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ABSTRACT

Within the framework of long memory multivariate processes,

fractal connectivity is a particular model, in which the low frequen-

cies (coarse scales) of the interspectrum of each pair of process com-

ponents are determined by the autospectra of the components. The

underlying intuition is that long memories in each components are

likely to arise from a same and single mechanism. The present con-

tribution aims at defining and characterizing a statistical procedure

for testing actual fractal connectivity amongst data. The test is based

on Fisher’s Z transform and Pearson correlation coefficient, and an-

chored in a wavelet framework. Its performance are analyzed theo-

retically and validated on synthetic data. Its usefulness is illustrated

on the analysis of Internet traffic Packet and Byte count time series.

Index Terms— Fractal connectivity, Long memory, Wavelet

transform, Statistical test, Internet traffic

1. INTRODUCTION

Sensor network deployment is nowadays common for system moni-

toring in many different applications, such as medicine, biology, en-

vironment, . . . to name but a few (cf. e.g., [1] and reference therein).

Therefore, data to be analyzed often consist of multivariate time se-

ries, conveying in a potentially redundant and correlated manner the

information practitioners are interested in. Measuring the amount

of information shared amongst such data, or their (inter-)correlation

levels (or functions), are often key issues in multivariate data anal-

ysis and processing. Moreover, in a large number of applications,

the time series to be analyzed are characterized by long range de-

pendence [2]: Their autocorrelation functions have extremely slow

(algebraic power law type) decay, significantly complicating analy-

ses aiming at establishing whether - and to which extent - the dif-

ferent time series embody identical or complementary information.

A fundamental question arising from the analysis of long memory

multivariate data is whether there is a unique mechanism in the sys-

tem controlling long range dependence on the different data compo-

nents, or whether there are different mechanisms at work, producing

unconnected long memory properties. The goal of the present con-

tribution is to propose a statistical test providing practitioners with

elements of answer to such questions. Our study is based on the

so called fractal connectivity model, recently introduced in [3] and

consisting of multivariate long memory time series (recalled in Sec-

tion 2): Fractal is used to refer to long memory while connectiv-

ity implies that the interspectrum is proportional to the product of

the autospectra in the limit of coarse analysis scales (equivalently,

low frequencies), i.e, the coherence function goes to a non zero con-

stant in the limit |f | → 0. It is now well-known that long range

dependence phenomena are relevantly and accurately analyzed in a

wavelet framework [4] (briefly re-sketched in Section 3). Therefore,

to test the fractal connectivity model, we propose a statistical pro-

cedure, based on the discrete wavelet transform coherence function

and Fisher’s Z transform. It is explained and defined in Section 4.

Its performance are devised analytically and validated numerically

by application to synthetic bivariate long memory time series with

and without fractal connectivity (cf. Section 5). It is then applied

to Internet traffic packet and byte count time series, collected very

recently on a major transpacific backbone (cf. Section 6).

2. BIVARIATE FRACTAL CONNECTIVITY

Long memory. Long memory (LM), or long range dependence,

is defined, for a process X , as a power law behavior of its spectrum

ΓX(f) at the origin [2]:

ΓX(f) ∼ C|f |−α, |f | → 0, with 0 < α < 1. (1)

This property has been widely observed for many different data in

various research domains and its relevant analysis is important be-

cause it is known to strongly impair parameter estimation and to de-

grade the performance of a system, e.g., the amount of buffer needed

on an Internet link.

Bivariate long memory model. For simplicity of notation, and

without loss of generality, we restrict presentation here to the bi-

variate case only. The proposed test can be straightforwardly ex-

tended to the multivariate case by considering time series pairwise.

Let Z = {Z(t)}t∈Z = {[X(t), Y (t)]}t∈Z be a real-valued bivari-

ate discrete time series. Following [3], Z is called a bivariate long

memory process with parameters αX , αY , α1 and α2 if its N -th or-

der difference process Z̃(t) = δNZ(t) is stationary and has spectral

and inter-spectral densities (−π ≤ f ≤ π), where the Ω· consist of

arbitrary positive multiplicative factors:

ΓW̃ (f) = ΩW̃

˛

˛

˛

1 − e−jf
˛

˛

˛

−2αW
Γ∗
W̃ (f), W = X or Y(2)

ΓX̃Ỹ (f) = Ω12

“

1 − e−jf
”−α1

“

1 − ejf
”−α2

Γ∗
12(f). (3)

The parameters α(·) are confined to the range [0, 0.5]. The func-

tions Γ∗
(·)(f) are non-negative, symmetric, with limit 1 at the origin,

hence modeling short memory (SM) properties at high frequencies,

without affecting the spectral densities around the origin. Let us

define αXY = α1 + α2. By definition, the coherence function:

CX̃Ỹ (f) =
|Γ
X̃Ỹ

(f)|√
Γ
X̃

(f)Γ
Ỹ

(f)
, has to be between 0 and 1. Also, it be-

haves asymptotically, in the limit f → 0, as [3]:

CX̃Ỹ (f) ∼f→0 C0|f |−(αXY −αX−αY ). (4)

This shows that the model is well defined only if αXY ≤ αX + αY
and that C0 = |Ω12|/

p

ΩX̃ΩỸ is a constant, controlling the global

level of correlation of the series X and Y .



Fractal connectivity. Fractal connectivity is theoretically defined

as the special case where C0 6= 0 and CX̃Ỹ (f) exactly reduces to

a non-zero constant over a range of coarse scales (low frequencies).

Equivalently, this implies, C0 6= 0 and:

αXY = αX + αY . (5)

Essentially, the test described below aims at testing this equality.

The intuition underlying fractal connectivity is that a same and single

mechanism in the system uniquely controls the independent and joint

LM properties of the multivariate data components. This test can

hence avoid practitioners the burden of erroneously searching for

different causes for LM.

3. DISCRETE WAVELET TRANSFORM

Discrete wavelet transform. A mother wavelet ψ0(t) is a refer-

ence pattern with narrow supports in both time and frequency do-

mains. It is characterized by its number of vanishing moment Nψ ≥
1: ∀k = 0, 1, . . . , Nψ − 1,

R

R
tkψ0(t)dt ≡ 0 and

R

R
tNψψ0(t)dt 6=

0. Also, it is such that the {ψj,k(t) ≡ 2−j/2 ψ0(2
−jt − k), j ∈

N, k ∈ N} form a basis of L2(R). The discrete wavelet transform

(DWT) coefficients of X are defined as: dX(j, k) = 〈X,ψj,k〉. For

further details, readers are referred to e.g., [5].

Stationary processes. Let X̃ and Ỹ denote second order station-

ary processes. It is straightforward to show that [4]:

EdW̃ (j, k)2 =

Z

ΓW̃ (f)2j |Ψ0(2
jf)|2df, W̃ = X or Y,(6)

EdX̃(j,k)dỸ (j,k) =

Z

ΓX̃Ỹ (f)2j |Ψ0(2
jf)|2df, (7)

where Ψ0 stands for the Fourier transform of ψ0 and E for the math-

ematical expectation. Following [4, 6], relevant wavelet based esti-

mators for the auto- and inter-spectra of X̃ and Ỹ are defined as:

SW (2j) =
1

nj

nj
X

k=1

dW (j, k)2, W = X̃ or Ỹ , (8)

SX̃Ỹ (2j) =
1

nj

nj
X

k=1

dX̃(j, k)dỸ (j, k), (9)

where nj is the number of coefficients available at scale 2j . Quali-

tatively, the scale 2j acts as the inverse of the frequency, f ∼ f0/2
j ,

with f0 a constant depending on ψ0.

Bivariate long memory processes. For bivariate LM processes

Z, on condition that Nψ > N , the wavelet coefficients dX and dY
at scale j form stationary sequences, and Eqs. (6-7) translate to:

EdX(j, k)2 ∼ cX22j(αX+N), EdY (j, k)2 ∼ cY 22j(αY +N) and

EdX(j, k)dY (j, k) ∼ cXY 22j(αXY +N), when 2j → +∞. Also, it

has been proven that the dX(j, k) and dY (j, k) are freed from LM,

so that the time averages SX , SY , SXY provide efficient and robust

estimators of the spectra of Z, and of their power law exponents [4].

This implies that the wavelet coherence function [6] behaves, in the

limit of coarse scales, as (with γ0 = cXY /
√
cXcY ):

γ̂XY (2j) =
SXY (2j)

p

SX(2j)SY (2j)
≃ γ02

j(αXY −αX−αY ). (10)

Fractal connectivity. If fractal connectivity, Eq. (5), is valid, Eq.

(10) above implies that γ̂XY (2j) takes a quasi constant non zero

value over a range of coarse scales 2j ≥ 2J1 :

γ̂XY (2j) ≃ γ0 6= 0, (11)

while it decreases to 0 as γ02
j(αXY −αX−αY ) otherwise. This serves

as the key ingredient for the design of a test for fractal connectivity.

4. TESTING FRACTAL CONNECTIVITY

Test formulation. The γ̂XY (2j) can be read as the Pearson prod-

uct-moment correlation coefficient of the series dX(j, ·) and dY (j, ·).

It is known that, for many distributionsF , dX(j, ·) d∼ F , the Fisher’s

Z statistic ẑXY (2j) of γ̂XY (2j) is asymptotically Normal (e.g. [7]):

ẑXY (2j) =
1

2
ln

1 + γ̂XY (2j)

1 − γ̂XY (2j)

d∼ N (zXY (2j), σ(2j)), (12)

with zXY (2j) = 1
2

ln 1+γXY (2j)

1−γXY (2j)
and variance σ2(2j) = 1

nj−3
,

where γXY (2j) = EdX(j, k)dY (j, k)/
p

EdX(j, k)2EdY (j, k)2.

Therefore, testing fractal connectivity can be formulated as a test

of the equality of means of Gaussian r.v.s with known but different

variances, i.e., of the null hypothesis:

H0 : zXY (2J1) ≡ zXY (2J1+1) ≡ · · · ≡ zXY (2J2), (13)

where the scale range j ∈ [J1, J2] is discussed below. Let J =
J2−J1 +1. The test statistic for the UMPI test of equality of means

of Gaussian r.v.s is given by [8]:

V̂J =

J2
X

j=J1

1

σ2(2j)

 

ẑXY (2j) −
PJ2
j=J1

ẑXY (2j)/σ2(2j)
PJ2
j=J1

1/σ2(2j)

!2

.

(14)

Under H0, idealizing the quasi-decorrelation of the wavelet coeffi-

cient into exact independence [4], one expects V̂J to follow a χ2
(J−1)

distribution. Consequently, the (1 − α) significance test for fractal

connectivity can be formulated as:

d̂J = 1 if V̂J > Cχ, d̂J = 0 otherwise, (15)

where Cχ is the upper (1−α) percentile of the χ2
(J−1) distribution.

Similarly, the p-value of the observed test statistic V̂J is given by:

p̂J = 1−χ̃2
(J−1)(V̂J),where χ̃2

(J−1) denotes the cumulative χ2
(J−1)

distribution function.

Power of the test. When H0 is not true, V̂J follows a non-central

χ2
(J−1),VJ

distribution, where VJ is given by Eq. (14) with z(j)
replacing ẑ(j). This enables to evaluate explicitly the power of the

test against a specific alternative hypothesis αXY − αX − αY < 0.

Scale range. Selecting the range of scales j ∈ [J1, J2] where

to perform the test results from a standard trade-off: J1 needs to be

chosen large enough so that SM (controlled by the Γ∗
(·)) no longer

contribute (Type I error); however a too large J1 decreases effective

sample size and the power of the test (Type II error). J2 is naturally

limited by the available sample size (J2 ≃ log2 n).

5. TEST PERFORMANCE

Numerical simulations. To evaluate the test performance, we

apply it to a large number NMC = 1024 of realizations of length

n = 218 of Gaussian bivariate 2nd order stationary (hence N = 0,

cf. Section 2) long memory processes, with prescribed auto- and

inter-spectra according to Eqs. (2-3), implemented by ourselves fol-

lowing Chambers’ algorithm [9]. The constant C0 is varied within

0.5 ≤ C0 ≤ 0.9, implying a significant global correlation between

X and Y , be they fractally connected or not. Parameters are set to

αX = 0.1, αY = 0.3. Under H0, αXY = 0.4, while under H1,
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Fig. 1: Wavelet spectra. Average (and 95% CI for) wavelet spec-

tra and inter-spectrum of X and Y (top), wavelet correlation and

Fisher Z statistics (bottom) under H0 without SM (C0 = 0.7).
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Fig. 2: Short memory and alternative hypothesis. Average (and

95% CI for) wavelet correlation (left column) Fisher’s Z statistic

(right column) as a function of scales (C0 = 0.7) under H0 with

ARMA(1,1) SM (top) and under H1 (bottom, αXY = 0.2).

αXY is varied from 0 to αX +αY = 0.4, so as to evaluate test pow-

ers. Short memory (SM) properties are modeled with ARMA(1,1)

processes (parameters {0.4,−0.3} for X and {−0.2, 0.1} for Y ).

The significance level is set to α = 0.1. Test performance are as-

sessed by the mean rejection rates d̄J = ÊMC d̂J and mean p-values

p̄J = ÊMC p̂J , where ÊMC stands for the mean over NMC Monte

Carlo realizations: Ideally, under H0, d̄J should reproduce the pre-

set significance level α, whereas the p-value should be uniformly

distributed on [0, 1], hence p̄J should equal 0.5; Under H1, the test

should reject H0, hence the larger (smaller) d̄J (p̄J ), the better.

Wavelet spectra and coherence, Fisher Z statistics. Fig. 1 shows,

under H0, the average over realizations (and corresponding 95%
asymptotic confidence intervals (CI)) of the (log of the absolute val-
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Fig. 3: Test statistic. Histogram of test statistic V̂J (points, C0 =
0.7) and the corresponding theoretical distribution (line), under H0

(left) and H1 (right, αXY = 0.2). The vertical line indicates the

10% significance critical value Cχ.

[J1, J2] = [7, 13] - 10% significance

Test decisions - mean rejection rates d̄J (in %)

αXY 0.4 0.35 0.3 0.25 0.2

C0 = 0.5 9.4 22.7 42.9 54.9 56.8
C0 = 0.7 10.3 51.9 83.0 89.2 89.3
C0 = 0.9 8.7 99.3 99.9 99.9 99.9

Mean p-value p̄J
αXY 0.4 0.35 0.3 0.25 0.2

C0 = 0.5 0.51 0.38 0.25 0.18 0.16
C0 = 0.7 0.50 0.18 0.06 0.04 0.04
C0 = 0.9 0.50 0.00 0.00 0.00 0.00

Table 1: Test performance. Mean test decisions (top) and p-

values (bottom) for different values of C0 and αXY .

αXY = 0.4 - [J1, J2] = [ · , 13] - 10% significance

Gaussian no short memory - C0 = 0.7
J1 5 6 7 8 9 10 11

d̄J 11.0 9.6 9.1 8.6 9.3 9.0 8.5
p̄J 0.51 0.51 0.51 0.51 0.51 0.51 0.51

Gaussian ARMA(1,1) - C0 = 0.7
J1 5 6 7 8 9 10 11

d̄J 66.7 33.5 21.5 14.4 11.2 8.9 9.2
p̄J 0.12 0.29 0.38 0.45 0.50 0.51 0.52

Table 2: Scale range. Mean test decisions (in %) and p-values

for different values of J1, without (top) and with (bottom) SM.

ues of the) wavelet (inter-)spectra (top) and coherence, and Fisher’s

Z statistics (bottom), when no SM are present (i.e., Γ∗
(·) ≡ 1). It

indicates that the estimates γ̂XY (2j) and ẑXY (2j) are quasi con-

stant over the entire range of available scales 2j , as predicted by the

model. Fig. 2 illustrates γ̂XY (2j) and ẑXY (2j) under H0 (C0 =
0.7) when SM are present (top row), and under H1 (bottom row,

αXY = 0.2). The plots indicate that: i) Under H0, the existence of

SM has a clear impact on fine scales (below 2j ≤ 2J1 = 27). Yet,

at coarse scales, both γ̂XY (2j) and ẑXY (2j) are quasi-constant; ii)

Under H1, both γ̂XY (2j) and ẑXY (2j) display a significantly non-

constant behavior with scales 2j . These preliminary investigations

clearly validate the test as formulated in Eqs. (13-15).

Test performance: Significance. Tab. 1 summarizes mean test

decisions and p-values when αXY and C0 are varied and no SM is

present. Under H0 (αXY = 0.4, left column), the targeted 10% sig-

nificance level is closely reproduced and mean p-values are close to

the expected value 0.5, regardless of the precise value ofC0, indicat-

ing that the test statistic V̂J Eq. (14) accurately follows the predicted

χ2
(J−1) distribution. This is further confirmed in Fig. 3 (left), show-

ing the histogram of V̂J under H0.

Test performance: Power. Tab. 1 (col. 3-6) clearly indicates that

the test is powerful in rejecting H0 when αXY < αX + αY and an

alternative hypothesis is true: With increasing discrepancy between

αXY and αX + αY , mean rejection rates (p-values) increase (de-

crease). Also, the larger C0, the more powerful the test: For large

global correlationC0 = 0.9, the test rejects fractal connectivity with

probability close to 1 already for discrepancy in exponents αXY and

αX +αY as small as 0.05. Fig. 3 (right) confirms that the test statis-

tic V̂J closely follows the predicted non central χ2
(J−1) distribution

under an alternative hypothesis.
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Scale range and short memory. Tab. 2 compares the impact of

the choice of J1 on test performance under H0, without (top) and

with (bottom) SM. Without SM, the targeted 10% significance level

(and the corresponding p = 0.5 average p-value) are systematically

well reproduced, regardless of the choice of J1. In contrast, with

SM, the scale range must be restricted to coarse scales j ≥ J1 = 9 to

reproduce nominal performance, resulting in less powerful tests and

increased difficulty in rejecting the fractal connectivity hypothesis.

6. INTERNET TRAFFIC TIME SERIES

Internet monitoring and security nowadays constitute major tasks

and challenges, often achieved by means of traffic flows statistical

characterization. Commonly, Internet traffic is analyzed as aggre-

gated time series, consisting of either IP packet (Pkt) or bytes (Byt)

counts within bins of selected duration ∆0. It is naturally suspected

that such time series should be correlated but their precise inter-

relation is still an open debate. Moreover, Internet traffic is well

known to be characterized by a strong LRD property [4], and we in-

tend here to illustrate the usefulness of the proposed test to analyze

LRD jointly in Pkt or Byt counts and hence to contribute to the on-

going debate: Should practitioners concentrate on the analysis of Pkt

or Byt counts? Data analyzed are part of the MAWI data set (1GB

public repository available at http://mawi.wide.ad.jp/, cf.

[10]). Results are reported here for data collected on March 3rd,

2006, between 7.30am and 7.45am (Tokyo time), on a transpacific

OC3 backbone link (time series shown in Fig. 4). Fig. 5 indi-

cates that both Pkt and Byt counts present LRD, at coarse scales

2j ≥ 2J1 = 27, i.e., roughly, for time lags larger than 0.125s. It

also reveals a power law behavior for the wavelet inter-spectrum and

a quasi-constant wavelet coherence function at coarse scales. When

applied to data, the test (with a 10% targeted significance level) val-

idate the hypothesis of fractal connectivity, with an output p-value

of p = 0.99, indicating that data show absolutely no evidence for

rejection. Equivalent results are obtained from numerous different

time series within the MAWI data sets. This leads to conclude that

LRD in Pkt and Byt time series result from a single and same net-

work mechanism and are hence not created from different network

sources. However, for a number of data, wavelet inter-spectra differ

significantly from the one shown here (while individual auto spectra

do present LRD). When applied, the test indicates no correlation at

coarse scales and significantly rejects fractal connectivity, suggest-

ing that LRD in Pkt and Byt may result from different and indepen-

dent causes. Manual inspections tend to indicate that such cases are

related to the occurrence of anomalies in the traffic, be they legit-

imate or not. This requires further validation and is under current

investigation. This opens new perspectives for Internet traffic moni-

toring and for automated anomaly detection, where inter-spectra are

rarely considered, despite the multivariate nature of traffic data.

7. DISCUSSION AND CONCLUSION

A statistical test for fractal connectivity in bivariate time series has

been defined, analyzed and assessed. Its extension to multivariate

data is straightforward, by considering each pair of data components.

The test relies on wavelet based estimations of the autospectra, in-

terspectra and coherence functions of the data. It has been shown to

present satisfactory practical performance. To our knowledge, this is

the first procedure for testing joint long memory properties of mul-

tivariate data practically available in the literature. It provides prac-

titioners with elements of answers to questions regarding the inde-

pendence or not of the mechanisms at work in the production of the

data, notably of their long range dependence property. Preliminary

attempts for the analysis of Internet traffic and various biological and

biomedical data indicate promising perspectives.
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