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INTRODUCTION

Sensor network deployment is nowadays common for system monitoring in many different applications, such as medicine, biology, environment, . . . to name but a few (cf. e.g., [START_REF] Luo | Distributed signal processing in sensor networks[END_REF] and reference therein). Therefore, data to be analyzed often consist of multivariate time series, conveying in a potentially redundant and correlated manner the information practitioners are interested in. Measuring the amount of information shared amongst such data, or their (inter-)correlation levels (or functions), are often key issues in multivariate data analysis and processing. Moreover, in a large number of applications, the time series to be analyzed are characterized by long range dependence [START_REF] Beran | Statistics for Long-Memory Processes[END_REF]: Their autocorrelation functions have extremely slow (algebraic power law type) decay, significantly complicating analyses aiming at establishing whether -and to which extent -the different time series embody identical or complementary information. A fundamental question arising from the analysis of long memory multivariate data is whether there is a unique mechanism in the system controlling long range dependence on the different data components, or whether there are different mechanisms at work, producing unconnected long memory properties. The goal of the present contribution is to propose a statistical test providing practitioners with elements of answer to such questions. Our study is based on the so called fractal connectivity model, recently introduced in [START_REF] Achard | Fractal connectivity of long-memory networks[END_REF] and consisting of multivariate long memory time series (recalled in Section 2): Fractal is used to refer to long memory while connectivity implies that the interspectrum is proportional to the product of the autospectra in the limit of coarse analysis scales (equivalently, low frequencies), i.e, the coherence function goes to a non zero constant in the limit |f | → 0. It is now well-known that long range dependence phenomena are relevantly and accurately analyzed in a wavelet framework [START_REF] Abry | Multiscale nature of network traffic[END_REF] (briefly re-sketched in Section 3). Therefore, to test the fractal connectivity model, we propose a statistical procedure, based on the discrete wavelet transform coherence function and Fisher's Z transform. It is explained and defined in Section 4. Its performance are devised analytically and validated numerically by application to synthetic bivariate long memory time series with and without fractal connectivity (cf. Section 5). It is then applied to Internet traffic packet and byte count time series, collected very recently on a major transpacific backbone (cf. Section 6).

BIVARIATE FRACTAL CONNECTIVITY

Long memory.

Long memory (LM), or long range dependence, is defined, for a process X, as a power law behavior of its spectrum ΓX (f ) at the origin [START_REF] Beran | Statistics for Long-Memory Processes[END_REF]:

ΓX (f ) ∼ C|f | -α , |f | → 0, with 0 < α < 1. (1) 
This property has been widely observed for many different data in various research domains and its relevant analysis is important because it is known to strongly impair parameter estimation and to degrade the performance of a system, e.g., the amount of buffer needed on an Internet link.

Bivariate long memory model. For simplicity of notation, and without loss of generality, we restrict presentation here to the bivariate case only. The proposed test can be straightforwardly extended to the multivariate case by considering time series pairwise. Let Z = {Z(t)} t∈Z = {[X(t), Y (t)]} t∈Z be a real-valued bivariate discrete time series. Following [START_REF] Achard | Fractal connectivity of long-memory networks[END_REF], Z is called a bivariate long memory process with parameters αX , αY , α1 and α2 if its N -th order difference process Z(t) = δ N Z(t) is stationary and has spectral and inter-spectral densities (-π ≤ f ≤ π), where the Ω• consist of arbitrary positive multiplicative factors:

Γ W (f ) = Ω W ˛1 -e -jf ˛-2α W Γ * W (f ), W = X or Y(2) Γ X Ỹ (f ) = Ω12 " 1 -e -jf " -α 1 " 1 -e jf " -α 2 Γ * 12 (f ). (3) 
The parameters α (•) are confined to the range [0, 0.5]. The functions Γ * (•) (f ) are non-negative, symmetric, with limit 1 at the origin, hence modeling short memory (SM) properties at high frequencies, without affecting the spectral densities around the origin. Let us define αXY = α1 + α2. By definition, the coherence function:

C X Ỹ (f ) = |Γ X Ỹ (f )| √ Γ X (f )Γ Ỹ (f )
, has to be between 0 and 1. Also, it behaves asymptotically, in the limit f → 0, as [START_REF] Achard | Fractal connectivity of long-memory networks[END_REF]:

C X Ỹ (f ) ∼ f →0 C0|f | -(α XY -α X -α Y ) . (4) 
This shows that the model is well defined only if αXY ≤ αX + αY and that C0 = |Ω12|/ p Ω X Ω Ỹ is a constant, controlling the global level of correlation of the series X and Y .

Fractal connectivity. Fractal connectivity is theoretically defined as the special case where C0 = 0 and C X Ỹ (f ) exactly reduces to a non-zero constant over a range of coarse scales (low frequencies). Equivalently, this implies, C0 = 0 and:

αXY = αX + αY . (5) 
Essentially, the test described below aims at testing this equality. The intuition underlying fractal connectivity is that a same and single mechanism in the system uniquely controls the independent and joint LM properties of the multivariate data components. This test can hence avoid practitioners the burden of erroneously searching for different causes for LM.

DISCRETE WAVELET TRANSFORM

Discrete wavelet transform. A mother wavelet ψ0(t) is a reference pattern with narrow supports in both time and frequency domains. It is characterized by its number of vanishing moment

N ψ ≥ 1: ∀k = 0, 1, . . . , N ψ -1, R R t k ψ0(t)dt ≡ 0 and R R t N ψ ψ0(t)dt = 0. Also, it is such that the {ψ j,k (t) ≡ 2 -j/2 ψ0(2 -j t -k), j ∈ N, k ∈ N} form a basis of L 2 (R).
The discrete wavelet transform (DWT) coefficients of X are defined as: dX (j, k) = X, ψ j,k . For further details, readers are referred to e.g., [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF]. Stationary processes. Let X and Ỹ denote second order stationary processes. It is straightforward to show that [START_REF] Abry | Multiscale nature of network traffic[END_REF]:

Ed W (j, k) 2 = Z Γ W (f )2 j |Ψ0(2 j f )| 2 df, W = X or Y, (6) 
Ed X(j,k) d Ỹ (j,k) = Z Γ X Ỹ (f )2 j |Ψ0(2 j f )| 2 df, (7) 
where Ψ0 stands for the Fourier transform of ψ0 and E for the mathematical expectation. Following [START_REF] Abry | Multiscale nature of network traffic[END_REF][START_REF] Whitcher | Wavelet analysis of covariance with application to atmospheric time series[END_REF], relevant wavelet based estimators for the auto-and inter-spectra of X and Ỹ are defined as:

SW (2 j ) = 1 nj n j X k=1 dW (j, k) 2 , W = X or Ỹ , (8) 
S X Ỹ (2 j ) = 1 nj n j X k=1 d X (j, k)d Ỹ (j, k), (9) 
where nj is the number of coefficients available at scale 2 j . Qualitatively, the scale 2 j acts as the inverse of the frequency, f ∼ f0/2 j , with f0 a constant depending on ψ0.

Bivariate long memory processes.

For bivariate LM processes Z, on condition that N ψ > N , the wavelet coefficients dX and dY at scale j form stationary sequences, and Eqs. (6-7) translate to: +N ) , when 2 j → +∞. Also, it has been proven that the dX (j, k) and dY (j, k) are freed from LM, so that the time averages SX , SY , SXY provide efficient and robust estimators of the spectra of Z, and of their power law exponents [START_REF] Abry | Multiscale nature of network traffic[END_REF]. This implies that the wavelet coherence function [START_REF] Whitcher | Wavelet analysis of covariance with application to atmospheric time series[END_REF] behaves, in the limit of coarse scales, as (with γ0 = cXY / √ cX cY ):

EdX (j, k) 2 ∼ cX 2 2j(α X +N ) , EdY (j, k) 2 ∼ cY 2 2j(α Y +N ) and EdX (j, k)dY (j, k) ∼ cXY 2 2j(α XY
γXY (2 j ) = SXY (2 j ) p SX (2 j )SY (2 j ) ≃ γ02 j(α XY -α X -α Y ) . ( 10 
)
Fractal connectivity. If fractal connectivity, Eq. ( 5), is valid, Eq. ( 10) above implies that γXY (2 j ) takes a quasi constant non zero value over a range of coarse scales 2 j ≥ 2 J 1 :

γXY (2 j ) ≃ γ0 = 0, (11) 
while it decreases to 0 as γ02 j(α XY -α X -α Y ) otherwise. This serves as the key ingredient for the design of a test for fractal connectivity.

TESTING FRACTAL CONNECTIVITY

Test formulation. The γXY (2 j ) can be read as the Pearson product-moment correlation coefficient of the series dX (j, •) and dY (j, •).

It is known that, for many distributions F , dX (j, •) d ∼ F , the Fisher's Z statistic ẑXY (2 j ) of γXY (2 j ) is asymptotically Normal (e.g. [START_REF] Hawkins | Using u statistics to derive the asymptotic distribution of Fisher's z statistic[END_REF]):

ẑXY (2 j ) = 1 2 ln 1 + γXY (2 j ) 1 -γXY (2 j ) d ∼ N (zXY (2 j ), σ(2 j )), (12) 
with zXY

(2 j ) = 1 2 ln 1+γ XY (2 j ) 1-γ XY (2 j ) and variance σ 2 (2 j ) = 1 n j -3 , where γXY (2 j ) = EdX (j, k)dY (j, k)/ p EdX (j, k) 2 EdY (j, k) 2 .
Therefore, testing fractal connectivity can be formulated as a test of the equality of means of Gaussian r.v.s with known but different variances, i.e., of the null hypothesis:

H0 : zXY (2 J 1 ) ≡ zXY (2 J 1 +1 ) ≡ • • • ≡ zXY (2 J 2 ), (13) 
where the scale range j ∈ [J1, J2] is discussed below. Let J = J2 -J1 + 1. The test statistic for the UMPI test of equality of means of Gaussian r.v.s is given by [START_REF] Lehmann | Testing Statistical Hypotheses[END_REF]:

VJ = J 2 X j=J 1 1 σ 2 (2 j )
ẑXY (2 j ) -

P J 2 j=J 1 ẑXY (2 j )/σ 2 (2 j ) P J 2 j=J 1 1/σ 2 (2 j ) ! 2 .
(14) Under H0, idealizing the quasi-decorrelation of the wavelet coefficient into exact independence [START_REF] Abry | Multiscale nature of network traffic[END_REF], one expects VJ to follow a χ 2 (J-1) distribution. Consequently, the (1α) significance test for fractal connectivity can be formulated as:

dJ = 1 if VJ > Cχ, dJ = 0 otherwise, ( 15 
)
where Cχ is the upper (1α) percentile of the χ 2 (J-1) distribution. Similarly, the p-value of the observed test statistic VJ is given by: pJ = 1-χ2 (J-1) ( VJ ), where χ2 (J-1) denotes the cumulative χ 2 (J-1)

distribution function.

Power of the test. When H0 is not true, VJ follows a non-central χ 2 (J-1),V J distribution, where VJ is given by Eq. ( 14) with z(j) replacing ẑ(j). This enables to evaluate explicitly the power of the test against a specific alternative hypothesis αXY -αX -αY < 0. Scale range.

Selecting the range of scales j ∈ [J1, J2] where to perform the test results from a standard trade-off: J1 needs to be chosen large enough so that SM (controlled by the Γ * (•) ) no longer contribute (Type I error); however a too large J1 decreases effective sample size and the power of the test (Type II error). J2 is naturally limited by the available sample size (J2 ≃ log 2 n).

TEST PERFORMANCE Numerical simulations.

To evaluate the test performance, we apply it to a large number NMC = 1024 of realizations of length n = 2 18 of Gaussian bivariate 2nd order stationary (hence N = 0, cf. Section 2) long memory processes, with prescribed auto-and inter-spectra according to Eqs. (2-3), implemented by ourselves following Chambers' algorithm [START_REF] Chambers | The simulation of random vector time series with given spectrum[END_REF]. The constant C0 is varied within 0.5 ≤ C0 ≤ 0.9, implying a significant global correlation between X and Y , be they fractally connected or not. Parameters are set to αX = 0.1, αY = 0.3. Under H0, αXY = 0.4, while under H1, αXY is varied from 0 to αX + αY = 0.4, so as to evaluate test powers. Short memory (SM) properties are modeled with ARMA(1,1) processes (parameters {0.4, -0.3} for X and {-0.2, 0.1} for Y ). The significance level is set to α = 0.1. Test performance are assessed by the mean rejection rates dJ = ÊMC dJ and mean p-values pJ = ÊMC pJ , where ÊMC stands for the mean over NMC Monte Carlo realizations: Ideally, under H0, dJ should reproduce the preset significance level α, whereas the p-value should be uniformly distributed on [0, 1], hence pJ should equal 0.5; Under H1, the test should reject H0, hence the larger (smaller) dJ (pJ ), the better. Wavelet spectra and coherence, Fisher Z statistics. Fig. 1 shows, under H0, the average over realizations (and corresponding 95% asymptotic confidence intervals (CI)) of the (log of the absolute val- ues of the) wavelet (inter-)spectra (top) and coherence, and Fisher's Z statistics (bottom), when no SM are present (i.e., Γ * (•) ≡ 1). It indicates that the estimates γXY (2 j ) and ẑXY (2 j ) are quasi constant over the entire range of available scales 2 j , as predicted by the model. Fig. 2 illustrates γXY (2 j ) and ẑXY (2 j ) under H0 (C0 = 0.7) when SM are present (top row), and under H1 (bottom row, αXY = 0.2). The plots indicate that: i) Under H0, the existence of SM has a clear impact on fine scales (below 2 j ≤ 2 J 1 = 2 7 ). Yet, at coarse scales, both γXY (2 j ) and ẑXY (2 j ) are quasi-constant; ii) Under H1, both γXY (2 j ) and ẑXY (2 j ) display a significantly nonconstant behavior with scales 2 j . These preliminary investigations clearly validate the test as formulated in Eqs. (13-15). Test performance: Significance.
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Tab. 1 summarizes mean test decisions and p-values when αXY and C0 are varied and no SM is present. Under H0 (αXY = 0.4, left column), the targeted 10% significance level is closely reproduced and mean p-values are close to the expected value 0.5, regardless of the precise value of C0, indicating that the test statistic VJ Eq. ( 14) accurately follows the predicted χ 2 (J-1) distribution. This is further confirmed in Fig. 3 (left), showing the histogram of VJ under H0. Test performance: Power. Tab. 1 (col. [START_REF] Achard | Fractal connectivity of long-memory networks[END_REF][START_REF] Abry | Multiscale nature of network traffic[END_REF][START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF][START_REF] Whitcher | Wavelet analysis of covariance with application to atmospheric time series[END_REF] clearly indicates that the test is powerful in rejecting H0 when αXY < αX + αY and an alternative hypothesis is true: With increasing discrepancy between αXY and αX + αY , mean rejection rates (p-values) increase (decrease). Also, the larger C0, the more powerful the test: For large global correlation C0 = 0.9, the test rejects fractal connectivity with probability close to 1 already for discrepancy in exponents αXY and αX + αY as small as 0.05. Fig. 3 (right) confirms that the test statistic VJ closely follows the predicted non central χ 2 (J-1) distribution under an alternative hypothesis. Scale range and short memory. Tab. 2 compares the impact of the choice of J1 on test performance under H0, without (top) and with (bottom) SM. Without SM, the targeted 10% significance level (and the corresponding p = 0.5 average p-value) are systematically well reproduced, regardless of the choice of J1. In contrast, with SM, the scale range must be restricted to coarse scales j ≥ J1 = 9 to reproduce nominal performance, resulting in less powerful tests and increased difficulty in rejecting the fractal connectivity hypothesis.

INTERNET TRAFFIC TIME SERIES

Internet monitoring and security nowadays constitute major tasks and challenges, often achieved by means of traffic flows statistical characterization. Commonly, Internet traffic is analyzed as aggregated time series, consisting of either IP packet (Pkt) or bytes (Byt) counts within bins of selected duration ∆0. It is naturally suspected that such time series should be correlated but their precise interrelation is still an open debate. Moreover, Internet traffic is well known to be characterized by a strong LRD property [START_REF] Abry | Multiscale nature of network traffic[END_REF], and we intend here to illustrate the usefulness of the proposed test to analyze LRD jointly in Pkt or Byt counts and hence to contribute to the ongoing debate: Should practitioners concentrate on the analysis of Pkt or Byt counts? Data analyzed are part of the MAWI data set (1GB public repository available at http://mawi.wide.ad.jp/, cf. [START_REF] Cho | Traffic data repository at the WIDE project[END_REF]). Results are reported here for data collected on March 3rd, 2006, between 7.30am and 7.45am (Tokyo time), on a transpacific OC3 backbone link (time series shown in Fig. 4). Fig. 5 indicates that both Pkt and Byt counts present LRD, at coarse scales 2 j ≥ 2 J 1 = 2 7 , i.e., roughly, for time lags larger than 0.125s. It also reveals a power law behavior for the wavelet inter-spectrum and a quasi-constant wavelet coherence function at coarse scales. When applied to data, the test (with a 10% targeted significance level) validate the hypothesis of fractal connectivity, with an output p-value of p = 0.99, indicating that data show absolutely no evidence for rejection. Equivalent results are obtained from numerous different time series within the MAWI data sets. This leads to conclude that LRD in Pkt and Byt time series result from a single and same network mechanism and are hence not created from different network sources. However, for a number of data, wavelet inter-spectra differ significantly from the one shown here (while individual auto spectra do present LRD). When applied, the test indicates no correlation at coarse scales and significantly rejects fractal connectivity, suggesting that LRD in Pkt and Byt may result from different and independent causes. Manual inspections tend to indicate that such cases are related to the occurrence of anomalies in the traffic, be they legitimate or not. This requires further validation and is under current investigation. This opens new perspectives for Internet traffic monitoring and for automated anomaly detection, where inter-spectra are rarely considered, despite the multivariate nature of traffic data.

DISCUSSION AND CONCLUSION

A statistical test for fractal connectivity in bivariate time series has been defined, analyzed and assessed. Its extension to multivariate data is straightforward, by considering each pair of data components. The test relies on wavelet based estimations of the autospectra, interspectra and coherence functions of the data. It has been shown to present satisfactory practical performance. To our knowledge, this is the first procedure for testing joint long memory properties of multivariate data practically available in the literature. It provides practitioners with elements of answers to questions regarding the independence or not of the mechanisms at work in the production of the data, notably of their long range dependence property. Preliminary attempts for the analysis of Internet traffic and various biological and biomedical data indicate promising perspectives.

Fig. 1 :

 1 Fig. 1: Wavelet spectra. Average (and 95% CI for) wavelet spectra and inter-spectrum of X and Y (top), wavelet correlation and Fisher Z statistics (bottom) under H0 without SM (C0 = 0.7).

Fig. 2 :

 2 Fig. 2: Short memory and alternative hypothesis. Average (and 95% CI for) wavelet correlation (left column) Fisher's Z statistic (right column) as a function of scales (C0 = 0.7) under H0 with ARMA(1,1) SM (top) and under H1 (bottom, αXY = 0.2).

Fig. 3 :

 3 Fig. 3: Test statistic. Histogram of test statistic VJ (points, C0 = 0.7) and the corresponding theoretical distribution (line), under H0 (left) and H1 (right, αXY = 0.2). The vertical line indicates the 10% significance critical value Cχ.

Fig. 4 :

 4 Fig. 4: Internet time series. Packet (left) and byte (right) counts as functions of time, ∆0 = 10ms.

Fig. 5 :

 5 Fig. 5: Wavelet spectra.Wavelet (inter-)spectra for Packet and byte counts (top), wavelet coherence and Z statistics (bottom).

Table 1 :

 1 Test performance. Mean test decisions (top) and pvalues (bottom) for different values of C0 and αXY .

		[J1, J2] = [7, 13] -10% significance	
		Test decisions -mean rejection rates dJ (in %)	
		αXY	0.4	0.35	0.3 0.25	0.2	
		C0 = 0.5	9.4	22.7 42.9 54.9 56.8	
		C0 = 0.7	10.3	51.9 83.0 89.2 89.3	
		C0 = 0.9	8.7	99.3 99.9 99.9 99.9	
			Mean p-value pJ			
		αXY	0.4	0.35	0.3 0.25	0.2	
		C0 = 0.5	0.51	0.38 0.25 0.18 0.16	
		C0 = 0.7	0.50	0.18 0.06 0.04 0.04	
		C0 = 0.9	0.50	0.00 0.00 0.00 0.00	
		αXY = 0.4 -[J1, J2] = [ • , 13] -10% significance
		Gaussian no short memory -C0 = 0.7	
	J1	5	6	7	8	9	10	11
	dJ	11.0	9.6	9.1	8.6	9.3	9.0	8.5
	pJ	0.51 0.51 0.51 0.51 0.51 0.51 0.51
		Gaussian ARMA(1,1) -C0 = 0.7		
	J1	5	6	7	8	9	10	11
	dJ	66.7 33.5 21.5 14.4 11.2	8.9	9.2
	pJ	0.12 0.29 0.38 0.45 0.50 0.51 0.52

Table 2 :

 2 Scale range. Mean test decisions (in %) and p-values for different values of J1, without (top) and with (bottom) SM.