very low frequencies to beyond
the resonance (Fig. 4). Using the FDT (eq. 1), we can estimate from this spectrum the imaginary part of the
response function ℑ(1/G(ω)). We can consequently rebuilt with an algorithm based on the Kramers Kronig
relations the full response function G(ω) [34].

We plot in Fig. 5 the result of this reconstruction process for the 2 spectrums of Fig. 4: golden coated
cantilever at atmospheric pressure and in vacuum. The SHO∗ model provides a qualitative description of the
response G: the real part is a parabola independent of the value of the pressure, its value at f = 0 being the
spring constant and the quadratic shape resulting from the inertia of the system; while the imaginary part is
roughly the addition of a constant term (viscoelasticity) and a linear term in frequency for the measurement in
air (viscous damping).

We notice anyway that this model needs some refinement: as expected, the viscoelastic term is not fre-
quency independent. Indeed, in vacuum this is the only dissipative source, and according to eq. 6 we measure
ℑ(Gκ

∗

(ω)) = ℑ(κ∗(ω)) = κ(ω)φ(ω). As shown by the fit on vacuum data in Fig. 5(b), a very good approxima-
tion is given by a power law with a small exponent: ℑ(κ∗(ω)) ∝ ωα with α = −0.11. This functional form as
also the advantage of being compatible with Kramers-Kronig relations, which lead to the full description of the
frequency dependent complex spring constant:

κ∗(ω) = κ − κJ

(

i
ω

ω0

)α

(16)
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where κJ is real. In dielectric measurements, such frequency dependence has been introduced by Jonscher [35]
and is used to describe a pseudo-conductivity (divergence of the dissipative part of the dielectric constant as
ǫ′′ ∝ ωα with −1 < α < 0, pure conductivity corresponding to α = −1). The two parameters describing the
frequency behavior are extracted from the fit on the imaginary part ℑ(Gκ

∗

(ω)): for this particular cantilever,
we measure κJ = 7 × 10−4 N·m−1 and α = 0.11.

The zoom at low frequency in the inset of Fig. 5(a) shows an unexpected behavior of ℜ(G) as f goes to
0: instead of the constant trend predicted by the SHO and Sader models, it presents a maximum and a steep
decrease (of small amplitude though). At low frequency inertial effects are negligible, thus the real part of
G is directly the real part of the spring constant: for frequency dependent viscoelastic models, ℜ(G(ω)) ≃
ℜ(κ∗(ω)) = κ − κJ cos(απ/2)(ω/ω0)

α. κJ and α are already fixed by the fit on the imaginary part of the
reconstructed function ℑ(G(ω)), hence we didn’t need to introduce any new adjustable parameters to closely
match the observations on the real part as illustrated in the inset of Fig. 5(a).

From this improved description of the complex spring constant, the models introduced previously can be
refined by taking into account the frequency dependence of κ∗(ω): we will label as κ∗

ω
the pure viscoelastic model,

SHO∗

ω the one adding the simple viscous damping and Sader∗ω the most complete model including viscoelasticity
and Sader’s treatment for the surrounding atmosphere. As shown on Fig. 5, the κ∗

ω
model gives a very good

description of the vacuum measurement and of the reconstructed response function G. For the measurement
at atmospheric pressure, the SHO∗

ω model is fine at low frequency, but not very accurate to describe data
above 1 kHz: the frequency dependance of the dissipation is not simply linear. This mismatch disappear with
the Sader∗ω model, as illustrated by Fig. 6. The agreement is excellent: the frequency dependent viscoelastic
dissipation at low frequency and the Sader approach to the viscous coupling with air at high frequency fit very
accurately the reconstructed imaginary part of the response function, even in the transition region between the
two regimes.

The inset in Fig. 6(a) shows how details in the real part are also well described by the model. The zoom
around the resonance frequency demonstrates the effect of added mass due to the air around the cantilever: the
resonance frequency (corresponding to the zero of ℜ(G)) is slightly shifted to lower frequency in air with respect
to vacuum (−0.5% in frequency corresponding to a 1% added mass). The Sader models accurately accounts
for this observation.

5 Conclusions

We have measured the power spectrum density (PSD) of thermal noise induced deflexion of coated and uncoated
micro-cantilevers at atmospheric pressure and down to 10−5 mbar. Thanks to the sensitivity of our apparatus,
we resolve the spectrum completely from very low frequencies to beyond the resonance. The common simple
harmonic oscillator model with viscous damping is clearly inadequate to describe the off resonance fluctuations,
especially of coated cantilevers. At low frequency, the thermal noise of those shows a 1/f like trend, which can
be seen as the signature of a viscoelastic dissipation in the cantilever. To go further than simple observations,
we use the Fluctuation-Dissipation Theorem and the Kramers-Kronig relations to rebuild from the measured
PSD the complete response function of the cantilever. A simple power law is found to describe accurately the
frequency dependence of the viscoelastic dissipation, and a consistent model can be proposed to fit tightly all
the experimental data: beyond the simple harmonic oscillator approximation, it includes Sader’s approach to
describe the coupling with the surrounding atmosphere and a mechanical Jonscher like term to account for
viscoelasticity.

Let us emphasize a important point here: the use of FDT and Kramers-Kronig relations to rebuilt the
mechanical response function of the system is based on very general hypotheses (linear response, causality,
thermal equilibrium). Our measurements are thus free of any hypothesis on the dissipation processes in the
cantilever, and the viscoelastic model we eventually propose is purely phenomenological. Although viscoelastic-
ity or anelasticity had already been used in several models to account for observations, it has mostly been limited
to the resonances of oscillators and to their quality factors. Our experiment offers a complete determination
of its properties on a coated micro-cantilever, with quantitative measurement of its amplitude and frequency
dependence on a wide spectral range.

The use of thermal noise is a key point of our approach, since we don’t need to determine exactly the
transfer function of the external forcing method which is usually necessary to measure a response function. We
get an excellent resolution with measurement of mechanical loss tangents smaller than 10−3 . Even such a small
dissipation has some consequences on the operation of micro-cantilevers, notably when they are used in vacuum:
it gives an upper bound to the quality factor of the resonances. If we don’t explain the physical origin of the
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viscoelasticity due to the coating, we can anyway quantify it and our measurements should be useful in the
perspective of testing models of internal friction, eventually leading to improved coating procedures and better
performance of cantilever based sensors. Our method would also be suited to study other type of coatings, such
as those implied in chemical or biological sensors, alone or linked to the target molecules.

Acknowledgements

We thank F. Vittoz and F. Ropars for technical support, and N. Garnier, S. Joubaud, S. Ciliberto, A.
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Figure 1: Mechanical response function and thermal noise spectrum of a cantilever for various models. (a) Real
part of the response function normalized by the spring constant. (b) Imaginary part of the response function
normalized by the spring constant (log scale on both axes). (c) Power Spectrum Density (PSD) of thermal noise
induced fluctuations, normalized by kbT/κ (log scale on both axes). Viscoelastic models prevent dissipation
to vanish at low frequencies, thus raising the thermal noise in this limit. Sader models take into account the
additional inertia due to the surrounding fluid, shifting the resonances to lower frequencies.
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(a) BS-Cont cantilever

(b) BS-Cont-GB cantilever

Figure 2: Power Spectrum Density (PSD) of thermal noise induced fluctuations for a raw silicon cantilever (a)
and a golden coated one (b). The background noise of the system (bottom black line) is measured on a rigid
mirror with light intensities on the photodiodes tuned exactly as during the measurement on the cantilever. We
subtract this noise from the raw measurement (dashed line) to estimate the actual thermo-mechanical noise of
the cantilever (plain line). In this frequency window, the first 2 flexural resonances are clearly visible, but the
low frequency noise can also be studied.

12



10
1

10
2

10
3

10
4

10
−28

10
−26

10
−24

10
−22

 

 

10
1

10
2

10
3

10
4

10
−28

10
−26

10
−24

10
−22

 

 

P
S
D

S
d
(f

)/
(m

2
/
H

z)
P

S
D

S
d
(f

)/
(m

2
/
H

z)

Frequency f/Hz

(a)

(b)
meas.

meas.

SHO

Sader

SHO∗

Sader∗

Figure 3: Power Spectrum Density (PSD) of thermal noise induced fluctuations for a raw silicon cantilever (a)
and a golden coated one (b). Their low frequency behavior are very different: the metallic layer induces a much
larger noise when f goes to 0, with a 1/f like frequency dependance that can be modeled with a viscoelastic dis-
sipation (models SHO∗ and Sader∗). If simple harmonic oscillators models are fine for the resonance, they loose
their pertinency at lower frequencies, where the Sader approach stick closer to the experimental observations.
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Figure 4: Power Spectrum Density (PSD) of thermal noise induced fluctuations for a golden coated cantilever
at atmospheric pressure (blue) and in vaccum (red). The low frequency behavior is exactly the same. In
agreement with the viscoelastic model, this part of the spectrum doesn’t depend on the viscous damping due
to the surrounding atmosphere, and is therefore related to a dissipation in the cantilever itself.
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Figure 5: Reconstructed mechanical response function and thermal noise spectrum of a golden coated cantilever
in air and in vacuum. (a) Real part of the response function. The inset is a zoom around f = 0 (400Hz wide and
10−3 N·m−1 high). (b) Imaginary part of the response function (log scale on both axes). (c) Power Spectrum
Density (PSD) of thermal noise induced fluctuations (log scale on both axes). The viscoelastic dissipation in
the cantilever is evidence by the vacuum measurement, and can be fitted by a power law of frequency with
a small exponent α = −0.11. The low frequency behavior of the real part of G for the viscoelastic models is
deduced from Kramers-Kronig relations applied to the power law fit of the imaginary part, it matches well the
experimental data. The viscous damping of the SHO models fails to describe the dissipation off resonance in
air.
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Figure 6: Reconstructed mechanical response function and thermal noise spectrum of a golden coated cantilever
in air and in vacuum. (a) Real part of the response function. The inset is a zoom around f = f0 (400Hz
wide and 10−3 N·m−1 high). (b) Imaginary part of the response function (log scale on both axes). (c) Power
Spectrum Density (PSD) of thermal noise induced fluctuations (log scale on both axes). The Sader models
describe accurately the dissipation in air, catching for instance the small frequency shift of the resonance due to
the added mass moving along with the cantilever. The Sader∗

ω
model, summing the two models for dissipation

(frequency dependent viscoelasticity and Sader’s), fits adequately the experimental observations in the whole
frequency window.
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