
HAL Id: ensl-00363443
https://ens-lyon.hal.science/ensl-00363443v1

Preprint submitted on 23 Feb 2009 (v1), last revised 9 Jun 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mapping Filtering Streaming Applications With
Communication Costs

Kunal Agrawal, Anne Benoit, Fanny Dufossé, Yves Robert

To cite this version:
Kunal Agrawal, Anne Benoit, Fanny Dufossé, Yves Robert. Mapping Filtering Streaming Applications
With Communication Costs. 2009. �ensl-00363443v1�

https://ens-lyon.hal.science/ensl-00363443v1
https://hal.archives-ouvertes.fr

Mapping Filtering Streaming Applications

With Communication Costs

Kunal Agrawal

CSAIL, Massachusetts Institute of Technology, USA

kunal_ag@mit.edu

Anne Benoit, Fanny Dufossé and Yves Robert

LIP, École Normale Supérieure de Lyon, France

{Anne.Benoit|Fanny.Dufosse|Yves.Robert}@ens-lyon.fr

February 2009

LIP Research Report RR-2009-06

Abstract

In this paper, we explore the problem of mapping filtering streaming applications on large-scale ho-

mogeneous platforms, with a particular emphasis on communication models and their impact. Filtering

application are streaming applications where each node also has a selectivity which either increases or de-

creases the size of its input data set. This selectivity makes the problem of scheduling these applications

more challenging than the more studied problem of scheduling “non-filtering” streaming workflows.

We identify three significant realistic communication models. For each of them, we address the

complexity of the following important problems:

1. Given an execution graph, how can one compute the period and latency? A solution to this problem

is an operation list which provides the time-steps at which each computation and each communi-

cation occurs in the system.

2. Given a filtering workflow problem, how can one compute the schedule that minimizes the pe-

riod or latency? A solution to this problem requires generating both the execution graph and the

associated operation list.

Altogether, with three models, two problems and two objectives, we present 12 complexity results,

thereby providing solid theoretical foundations for the study of filtering streaming applications.

Key words: query optimization, web service, streaming application, workflow, communication model,

period, latency, complexity results.

0

1 Introduction

This paper addresses the problem of mapping filtering streaming applications, or filtering workflows, on

parallel platforms. This mapping problem was first studied in the context of query optimization over web

services: in [1, 2], the authors consider the case where the web services were to be mapped one-to-one

(one service on one processor) onto identical servers. A recent extension considers the same problem with

different-speed servers [3]. However, none of these works include communication costs in the analysis. In

this paper, we introduce three different and realistic communication models, and we revisit the problem in

this more challenging framework.

Filtering workflows resemble traditional pipelined workflows, a popular programming paradigm for

streaming applications like video and audio encoding and decoding, DSP applications etc [4, 5, 6]. Filtering

workflows consist of a collection of various services that must be applied on a stream of consecutive data

sets. These services are represented using a workflow graph, which contains several nodes (the services),

and these nodes are connected to each other using first-in-first-out channels (or dependence constraints

between services). Data is input into the graph using input channel(s) and the outputs are produced on the

output channel(s). Until here, the filtering workflows resemble regular workflows. However, in filtering

workflows, the services filter incoming data by a certain amount. More precisely, each service Ci has a

selectivity σi and an elementary cost ci. If an input of size δi is provided to Ci, then the output is of size

σiδi while the computation requirement of the service is ciδi. Therefore, when σi < 1, the service shrinks

data (hence the name filter). On the other hand, when σ > 1, the service expands the data. Just as in regular

workflows, the goal is to map these computations on some parallel platform and then organize computations

and communications so as to optimize some scheduling objective. Since data continually flows through

these applications, typical objectives of the scheduler are to minimize the period (which is defined as the

inverse of the throughput) or the latency (also called response time) [7, 8, 9, 10].

Given a collection of services, we produce a plan, which is the combination of an execution graph and

an operation list:

• The execution graph is a directed acyclic graph (DAG) that characterizes the predecessors and suc-

cessors of each service onto the target platform. The set of edges in the execution graph must include

all the original precedence edges between services, but may well include additional edges to further

filter the incoming data of some services, thereby reducing their actual execution time.

• The operation list details the time-steps at which every computation and every communication takes

place. We assume that the schedule is cyclic, so that the execution list can be specified concisely.

If there is an edge from service Ci to service Cj in the plan, then the output from service Ci is fed into the

input of service Cj . Let δ0 be the size of the input data sets to the services which have no predecessors. The

size of the input data set to a service Cj is δ0 times the product of the selectivities of all of its ancestors.

Therefore, there is reason to add an edge to the execution graph that did not exist in the original precedence

constraints. For instance, if we add an edge from Ci to Cj , where Ci has a small selectivity, then Cj will

require a smaller computation time and have a smaller-sized input and output data set (thereby reducing its

future communication costs). However, adding an extra edge means that we are adding to communication

costs, since Ci now has to send the data to Cj , which it would not have to if that edge were not added.

All of the assumptions related to service costs and selectivities are those of Srivastava et al. [1, 2].

Although their papers mainly deal with query optimization over web services (already an increasingly im-

portant application with the advent of Web Service Management Systems [11, 12]), the approach applies to

general data streams [13] and to database predicate processing [14, 15]. In addition, our framework is quite

similar to the problem of scheduling unreliable jobs on parallel machines [16] where service selectivities

correspond to job failure probabilities. Due to lack of space, please refer to [17] for more related work.

In this paper, we only consider mapping filtering workflows on homogeneous machines: each server has

the same speed, and all servers are connected to each other by communication links of equal bandwidth.

1

As in previous work [1, 2], we consider one-to-one mappings, where each server has at most one service

mapped to it. Clearly, for one-to-one mappings, the number of servers must be equal to or more than the

number of services. We show in this paper that most period or latency minimization are NP-complete even

in this setting1. Note that we do not need to specify which service is mapped onto which server, since all

servers are equivalent. Instead, we have to generate the execution graph together with the operation list, in

order to minimize the period or latency.

The emphasis of our work is on the impact of communication models. We consider two commonly used

communication models. The no overlap communication model requires that at any point, a server can either

compute, or receive an incoming communication, or send an outgoing communication. This models single

threaded machines where every operation is serialized. We define two variants for this model, one where

we enforce in-order execution, and another where we allow out-of-order execution (which means interleav-

ing communications and computations of different data sets) so as to reduce the idle-time incurred by the

serial ordering of the communications. In contrast, the overlap communication model considers the situa-

tion where a server can compute and send/receive communications at the same time. This calls for multi-

threaded machines and parallel communications. In all models, both computations and communications

are non-preemptive, which means that they cannot be interrupted once initiated. Also, communications are

synchronous (by rendez-vous between the sender and the receiver). This synchronization between servers

can cause idle times.

Our main findings is that computing the period or the latency in all these models turns out to be difficult.

As already stated, the minimization problems (finding the optimal plan to minimize the period or the latency)

are all NP-hard. This result is surprising, since polynomial algorithms exist for homogeneous machines

when we do not model communication [1, 2]. Therefore, modeling communication costs explicitly has

a huge impact on the difficulty of mapping filtering services. In addition, and quite unexpectedly, the

“orchestration” problems (given an execution graph, find the optimal operation list) also are of combinatorial

nature. Finally, the choice of the model has a tremendous impact on the values that can be achieved. Many

of our results and counter-examples apply to regular workflows (without selectivities), and should be of

great interest to the whole community interested in scheduling streaming applications.

This paper is organized as follows. Section 2 describes the framework of the problem in more details.

Section 3 illustrates the difference between communication models with the help of several examples. The

next two sections constitute the core of the paper. Section 4 is devoted the period minimization problem,

while Section 5 is the counterpart for latency minimization. Finally we give some conclusions and perspec-

tives in Section 6.

2 Framework

This section is devoted to a precise statement of the different models and optimization problems. We then

give a formal definition of the period and of the latency. Surprisingly, these formal definitions require quite

a complicated formulation, so we work out an exemple in full details, in order to illustrate the differences

between all the models.

2.1 Plans

As stated above, the target application A is a set of services (or filters, or queries) linked by precedence

constraints. We write A = (F ,G) where F = {C1, C2, . . . , Cn} is the set of services and G ⊂ F × F is

the set of precedence constraints. A service Ci is characterized by its cost ci and its selectivity σi.

1In general mappings, we can map several services onto the same server. Problems with general mappings are straightforwardly

shown NP-hard by reduction from 2-Partition or bin packing [18].

2

For the computing resources, we have a homogeneous platform with p servers (or processors) of same

speed s: the cost of a service does not depend upon the server it is mapped onto. In fact, we we can identify

a service Ci with its server, because we restrict to one-to-one mappings. All servers are connected to each

other by communication links of equal bandwidth b. The cost for transmitting a data of size δ is δ
b
. Let δ0

be the size of input data.

We have to build a plan PL = (EG ,OL), that is an execution graph EG = (C, E) that summarizes

all precedence relations in the mapping, and an operation list OL that captures the occurrence of each

computation and each communication. We deal with the operation lists in Section A, after having described

the communication models. As for the execution graph EG = (C, E), the nodes in C are the services in F
and input/output nodes. There is an arc (Ci, Cj) ∈ E if Ci precedes Cj in the execution. There are two types

of such arcs: those induced by the set of precedence constraints G, which must be enforced in any case, and

those added to reduce the period or the latency. Let Ancestj(EG) denote the set of all ancestors2 of Cj in

the execution graph EG . Only arcs from direct predecessors are kept in E . In other words, if (Ci, Cj) ∈ G,

then we must have Ci ∈ Ancestj(EG) 3.

For each service Ck in F , let Sin(k) be the set of its direct predecessors in EG , and let Sout(k) be the set

of its direct successors. Entry nodes are nodes Ck such that Sin(k) = ∅; for each of them we add an input

node to C to model input from the outside world. Similarly, for each exit node Ck in C (with Sout(k) = ∅),
we add an output node to C. We define:

Cin(k) =
δ0

b

∑

Ci∈Sin(k)

∏

Cj∈Ancesti(EG)

σj

Ccomp(k) =

∏

Cj∈Ancestk(EG)

σj

× δ0.ck

s

Cout(k) =
δ0

b
× |Sout(k)| ×

∏

Cj∈Ancestk(EG)

σj

× σk

Here, Cin(k) is a lower bound of the time needed to receive input data from all the predecessors of Ck.

The input data from each predecessor Ci is of size δ0
∏

Cj∈Ancesti(EG) σj , hence it requires δ0
b

∏

Cj∈Ancesti(EG) σj

time units for communication from Ci. We add the communication from all the ancestors to get the total

incoming communication time Cin(k). This lower bound may not be met because of idle times due to server

synchronizations for the communications. However, we have not yet specified in which order the different

communications take place. This specification requires discussion of communication models. We discuss

variations of both one-port [19] and multi-port models [20] in Section 2.2.

The outgoing communication lower bound Cout(k) is defined similarly, except that the outgoing com-

munication to each successor is of same size. Finally, Ccomp(k) is the execution time of Ck on the server,

with the appropriate size factor involving the selectivities of all its ancestors. We assume that each service

without successor in the execution graph performs a single output communication (this models returning the

results to the outside world). Before discussing further the communication models, we make two important

remarks that apply to all variants:

• The selectivity of a service influences the execution time of all its successors (if any) in the mapping.

In other words, a service is “filtered” or “expanded” by the combined selectivity of all its predecessors.

This implies that selectivities are independent, and that the cost of join operations is negligible in

2The ancestors of a service are the services preceding it, and the predecessors of their predecessors, and so on.
3Equivalently, G must be included, in the transitive closure of E .

3

front of the service costs. All these hypotheses are enforced in the literature, but further work could

be devoted to generalizations of this simple model.

• Because everything is homogeneous, we can scale all service costs as ck ← b
δ0
· ck

s
. This allows to let

δ0 = b = s = 1 without any loss of generality in the previous expressions for Cin(k), Ccomp(k) and

Cout(k). At the end of the computation, it just remains to scale by δ0
b

the computed period and latency

to obtain the actual values.

2.2 Communication models

This section presents the various communication models. We first present the general overview and then we

formally state the constraints and the rules of the three models. We present only an informal description of

the models. Detailed formulas are provided in Appendix A.

With overlap– In the first model, we assume full overlap of communications and computations, so that a

server can receive, compute and send (independent) data simultaneously. This model, denoted as OVERLAP,

calls for multi-port communications: many incoming (resp. outgoing) communications can take place at the

same time, sharing the incoming (resp. outgoing) bandwidth, provided that the total communication capacity

of the server is never exceeded. Independent computations take place in parallel to these communications.

In this model, the server may operate concurrently on different consecutive data sets: while receiving input

for a given data set, it can execute computations for some older data set and sends output for some even

older data set. We define execution time Cexec(k) of a service/server pair Ck as the maximum execution

time of the send, receive and compute operations of its service:

Cexec(k) = max{Cin(k), Ccomp(k), Cout(k)}

The period P is defined as the interval between the completion of consecutive data sets. With this

definition, the system can process data sets at a rate 1/P (the throughput). In steady state, a new data set

enters the system every P time-units, and several data sets are processed concurrently within the system. In

the overlap model, the lower bound on the period is the maximum of the quantities Cexec(k) over all services

Ck:

P = max
1≤k≤n

Cexec(k)

Given an execution graph, it turns out that we can generate an order of communication/computations that

achieves this lower bound in the multi-port model: see Theorem 1 in Section 4. Note that determining

the optimal execution graph is still NP-complete, and therefore, the period minimization problem is still

difficult. See Appendix A for a complete list of the resource contraints that need to be satisfied for the

OVERLAP model.

Without overlap– In the models without overlap, a server performs communications and computations

sequentially (instead of in parallel). This is typical of an execution with single-threaded programs and

(one-port) serialized communications. Despite its apparent simplicity, the model calls for two variants.

• INORDER : In the first variant, called INORDER, each server completely processes a data set before

starting the execution of the next one; it receives incoming communications for data set number, say, i,
one after the other; then it executes the computations for this data set, and then it sends the output

data to all its successors, one communication after the other. Only after completing this whole set of

operations can the processing of data set i + 1 be started (with the incoming communications).

• OUTORDER : In this second variant, we allow for out-of-order execution, namely starting some

operation (say, an incoming communication) for data set i + 1 (or even i + j, j ≥ 2) while still

processing data set i.

4

From an architectural point of view, we emphasize that the INORDER and OUTORDER variants may be

overly pessimistic, as modern processors are capable of some internal parallelism. However, both operation

modes correspond to blocking send/receive MPI primitives [21], and servers may encounter idle time due to

the synchronizations in both models. Nevertheless, we expect less idle time for the OUTORDER model than

for the INORDER model, due to the additional schedule flexibility of the former model. Both variants lead

to a computation cost for server/service Ck is bounded below by

Cexec(k) = Cin(k) + Ccomp(k) + Cout(k)

As before, a lower bound on the period is the maximum of the execution times. But unlike the OVERLAP

model with multi-port communications, this lower bound cannot always be reached: see the example in

Section 2.3. Note that the multi-port model is more flexible: since it allows to send data to many other

servers simultaneously, orchestrating the communications in the multi-port model is an easier task than for

the one-port model We refer to Appendix A for a list of resource contraints to be enforced for each model.

We emphasize that there is no closed-form formula for the period with the INORDER and OUTORDER

models, which we believe is a new and surprising observation.

Latency– We have just seen that models have a strong impact on the computation of the period. This is

also true for the latency (or response time), but to a lesser extent. The latency (or response time) is the time

needed to execute a single data set entirely. The overlap/no-overlap distinction is no longer meaningful for

optimizing this criterion. Indeed, we can always fully serialize the processing of each data set and minimize

the execution time, or makespan, when processing a unique data set. In other words, we delay the processing

of the next data set until the current one is completely executed, this suppresses all resource conflicts. With

such a strategy, the period is equal to the latency, which in turn is equal to longest path from an input node to

an output node in the plan. However, the choice between one-port or multi-port communications does have

an impact on the latency. This is illustrated by the example presented in Section 3.2.

Other variants– Altogether, we have three models, one multi-port model with overlap and two one-port

variants without overlap; the precise constraints that need be enforced are detailed in Appendix A. We note

that other models can be introduced, for instance one-port communications with computation/communication

overlap. However, we believe that we address the most realistic combinations: on single-threaded machines

it is hard to avoid doing everything sequentially, and on multi-threaded machines, we can execute compu-

tations and (several) communications concurrently. Another possibility is to consider preemptive models

where communication and/or computation can be interrupted, and the bandwidth of communication can

vary during the communication. Such preemptive models are beyond the scope of this paper.

We point out that the effective difference between one-port and multi-port communications is not evident

to assess: in most cases, the optimal solution for the multi-port model obeys the one-port constraints. We

present in Section 3 examples of execution graphs were the optimal latency and period for the multi-port

model are strictly smaller than the optimal ones for the one-port model.

Characterizing solutions– In this paper, we study two optimization problems: (i) MINPERIOD: find a

plan PL = (EG ,OL) that minimizes the period; and (ii) MINLATENCY: find a plan PL = (EG ,OL) that

minimizes the latency. For each problem instance, independently of the model and of the objective function,

the solution includes the execution graph EG that describes the set Ancesti for each service Ci. But this

graph alone does not give enough information to compute the schedule, i.e., the moment at which each

operation takes place. Indeed, we need the complete list of the time-steps at which every communication

or computation begins and ends. Because the target schedule is cyclic and repeats for each data-set, such a

5

list has a size proportional to the size of the plan, which is at most quadratic in the number of services: this

information remains polynomial in the problem size.

Formally, we define the operation list OL as follows:

• For each service Ci, BeginCalcn
(i) is the time-step where the computation of Ci on data set number n

begins, and EndCalcn
(i) is the time-step where this computation ends

• For each edge Ci → Cj in the plan, BeginCommn
(i,j) is the time-step where this communication

involving data set number n begins, and EndCommn
(i,j) is the time-step where this communication

ends.

• The schedule starts at time-step 0 with the data set number 0, and we impose a cyclic behavior of

period λ:

BeginCalcn
(i) = BeginCalc0

(i) + λ× n for each service Ci

EndCalcn
(i) = EndCalc0

(i) + λ× n for each service Ci

BeginCommn
(i,j) = BeginComm0

(i,j) + λ× n for each communication Ci → Cj

EndCommn
(i,j) = EndComm0

(i,j) + λ× n for each communication Ci → Cj

To each model are associated different rules that must be satisfied by the operation list so that the

schedule is valid: no resource contraint nor model hypothesis is violated (see Appendix A for these rules).

Note that all models are non-preemptive: once initiated, a communication or a communication cannot be

interrupted. Also, communications are synchronous, and the bandwidth assigned to a given communication

remains the same during its whole execution (this is not really a restriction for the one-port model but it is

an important one for the multi-port model). With the operation list we can define the period and the latency

of a plan PL:

• The period is P = λ
• The latency is L = max{EndComm0

(i,j)|Ci → Cj ∈ E}. Remember that output nodes execute a

communication to the outside world, so that the longest path for data set number 0 ends by one such

communication.

2.3 Example

In this section, we work out a little example in order to better understand the three models. Consider an

instance with 5 services of cost 4 and of selectivity 1 without dependence constraints. Let the execution

graph EG be the graph presented in Figure 1.

out
in

C1

C2 C3

C5

C4

Figure 1: Example.

Latency– We start with the latency because it is simpler. Assume first one-port communications, hence

the INORDER or OUTORDER models: remember that there is no difference between these models for com-

puting the latency, in both cases we have to minimize the length of the longest path in the graph. If the first

data is sent at time t = 0, then the computation of service C1 is completed at time 5. Then the computation

6

of C2 begins at time 6 if C1 sends to C2 at time 5 before sending to C4 at time 6. The computation of C3

begins at time 11. The computation of C4 begins at time 7 and completes at time 11. Then, the communi-

cation between C4 and C5 can be done at time 12. In the meantime, C3 completes its computation at time

15. Then, the computation of C5 can begin at time 16 and is completed at time 20. With the last commu-

nication of C5, this leads us to a latency of 21, which is easily seen to be the optimal value. This execution

scheme corresponds to the following operation list: for computations, we have λ = 21, BeginCalc0
(1) = 1,

EndCalc0
(1) = 5, BeginCalc0

(2) = 6, EndCalc0
(2) = 10, BeginCalc0

(3) = 11, EndCalc0
(3) = 15,

BeginCalc0
(4) = 7, EndCalc0

(4) = 11, BeginCalc0
(5) = 16, and EndCalc0

(5) = 20. For communication

times, we have BeginComm0
(in,1) = 0, EndComm0

(in,1) = 1, BeginComm0
(1,2) = 5, EndComm0

(1,2) = 6,

BeginComm0
(1,4) = 6, EndComm0

(1,4) = 7, BeginComm0
(2,3) = 10, EndComm0

(2,3) = 11, BeginComm0
(3,5) =

15, EndComm0
(3,5) = 16, BeginComm0

(4,5) = 11, EndComm0
(4,5) = 12, BeginComm0

(5,out) = 20, and

EndComm0
(5,out) = 21. With multi-port communications we cannot achieve a better latency for this exam-

ple, so we derive the same solution. See Section 3.2 for an example where the multi-port latency is smaller

than the one-port latency.

Period– Looking at the above operation list, we can obtain a period P = 5 for the model OVERLAP: if we

keep the same list and only change λ = 21 into λ = 5, we have no resource conflict. In fact we can achieve

a period of 4 for the OVERLAP model, and this is clearly optimal as each computation has cost 4. To do so,

we modify the following in the operation list: λ = 4, BeginComm0
(4,5) = 12, and EndComm0

(4,5) = 13.

For example, between time 5 and 9, server C1 receives data set number 3, computes the data set number 2,

and sends data set number 1 to C2 and C4.

For the model OUTORDER, the minimal possible value for the period is 7: indeed for server C5, there are

two incoming communications of length 1, one computation of length 4 and one outgoing communication

of length 1 (we get the same bound with C1). This value cannot be obtained for service C5 with the current

operation list: the reception from C4 for data set 1 (at time 12 + 7 = 19 coincides with its computation

for data set 0. To achieve a period 7, we can let BeginComm0
(4,5) = 14, and BeginCalc0

(4) = 8. We keep

BeginComm0
(1,4) = 6, so there is an idle time between the end of this communication and the beginning of

the computation. C4 has another idle time at the end of this computation at time 12, and the cycle resumes

for data set 1 at time 13 = 6 + 7 = BeginComm1
(1,4).

For the model INORDER, we have the same bound for the period as for the model OUTORDER, namely

7. With the previous operation list, we obtain a period 10 because of the cost of C5: the beginning of the

reception for data set 1 has to wait for the end of the emission of data set 0. This difference of 3 between

7 and 10 corresponds to the idle time between the end of the reception from C4 and the beginning of the

reception from C3, which is the difference of the lengths of the path C1 → C4 → C5 and of the path

C1 → C2 → C3 → C5. This idle time can be reduced (or shared) between C1, C4 and C5 as follows.

The time spent in computations and communications is 7 for C1, 6 for C4 and 7 for C5 respectively. The

optimal solution is to give an idle time 2
3 for C1, 1 + 2

3 for C4 and 2
3 for C5. We obtain the following values:

BeginComm0
(1,4) = 6 + 2

3 ,EndComm0
(1,4) = 7 + 2

3 , BeginCalc0
(4) = 7 + 2

3 , EndCalc0
(4) = 11 + 2

3 ,

BeginComm0
(4,5) = 13 + 1

3 , and EndComm0
(4,5) = 14 + 1

3 . The other values do not change. We obtain a

period 23
3 , which the reader may find surprising!

In this example, with the original operation list, we obtain three different values of the period for the

three different models. In addition, and more interestingly, the optimal period is different for each model,

and is obtained with a different operation list.

7

3 Counter-examples

In this section we give three examples to show the difficulty introduced by communication costs with the

different models.

3.1 With and without communication cost

We start by showing the impact of communication costs on the optimal solution for the period: without com-

munications, the optimal plan is always a linear chain for the services whose selectivities do not exceed 1 [1].

This property is no longer true in the OVERLAP model. An example is provided in Appendix B.1.

3.2 One-port/multi-port for latency

The example given in Section B.2 of the Appendix shows the difference between one-port and multi-port

communications when computing the latency in the OVERLAP model. We point out that this result still holds

for traditional workflows (without selectivities). To the best of our knowledge, this is a new and important

observation for scheduling classical streaming applications.

3.3 One-port/multi-port for period

The example given in Section B.3 of the Appendix shows the difference between one-port and multi-port

communications when computing the period in the OVERLAP model. The example with the period is more

complicated than the one with the latency because we can have different data sets being processed con-

currently. Just as for the latency, we point out that this result still holds for traditional workflows (without

selectivities).

4 Period minimization

In this section, we study two problems related to period computation and minimization. First we address

the following problem: given an execution graph, what is the complexity of determining the operation list

that leads to the best period? We provide a polynomial algorithm for the OVERLAP model, and show that

the problem is NP-hard for the INORDER and OUTORDER models. Then we address the general opti-

mization problems MINPERIOD-OVERLAP, MINPERIOD-INORDER and MINPERIOD-OUTORDER: what

is the complexity of determining the plan whose period is optimal? We show that these three problems are

NP-hard.

4.1 Optimal period for a given execution graph

Theorem 1. Given an execution graph, the problem of computing the operation list that leads to the opti-

mal period has polynomial complexity with the OVERLAP model but is NP-hard with the OUTORDER and

INORDER models.

The proof of Theorem 1 is provided in Appendix C. Dealing with the OVERLAP model is not too

difficult. Intuitively, in this model, all the communications can be executed in time

T = max
1≤k≤n

{Cin(k), Cout(k)}

We just have to assign to any communication of size t a fraction t/T of the available bandwidth. Remember

that we have normalized the bandwidth to b = 1. By doing so, the communications will be executed

8

in time T , and the sum of incoming or outgoing communications on any server is less than or equal to

b = 1. On the other hand, the NP-completeness reduction for non-overlapping models is rather involved.

We reduce the problem from RN3DM [22], a particular instance of 3-Dimensional Matching with two

permutations (also called the permutation sums problem). We should point out that Theorem 1 holds for

regular streaming applications (without selectivities). This is an important and new result in that context.

4.2 Computing the optimal period

We now address the complexity of the period minimization problem for the three models. Notice that the

plan consists of both the execution graph and the operations list. As it turns out, computing the execution

graph is NP-complete for all three period minimization problems. Therefore, even though we can compute

the operations list for the OVERLAP model in polynomial time, the overall problem for computing a plan

which minimizes the period is NP-complete.

On a positive note, we derived the following result on the structure of the optimal execution graph:

for any instance of MINPERIOD without dependence constraints, and using any of the three models, there

exists an optimal plan whose execution graph is a forest (see Proposition 4 in Appendix C for the proof).

This “structural” result reduces the search of optimal execution graphs. Still, all minimization problems are

NP-hard.

Theorem 2. Problems MINPERIOD-OVERLAP, MINPERIOD-OUTORDER and MINPERIOD-INORDER with-

out dependence constraints are all NP-hard.

The proof of Theorem 2 is provided in Section C of the Appendix. Again, the NP-completeness reduc-

tions are quite involved.

We conclude this section by providing a particular polynomial instance of the problem: If we restrict

the search for execution graphs and impose the restriction that the execution graph must be a linear chain,

then the execution graph can be found in polynomial time using a greedy algorithm (see Proposition 8 in

Appendix C for the proof). In addition, for this case, the operations list can be found quickly as well.

Therefore, the problem of finding a plan which minimizes the period can be solved in polynomial time for

all three communication models in this instance.

5 Latency minimization

This section is the counterpart of Section 4 for the latency. First we address the following problem: given

an execution graph, what is the complexity of determining the operation list that leads to the best latency?

This problem turns out to be NP-hard for all models (while determining the best period was polynomial

for the OVERLAP model). The general optimization problems MINLATENCY-OVERLAP, MINLATENCY-

INORDER and MINLATENCY-OUTORDER are all NP-hard. All these results imply technically involved

reduction proofs.

5.1 Optimal latency for a given execution graph

As for the optimization of the period, the latency of a plan depends upon the operation list. We prove in

this section that the computation of the optimal latency for a given execution graph is NP-hard for the three

models.

Theorem 3. Given an execution graph, the problem of computing the optimal operation list that leads to

the optimal latency is NP-hard for the three models.

9

The proof of Theorem 3 is provided in Appendix D. Also, we derive a polynomial case, namely com-

puting the latency for a tree-shaped execution graph (see Proposition 12 in Appendix D). As for the period

(Theorem 1), we point out that Theorem 3 holds for regular streaming applications (without selectivities).

Again, this is an important and new result in that context.

5.2 Computing the optimal latency

In this section, we address the complexity of the latency minimization problem for the three models. Again,

note that the fact that finding the operations list given an execution graph is NP-complete does not auto-

matically imply that the problem of finding the plan is NP-complete. For example, the optimal plan may

always consists of a simple execution graph for which the operations list can be computed in polynomial

time. Therefore, in order to prove that the latency minimization problem is NP-complete, we have to argue

that either (i) computing the execution graph that minimizes latency is NP-complete (as we did for the period

minimization proofs) or (ii) that the plans that minimize latency contain the “difficult” execution graphs that

do not allow to compute the best operation list easily. In this instance, we prove the following result using

the second option.

Theorem 4. Problems MINLATENCY-OVERLAP, MINLATENCY-OUTORDER and MINLATENCY-INORDER

without dependence constraints are all NP-hard.

The proof of Theorem 4 is provided in Appendix D. We conclude this section by providing the com-

plexity of the problems where we impose the restriction that the execution graph must be a chain or a forest:

• The problem MINLATENCY when restricting to plans whose execution graphs are linear chains is

polynomial for all models: see Proposition 16 in Appendix D for a proof.

• The problem MINLATENCY when restricting to plans whose execution graphs are forests is NP-hard

for all models: see Proposition 17 in Appendix D for a proof.

6 Conclusion

In this paper, we have explored the problem of mapping filtering streaming applications on large-scale homo-

geneous platforms, with a particular emphasis on communication models and their impact. We have iden-

tified three natural and realistic communication models, with and without commmunication/computation

overlap, and with one-port or bounded multi-port communications. We have addressed the following im-

portant problems:

• Given an execution graph, what is the complexity of computing the period or the latency?

• What is the complexity of the general period or latency minimization problem?

We have been able to provide the complexity of all the 12 optimization problems, thereby providing solid

theoretical foundations for the study of filtering streaming applications. Several of our results apply to

regular workflow applications, which broadens the scope and significance of our results to quite a large

applicative framework.

In the future, we plan to explore models that allow preemption. This would require to carefully assess

the cost of interruptions. Another important extension of this work would be to tackle bi-criteria problems:

given a threshold period, what is the optimal latency? and conversely, given a threshold latency, what is the

optimal period? All bi-criteria problems are trivially NP-hard (since mono-criterion problems already are)

but we can search for approximation algorithms, or at least efficient heuristics.

10

References

[1] U. Srivastava, K. Munagala, J. Widom, and R. Motwani, “Query optimization over web services,” in

VLDB ’06: Proceedings of the 32nd Int. Conference on Very Large Data Bases. VLDB Endowment,

2006, pp. 355–366.

[2] J. Burge, K. Munagala, and U. Srivastava, “Ordering pipelined query operators with precedence con-

straints,” Stanford University, Research Report 2005-40, November 2005.

[3] A. Benoit, F. Dufossé, and Y. Robert, “On the complexity of mapping filtering services on hetero-

geneous platforms,” LIP, ENS Lyon, France, Research Report 2008-30, Oct. 2008, short version to

appear in IPDPS’09.

[4] “DataCutter Project: Middleware for Filtering Large Archival Scientific Datasets in a Grid Environ-

ment,” http://www.cs.umd.edu/projects/hpsl/ResearchAreas/DataCutter.htm.

[5] K. Taura and A. A. Chien, “A heuristic algorithm for mapping communicating tasks on heterogeneous

resources,” in Heterogeneous Computing Workshop. IEEE Computer Society Press, 2000, pp. 102–

115.

[6] Q. Wu and Y. Gu, “Supporting distributed application workflows in heterogeneous computing envi-

ronments,” in 14th International Conference on Parallel and Distributed Systems (ICPADS). IEEE

Computer Society Press, 2008.

[7] N. Vydyanathan, U. Catalyurek, T. Kurc, P. Saddayappan, and J. Saltz, “An approach for optimiz-

ing latency under throughput constraints for application workflows on clusters,” Ohio State Univer-

sity, Columbus, OH, Research Report OSU-CISRC-1/07-TR03, Jan. 2007, available at ftp://ftp.cse.

ohio-state.edu/pub/tech-report/2007.ShortversionappearsinEuroPar’2008.

[8] ——, “Optimizing latency and throughput of application workflows on clusters,” Ohio State Univer-

sity, Columbus, OH, Research Report OSU-CISRC-4/08-TR17, Apr. 2008, available at ftp://ftp.cse.

ohio-state.edu/pub/tech-report/2007.

[9] A. Benoit and Y. Robert, “Mapping pipeline skeletons onto heterogeneous platforms,” J. Parallel Dis-

tributed Computing, vol. 68, no. 6, pp. 790–808, 2008.

[10] Q. Wu, J. Gao, M. Zhu, N. Rao, J. Huang, and S. Iyengar, “On optimal resource utilization for dis-

tributed remote visualization,” IEEE Trans. Computers, vol. 57, no. 1, pp. 55–68, 2008.

[11] D. Florescu, A. Grunhagen, and D. Kossmann, “Xl: A platform for web services,” in CIDR 2003,

First Biennial Conference on Innovative Data Systems Research, 2003, on-line proceedings at http:

//www-db.cs.wisc.edu/cidr/program/p8.pdf.

[12] M. Ouzzani and A. Bouguettaya, “Query processing and optimization on the web,” Distributed and

Parallel Databases, vol. 15, no. 3, pp. 187–218, 2004.

[13] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and J. Widom, “Adaptive ordering of pipelined

stream filters,” in SIGMOD’04: Proceedings of the 2004 ACM SIGMOD Int. Conf. on Management of

Data. ACM Press, 2004, pp. 407–418.

[14] S. Chaudhuri and K. Shim, “Optimization of queries with user-defined predicates,” ACM Trans.

Database Systems, vol. 24, no. 2, pp. 177–228, 1999.

11

[15] J. M. Hellerstein, “Predicate migration: Optimizing queries with expensive predicates,” in In Proc. of

the ACM SIGMOD Conf. on Management of Data, 1993, pp. 267–276.

[16] A. Agnetis, P. Detti, M. Pranzo, and M. S. Sodhi, “Sequencing unreliable jobs on parallel ma-

chines,” Journal on Scheduling, 2008, available on-line at http://www.springerlink.com/content/

c571u1221560j432.

[17] A. Benoit, F. Dufossé, and Y. Robert, “Mapping filter services on heterogeneous platforms,” LIP, ENS

Lyon, France, Research Report 2008-19, Jun. 2008, available at graal.ens-lyon.fr/∼abenoit/.

[18] M. R. Garey and D. S. Johnson, Computers and Intractability, a Guide to the Theory of NP-

Completeness. W.H. Freeman and Company, 1979.

[19] P. Bhat, C. Raghavendra, and V. Prasanna, “Efficient collective communication in distributed hetero-

geneous systems,” Journal of Parallel and Distributed Computing, vol. 63, pp. 251–263, 2003.

[20] B. Hong and V. Prasanna, “Bandwidth-aware resource allocation for heterogeneous computing systems

to maximize throughput,” in Proceedings of the 32th International Conference on Parallel Processing

(ICPP’2003). IEEE Computer Society Press, 2003.

[21] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra, MPI the complete reference.

The MIT Press, 1996.

[22] W. Yu, H. Hoogeveen, and J. K. Lenstra, “Minimizing makespan in a two-machine flow shop with

delays and unit-time operations is NP-hard,” J. Scheduling, vol. 7, no. 5, pp. 333–348, 2004.

12

Appendix

A Operation lists

Given a plan PL = (EG ,OL), the operation list OL defines the beginning and completion times of the

computation of each service Ci (values BeginCalc0
(i) and EndCalc0

(i) for data set 0), and of each communi-

cation Ci → Cj for each edge in the plan (values BeginComm0
(i,j) and EndComm0

(i,j) for data set 0). The

whole operation is cyclic and repeats every λ time-steps for a new data set.

Let Bi (resp. Ei) be the remainder of the Euclidian division of BeginCalc0
(i) (resp. EndCalc0

(i)) by

λ. Similarly, let B(i,j) (resp. E(i,j)) be the remainder of the Euclidian division of BeginComm0
(i,j) (resp.

EndComm0
(i,j)) by λ.

Let PL = (EG ,OL) be a plan for an instanceA = (F ,G). Recall that Ccomp(i) =
(

∏

Ck∈Ancesti(EG) σk

)

ci

is the computation cost for Ci in the execution graph. Let δ(i, j) =
(

∏

Ck∈Ancesti(EG) σk

)

be the cost of

the communication from Ci to Cj whenever it exists. For consistency, note that Cin(j) =
∑

Ci∈Sin(j)
δ(i, j).

All models are non-preemptive: one initiated, a communication or a communication cannot be inter-

rupted. Also, communications are synchronous, and the bandwidth assigned to a given communication

remains the same during its whole execution (this is not really a restriction for the one-port model but it is

an important one for the multi-port model)

One-port without overlap– A valid operation list for the models INORDER and OUTORDER should

respect the following constraints:

• For each node Ci, EndCalc0
(i) = BeginCalc0

(i) + Ccomp(i) (computation time)

• For each edge Ci → Cj , EndComm0
(i,j) = BeginComm0

(i,j) + δ(i, j) (communication time)

• For each node Ci, for each edge pair Cj → Ci and Ck → Ci,

– EndComm0
(j,i) ≤ BeginComm0

(k,i) or

– EndComm0
(k,i) ≤ BeginComm0

(j,i)

This is the one-port constraint: for any service, two incoming communications for a same data set do

not occur at the same time

• For each node Ci, for each edge pair Ci → Cj and Ci → Ck,

– EndComm0
(i,j) ≤ BeginComm0

(i,k) or

– EndComm0
(i,k) ≤ BeginComm0

(i,j)

This is the counterpart for outgoing communications

• For each node Ci, for each edge Cj → Ci,

EndComm0
(j,i) ≤ BeginCalc0

(i)

For any service, all incoming communications for a given data set are completed before the beginning

of the computation

13

• For each node Ci, for each edge Ci → Cj ,

EndCalc0
(i) ≤ BeginComm0

(i,j)

For any service, the computation is completed before the beginning of outgoing communications

For the model INORDER, we add the following constraint: for each node i, for each edge pair Cj → Ci

and Ci → Ck,

EndComm0
(i,k) ≤ BeginComm1

(j,i) = BeginComm0
(j,i) + λ (1)

Constraint (1) states that outgoing communications for a data set are completed before the beginning of

incoming communications for the next data set.

A B

A B

Case 1

Case 2

λ
0

Figure 2: Cases for the INORDER model.

For the model OUTORDER, things get more complicated. We replace constraint (1) by the following set

of constraints (see Figure 2):

• We forbid that an incoming communication and a computation take place at same time: for each edge

Ci → Cj ,

– B(i,j) ≤ E(i,j) ≤ Bj ≤ Ej (case 2, A = Ci → Cj and B = Cj) or

– Bj ≤ Ej ≤ B(i,j) ≤ E(i,j) (case 2: A = Cj and B = Ci → Cj) or

– E(i,j) ≤ Bj ≤ Ej ≤ B(i,j) (case 1: A = Cj and B = Ci → Cj) or

– Ej ≤ B(i,j) ≤ E(i,j) ≤ Bj (case 1: A = Ci → Cj and B = Cj)

• We forbid that an outgoing communication and a computation take place at same time: for each edge

Ci → Cj ,

– B(i,j) ≤ E(i,j) ≤ Bi ≤ Ei (case 2: A = Ci → Cj and B = Ci) or

– Bi ≤ Ei ≤ B(i,j) ≤ E(i,j) (case 2: A = Ci and B = Ci → Cj) or

– E(i,j) ≤ Bi ≤ Ei ≤ B(i,j) (case 1: A = Ci and B = Ci → Cj) or

– Ei ≤ B(i,j) ≤ E(i,j) ≤ Bi (case 1: A = Ci → Cj and B = Ci)

• We forbid that two different outgoing communications happen at the same time: for each edge pair

Ci → Cj and Ci → Ck,

– B(i,j) ≤ E(i,j) ≤ B(i,k) ≤ E(i,k) (case 2: A = Ci → Cj and B = Ci → Ck) or

– B(i,k) ≤ E(i,k) ≤ B(i,j) ≤ E(i,j) (case 2: A = Ci → Ck and B = Ci → Cj) or

14

– E(i,j) ≤ B(i,k) ≤ E(i,k) ≤ B(i,j) (case 1: A = Ci → Ck and B = Ci → Cj) or

– E(i,k) ≤ B(i,j) ≤ E(i,j) ≤ B(i,k) (case 1: A = Ci → Cj and B = Ci → Ck)

• We forbid that an incoming and an outgoing communications happen at the same time: for each edge

pair Ci → Cj and Ck → Ci,

– B(i,j) ≤ E(i,j) ≤ B(k,i) ≤ E(k,i) (case 2: A = Ci → Cj and B = Ck → Ci) or

– B(k,i) ≤ E(k,i) ≤ B(i,j) ≤ E(i,j) (case 2: A = Ck → Ci and B = Ci → Cj) or

– E(i,j) ≤ B(k,i) ≤ E(k,i) ≤ B(i,j) (case 1: A = Ck → Ci and B = Ci → Cj) or

– E(k,i) ≤ B(i,j) ≤ E(i,j) ≤ B(k,i) (case 1: A = Ci → Cj and B = Ck → Ci)

• We forbid that two different incoming communications happen at the same time: for each edge pair

Cj → Ci and Ck → Ci,

– B(j,i) ≤ E(j,i) ≤ B(k,i) ≤ E(k,i) (case 2: A = Cj → Ci and B = Ck → Ci) or

– B(k,i) ≤ E(k,i) ≤ B(j,i) ≤ E(j,i) (case 2: A = Ck → Ci and B = Cj → Ci) or

– E(j,i) ≤ B(k,i) ≤ E(k,i) ≤ B(j,i) (case 1: A = Ck → Ci and B = Cj → Ci) or

– E(k,i) ≤ B(j,i) ≤ E(j,i) ≤ B(k,i) (case 1: A = Cj → Ci and B = Ck → Ci)

Case 1

Case 2

Case 3

t
O λ

Figure 3: Cases for the OVERLAP model.

Multi-port with overlap– For the model OVERLAP, the servers can execute many incoming (outgoing)

communications simultaneously. Bandwidth is shared between concurrent communications. Any commu-

nication on a server is assigned some ratio of the available bandwidth. This ratio does not change during the

communication, hence the execution time of the communication is the cost of the communication multiplied

by its bandwidth ratio. At any time, the sum of the ratios used should not exceed b = 1.

We define the set of incoming communications to Ci, that are beginning or in progress at time t + k×λ
for k large enough (see Figure 3):

Ai
in(t) = {j ∈ Sin(i)|B(j,i) ≤ t < E(j,i) (case 1) or E(j,i) ≤ B(j,i) ≤ t(2) (case 2) or t < E(j,i) ≤ B(j,i) (case 3)}

Similarly for outgoing communications from Ci at time t + k × λ:

Ai
out(t) = {j ∈ Sout(i)|B(i,j) ≤ t < E(i,j) (case 1) or E(i,j) ≤ B(i,j) ≤ t(2) (case 2) or t < E(i,j) ≤ B(i,j) (case 3)}

The operation list is valid if:

15

• For all node i, EndCalc0
(i) = BeginCalc0

(i) + Ccomp(i) (computation cost)

• For each node Ci and for each edge Cj → Ci,

∑

k∈Ai
in
(B(j,i))

δ(k, i)

EndComm0
(k,i) − BeginComm0

(k,i)

≤ 1

(incoming communications do not exceed the bandwidth)

∑

k∈Ai
in
(B(j,i))

δ(j, k)

EndComm0
(j,k) − BeginComm0

(j,k)

(outgoing communications do not exceed the bandwidth)

• For each edge Ci → Cj ,

EndComm0
(i,j) ≤ BeginCalc0

(j) and EndCalc0
(i) ≤ BeginComm(i,j)

(for a given data set, incoming communications are completed before the computation, which itself is

completed before outgoing communications)

B Counter-examples

B.1 With and without communication cost

This example shows the impact of communication costs on the optimal solution for the period: without

communications, the optimal plan always is a linear chain for the services whose selectivities do not exceed

1 [1]. This property is no longer true in the OVERLAP model.

We present an instance of the problem MINPERIOD, and we study it without communication costs and

with the model OVERLAP. We consider the following instance with 202 services:

• services C1 and C2 have selectivities σi = 0, 9999 and costs ci = 100

• services Ci for 3 ≤ i ≤ 202 have selectivities σi = 100 and costs ci = 100
0,9999

Does there exist a plan whose period does not exceed 100?

For the model without communication cost, we obtain 100 by chaining C1 and C2, and by making C2

the predecessor of all other services. But because of the outgoing communications of C2, this gives us a

period 200 with the model OVERLAP. We claim that the only solution with the model OVERLAP is the plan

presented in Figure 4.

By contradiction, consider a plan with period less than 100. Let i be an integer with 3 ≤ i ≤ 202. The

cost of Ci is strictly greatest than 100, hence it must have C1 or C2 as a predecessor. But if C1 precedes

C2, because of communication costs, C1 can only have 99 other successors, and C2 can only have 100
successors. There is a slot missing, unless some Ci has a successor Cj where 3 ≤ i, j ≤ 202 and i 6= j. But

then the computation time of Cj in G would be

∏

Ck∈Ancestj(G)

σk × σi × cj ≥ 0, 99992 ∗ 100 ∗ 100 > 100

This establishes the claim.

As stated above, it is proved in [1] that in any optimal plan for MINPERIOD without communication

costs, all services of selectivity less than one are chained. This example shows that such a structure is no

longer always optimal with communication costs.

16

in

in

C1

C2

C3

C4

C102

C103

C202

C104

out

out

out

out

out

out

Figure 4: Optimal solution with communication costs.

B.2 One-port/multi-port for latency

In this example, we study the difference between one-port and multi-port communications when computing

the latency in the OVERLAP model. Consider a problem instance with 12 services C1 to C12, all of unit cost.

We assume that σ2 = σ3 = 2, σ4 = σ5 = σ6 = 3, and the other selectivities are equal to 1. The execution

graph EG is represented in Figure 5.

The computations of services C1,...,C6 can be completed at time 2. With multi-port communications,

the communications between these services and services C7,...,C12 can be executed within 6 time-steps;

they all complete at time 8. The computations of services C7,...,C12 complete at time 14 (the size of each

input is 6), and the output communications to the outside world all complete at time 20, which leads to a

latency L = 20.

This latency cannot be achieved with one-port communications. To see this, first note that the compu-

tation of any service Ci with 1 ≤ i ≤ 6 cannot be completed before time 2. Then the difference between

the beginning of the computation of any service Cj with 7 ≤ j ≤ 12 and the latency is at least 12, because

of the cost of their computation and of their outgoing communication. Hence, to obtain a latency of 20, all

communications from services C1,...,C6 to services C7,...,C12 must be completed within 6 time-steps. But

this value is equal to Cout(i) for 1 ≤ i ≤ 6 and to Cin(j) for 7 ≤ j ≤ 12: there cannot be any idle time on

any service between the first incoming data and the last outgoing data. Suppose that there exists a valid op-

eration list for one-port communications without idle-time and capable of executing all the communications

within 6 time steps. Let Cj be the service such that BeginComm0
(1,j) = 2 and let Ck be the service such

that BeginComm0
(1,k) = 3. We know that these two services exist because there cannot be any idle time

on C1. Then Ck is necessarily idle between time 2 and 3 because the only incoming communication on Ck

of cost 1 is C1 → Ck. This contradiction proves that the optimal latency with one-port communications on

this instance is strictly greater than 20.

We point out that this result still holds for traditional workflows (without selectivities). Indeed, the

execution graph of the example can be viewed as the original DAG of a workflow where the weight of

17

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

in out

in out

in out

in out

in out

in out

Figure 5: Execution graph for the example with the latency.

a node Ck is Ccomp(k) and where the volume of a communication from Ci to Ck is
∏

Cj∈Ancesti(EG) σj .

To the best of our knowledge, this is a new and important observation for scheduling classical streaming

applications.

B.3 One-port/multi-port for period

In this example, we study the difference between one-port and multi-port communications when computing

the period in the OVERLAP model. The example with the period is more complicated than the one with

the latency because we can have different data sets being processed concurrently. Consider the following

problem instance with 8 services:

• ∀i, ci = 1,

• σ1 = σ2 = 3,

• σ3 = 4,

• σ4 = 2,

• ∀4 < i ≤ 8, σi = 1

The execution graph EG is represented in Figure 6.

With the multi-port model, the optimal value of the period is given by the maximum time needed for

communications, i.e. P = 12. Can we obtain this value with one-port communications? Notice that

Cout(1) = Cout(2) = Cout(3) = 12 and Cin(5) = Cin(6) = Cin(7) = 12. That means that if there exists a

solution, then, on these servers, there will be no idle time in their communications.

Suppose that there exists a valid operation list of period λ = 12. Consider the steady-state operation,

and let t be a time-step at which a communication from C3 to C5 begins. Then, as there is no idle time on

C3 for outgoing communications, there is a communication from C3 at time t + 4 (suppose it goes to C6)

and at t + 8 (suppose it goes to C7).

There is no idle time on C5 for incoming communications either, hence there is an incoming communi-

cation on C5 that begins at time t + 4. This communication is of size 2 or 3.

18

3

3

4

2

in

in

in

in out

out

out

out

C1

C2

C5

C6

C7

C8

C3

C4

Figure 6: Execution graph for the example with the period.

Suppose first that this communication is of size 3. This case is represented in Figure 7. We can suppose

that it comes from C1. We study the beginning time of the communication from C1 to C7. There is no idle

on C1, and this server sends data to C5 between t + 4 and t + 7: hence this communication begins at time

t+7, t+10 or t+13 (or t+1 for the previous data set). Server C7 receive data from C3 between t+8 and

t + 12. That means that the communication from C1 cannot begin at t + 7, and nor at t + 10. There only

remains time t + 13. There remains an idle slot between t + 12 and t + 13 for a communication, but there

is no communication of size 1. As there is no idle time on C7, we obtain a contradiction.

C3

C3

C1

C3

C7

C5

C6

t t + λ

Figure 7: Case 1.

Suppose now that there is an incoming communication to C5 of size 2 that begins at time t+4, followed

by a communication of size 3 (suppose it comes from C1). We study the beginning time of the communica-

tion from C1 to C6. Server C1 sends data to C5 from time t + 6 to t + 9 and it has no idle time. Then the

communication from C1 to C6 can begin at time t + 9 or t + 12 (or t for the previous data set) or t + 15 (or

again t + 3 for the previous data set). This communication cannot begin at time t + 3 because it is of size 3
and the communication from C3 to C6 begins at time t + 4. If it begins at time t + 9, we obtain an idle time

of size 1 between t + 8 and t + 9, and if it begins at time t, we obtain an idle time of size 1 between t + 3
and t + 4. However, we have seen in the previous case that this is not possible. We obtain a contradiction.

Altogether, for computing the period in the OVERLAP model, we have proven that multi-port communi-

cations are strictly “stronger” than one-port communications. Just as in Section 3.2 for the latency, we point

out that this result still holds for traditional workflows (without selectivities).

C Period minimization

C.1 Optimal period for a given execution graph

Theorem 1. Given an execution graph, the problem of computing the operation list that leads to the opti-

mal period has polynomial complexity with the OVERLAP model but is NP-hard with the OUTORDER and

19

C3

C3

C1

C3

C5

C6

C7

t t + λ

Figure 8: Case 2.

INORDER models.

The proof of Theorem 1 is given by Propositions 1, 2 and 3.

Proposition 1. Given an execution graph, the problem of computing the operation list that leads to the

optimal period has polynomial complexity with the OVERLAP model.

Proof. Consider an execution graph EG for an application A = (F ,G) Let T = max1≤k≤n{Cexec(k)}.
This value is a lower bound for period, and we prove that it can be met.

For each communication of size t, we assign to this communication a fraction t/T of the available

bandwidth at the sender/receiver pair. That means that all communications will execute during T time-

steps. For any server, the sum of the bandwidth ratios of incoming communications does not exceed 1, by

definition of T . The same holds for outgoing communications. By definition of T , the computation time of

each server also fits within the period.

We have not yet specified which data sets are operated upon by the different servers. But the previous

discussion shows that every server can repeat its operations every T time-units without conflict. If suffices

to let the first data set traverse the execution graph greedily: each communication is performed as soon as

possible, and each computation is performed as soon as all the necessary data (all incoming communication)

is available. We then repeat this scheme for every data set every T time units, and we obtain an operation

list of period T .

Proposition 2. Given an execution graph, the problem of computing the operation list that leads to the

optimal period is NP-hard with the OUTORDER model.

Proof. We consider the associated decision problem and show that is NP-complete: given an application

A = (F ,G), an execution graph EG for this application, and a bound K, does there exist an operation list

for EG such that the period does not exceed K? This problem is obviously in NP: given A, EG and an

operation list, we have the period λ and check whether it does not exceed K. To establish completeness,

we use a reduction from RN3DM [22]. We consider an instance I1 of this problem: given an integer vector

A = (A[1], . . . , A[n]) of size n ≥ 2, does there exist two permutations λ1 and λ2 of {1, 2, . . . , n} such that:

∀1 ≤ i ≤ n, λ1(i) + λ2(i) = A[i] (2)

We can suppose that 2 ≤ A[i] ≤ 2n for all i and that
∑n

i=1 A[i] = n(n + 1), otherwise we know that the

instance I1 has no solution. We associate to I1 an instance I2 with 2n + 5 services without dependence

constraints, all of selectivity 1, and whose costs are as follows:

• c1 = c2n+5 = n and c2n+3 = c2n+4 = 2n + 1

• c2i = 2n + 1 for 1 ≤ i ≤ n + 1 and c2i+1 = 2n + 1−A[i] for 1 ≤ i ≤ n

20

• σi = 1 for 1 ≤ i ≤ 2n + 5

The execution graph is represented in Figure 9. Finally, we let K = 2n + 3. The size of I2 is obviously

linear in the size of I1.

C2n+4

C2
C3

C4 C5

C2n+3
C2n+2

in

C2n+5
out

C1

Figure 9: graph G.

Intuitively, we note that service C1 has many successors and C2n+5 many predecessors. We need the

ordering of the associated communications to compute the optimal period for this execution graph. We now

show that I1 has a solution if and only if I2 has a solution.

Suppose first that I1 has a solution λ1, λ2. We compute the following operation list for I2: C1 first com-

municates with C2n+4. Then services C2, C4, . . . , C2n are fed in the ordering given by λ1. Finally C2n+4 is

the last service to receive data from C1. Receptions by C2n+5 are done in the order C1, C2(n−λ2(1))+3, . . . ,

C2(n−λ2(n))+3, C2n+3. With this orchestration, owing to Equation 2, the period is 2n + 3.

Suppose now that I2 has a solution. For a data set k, suppose that the computation of C2n+2 begins at

time i and that the computation of C2n+4 begins at time j. For services C1, C2n+2 and C2n+4, the sum of

the costs of communications and of computations is equal to 2n + 3. That means that there is no idle time

for the associated servers. Hence at time i − 1 (resp. j − 1), there is a communication between servers C1

and C2n+2 (resp. C2n+4) for data set k. Hence service C1 sends the result of its computation for data set

k between time-steps i − 1 and j or between time-steps j − 1 and i. Therefore, |j − i| + 1 ≤ n + 2. For

services C2n+3, C2n+4 and C2n+5, the sum of the costs of communications and of computations is equal to

2n + 3. That means that there is no idle time for the associated servers. Hence the computation of data set

k on C2n+3 and C2n+4 are completed at time i + 4n + 3 and j + 2n + 1 respectively. C2n+5 receives the

corresponding data from C2n+3 and C2n+4 at time i + 4n + 3 and j + 2n + 1 respectively. Then service

C2n+5 receives the data for the computation of data set k between time i + 4n + 1 and j + 2n. Hence

|(i + 4n + 3) − (j + 2n + 1)| + 1 = |(i − j) + 2n + 2| + 1 ≤ n + 2. We obtain j − i = n + 1. As a

consequence, for 1 ≤ i ≤ n, the communication from C1 to C2i is done between time j and j + n and the

communication between C2i+1 and C2n+5 is done between time j + 2n + 2 and j + 3n + 2. Let λ1 be the

ordering of communications from C1 to services C2, ..., C2n and λ2 be the permutation such that n+1−λ2

is the ordering of communication from C3, ..., C2n+1 to C2n+5. We obtain

∀i, λ1(i) + (2n + 1) + 1 + (2n + 1−A[i]) + λ2(i) = 4n + 3
⇐⇒ ∀i, λ1(i) + λ2(i) = A[i].

This completes the proof.

Proposition 3. Given an execution graph, the problem of computing the operation list that leads to the

optimal period is NP-hard with the INORDER model.

21

Proof. We use the same reduction as for Proposition 2, because the optimal operation list fulfilled the

constraints of the INORDER model.

C.2 Computing the optimal period

Proposition 4. For any instance of MINPERIOD without dependence constraints, and using any of the three

models, there exists an optimal plan whose execution graph is a forest.

Proof. For this proof, for any execution graph EG = (C, E), we define the number of added predecessors

of a vertex v ∈ C as na(v) = 0 if v has zero or one direct predecessor, and as na(v) = p− 1 if v has p ≥ 2
direct predecessors. We also define the number of added predecessors of EG as na(EG) =

∑

v∈C na(v).
Let I be an instance of MINPERIOD. Let EG be the execution graph of an optimal plan for this instance

which has the minimal number of added predecessors. Suppose that EG is not a forest. Let C be a service

of minimal depth with at least direct predecessors. Let C1, C2 be two of these predecessors.

Suppose first that C1 and C2 have no common predecessor. Let P1 and P2 the paths from an entry node

to C1 and from an entry node to C2. There are unique by construction of C. Let Σ1 be the product of

selectivities on P1 and Σ2 the product of selectivities on P2. If Σ1 ≥ 1 (resp. Σ2 ≥ 1), we can remove the

edge C1 → C (resp. C2 → C): this will decrease the product of selectivities for C as well as the output

communication cost of C1 (resp.C2). If Σ1 < 1 and Σ2 < 1, let C ′
2 be the root of the path P2. C ′

2 is an entry

node of G by construction of P2. If we remove the edge C1 → C and add an edge C1 → C ′
2, the product of

selectivities for C does not change, and the product of selectivities for the services of P2 decreases. These

two operations strictly decrease the number of added predecessors of the graph EG and does not increase

the period. This contradicts the hypothesis that EG is a optimal graph for the period with a minimal number

of added predecessors.

Suppose now that C1 and C2 have common predecessors. Let C ′
1 (resp. C ′

2) be the predecessor of C1

(resp. C2) of minimal depth such that C ′
1 (resp. C ′

2) is not a predecessor of C2 (resp. C1). Let C ′ be the

direct predecessor of C ′
1 and C ′

2. Let P1 (resp. P2) be the path from C ′
1 (resp. C ′

2) to C1 (resp. C2). Let Σ1

be the product of selectivities on P1 and Σ2 the product of selectivities on P2. If Σ1 ≥ 1 (resp. Σ2 ≥ 1),

we can remove the edge C1 → C (resp. C2 → C): this will decrease the product of selectivities for C as

well as the output communication cost of C1 (resp.C2). If Σ1 < 1, we can remove the edge C1 → C and

add an edge C1 → C ′
2. The product of selectivities for C does not change, and the product of selectivities

for the services of P2 decreases. These two operations strictly decrease the number of added predecessors

of the graph EG and does not increase the period, a contradiction.

We can conclude that an optimal execution graph for the period whose number of added predecessors is

minimal, necessarily is a forest.

Theorem 2. Problems MINPERIOD-OVERLAP, MINPERIOD-OUTORDER and MINPERIOD-INORDER with-

out dependence constraints are all NP-hard.

The proof of Theorem 2 is given by Propositions 5, 6 and 7.

Proposition 5. The problem MINPERIOD-OVERLAP without dependence constraints is NP-hard.

Proof. We consider the associated decision problem and show that is NP-complete: given n services without

dependence constraints and a bound K, is there a plan whose period does not exceed K? This problem is

obviously in NP: given a plan, that is an execution graph together with an operation list, we are given the

period, and we can check that the operation list is valid in polynomial time. To establish the completeness,

we use a reduction from RN3DM [22]. Consider an instance I1 of RN3DM: given an integer vector A =
(A[1], . . . , A[n]) of size n, does there exist two permutations λ1 and λ2 of {1, 2, . . . , n} such that

∀1 ≤ i ≤ n, λ1(i) + λ2(i) = A[i] (3)

22

We can suppose that 2 ≤ A[i] ≤ 2n for all i and that
∑n

i=1 A[i] = n(n + 1), otherwise we know that the

instance has no solution. We associate to I1 an instance I2 of RN3DM with 3n services without dependence

constraints. For convenience we denote these services as C1,i, C2,i, and C3,i for 1 ≤ i ≤ n. We let K = 3
2 .

Service costs and selectivities are the following:

• ∀i, c1,i = K, c2,i = K × 2
b+1 and c3,i = K

a2 × γ−A[i]

• ∀i, σ1,i = σ2,i = a× γi and σ3,i = K
b2

•
Here, a, b and γ are rational numbers such that

• 2n

√

3
4 < a < b < 2n

√

3,2
4 with 2n × a ∈ N and 2n × b ∈ N

• 1 < γ < n

√

b
a

with 2n × γ ∈ N

We have a < b < 1 and γ ≤ 2, so their numerators are bounded by 2n+1. Altogether, a, b and γ can

be represented with O(n) bits, which is polynomial in the size O(n) of I1 (we have n services). But we

need to prove that we can find such numbers. For a fixed n, we can find two rational numbers a and b with

denominator 2n if the function f(n) = 2n

√

3,2
4 − 2n

√

3
4 − 2 ∗ 2−n is positive. We have

f ′(n) = − ln(3,2
4) 1

2n2 ∗ 2n

√

3,2
4 + ln(3

4) 1
2n2

2n

√

3
4 + 2 ln(2)−n

∼ (ln(3
4)− ln(3,2

4)) 1
2n2 < 0

We obtain that f tends to 0 as n tends to +∞, and that f ′ is negative for n big enough. This proves that

there exists n0 such that ∀n > n0, f(n) > 0. This gives the existence of a and b for n large enough.

Now we have a and b rational numbers with denominator 2n and both smaller than 1. Then, in worst

case, 1 < γ < n

√

2n

2n−1 . Let g(n) = n

√

2n

2n−1 − 1− 2−2n. Then

g′(x) = 2
n
√

2n−1
(ln(2n−1)

n2 − ln(2)2n

n(2n−1)) + 2 ln(2)2−2n

= 2
n
√

2n−1
(ln(2)

n
+ ln(1−2−n)

n2 − ln(2)
n(1−2−n)

) + 2 ln(2)2−2n

∼ 2
n
√

2n−1
(ln(2)

n
− 2−n

n2 − ln(2)
n

(1 + 2−n)) + 2 ln(2)2−2n

∼ 2
n
√

2n−1
(−2−n

n2 − ln(2)
n

2−n) + 2 ln(2)2−2n

∼ − 2
n
√

2n−1
× ln(2)

n
2−n < 0

This proves the existence of γ for n big enough.

Finally, all costs and selectivities are rational numbers whose numerators and denominators are of the

order at most O(2n2
, hence the size of I2 is polynomial in the size of I1.

We now show that I1 has a solution if and only if I2 has a solution. Suppose first that I1 has a solution

λ1, λ2. We prove that the plan whose execution graph is represented in Figure 10 is a solution of I2. For

all i, j,c1,i = K and σi × C2,j ≤ 2b
b+1 × K ≤ K since b < 1. In addition, all communication costs are

less than one and K > 1, then all services C1,i and C2,i respect the bound on the period. For any i, the

incoming communication volume to C3,i is less than K. The outgoing communication volume is at most

maxj{σ1,j} ×maxj{σ2,j} × c3,i = b× b× K
b2

= K. Concerning the computation of C3,i, we obtain a cost

Ccomp(3, i) = σ1,λ1(i)σ2,λ2(i)c(3,i)

= a2γλ1(i)+λ2(i) × K
a2 × γ−A[i]

= K

23

C3,1

C3,2

C3,n

C2,λ2(1)

C2,λ2(2)C1,λ1(2)

C1,λ1(1)in

in

in out

out

out

C1,λ1(n)
C2,λ2(n)

Figure 10: instance I2

We conclude that this plan is a valid solution of I2.

Suppose now that I2 has a solution. We prove that there exists λ1 and λ2 such that this solution has the

plan of Figure 10. For all i, c2,i = K× 2
b+1 > P since b < 1 and c3,i = K

a2 ×γ−A[i] ≥ K
a2 > K. That means

that these services cannot be entry nodes in a solution. For all i, j, σ1,i×c3,j ≥ a× K
a2

a2

b2
≥ K a

b2
> K since

a
b2

> 1. That means that in a solution, C3,i has at least 2 predecessors. Suppose that there exist i, j such that

C3,i is predecessor of C3,j . The outgoing communication of C3,i is at least: a2n× K2

b4
≥ 9

4b2
×K > K. We

obtain a contradiction. Suppose that there exists a service C1,i or C2,i with at least two direct successors.

Then the outgoing communication of this service has a cost at least 2a2 > 3
2 = K. This prove that the

services C3,i are arranged on n independent chains of length at least 3. In addition, the services C2,i cannot

be entry nodes of the plan. This proves that the plan of the solution has the structure of Figure 10. Let λ1,

λ2 be two permutations such that the predecessors of the service C3,i are C1,λ1(i) and C2,λ2(i).

The computation cost of each service C3,i is smaller than K:

∀i Ccomp(3, i) ≤ K

⇐⇒ ∀i P × γλ1(i)+λ2(i)−A[i] ≤ K

⇐⇒ ∀i γλ1(i)+λ2(i)−A[i] ≤ 1
⇐⇒ ∀i λ1(i) + λ2(i)−A[i] ≤ 0
⇐⇒ ∀i λ1(i) + λ2(i)−A[i] = 0

Altogether, we have proven that I1 has a solution. This concludes the proof.

Proposition 6. The problem MINPERIOD-OUTORDER without dependence constraints is NP-hard.

Proof. We consider the associated decision problem and show that is NP-complete: given n services without

dependence constraints and a bound K, is there a plan whose period does not exceed K? As before, this

problem is obviously in NP. To establish the completeness, we use a reduction from RN3DM [22]. Consider

an instance I1 of RN3DM: given an integer vector A = (A[1], . . . , A[n]) of size n, does there exist two

permutations λ1 and λ2 of {1, 2, . . . , n} such that

∀1 ≤ i ≤ n, λ1(i) + λ2(i) = A[i] (4)

24

We can suppose that 2 ≤ A[i] ≤ 2n for all i and that
∑n

i=1 A[i] = n(n + 1), otherwise we know that the

instance has no solution.

Let xi = yi = n − i and zi = A[i] for 1 ≤ i ≤ n, and let α = (1 + 2−n). We construct the following

instance I2 of our problem. We have a set F = {C0, C
x
1 , . . . , Cx

n, Cy
1 , . . . , Cy

n, Cz
1 , . . . , Cz

n} of 3n + 1
services. Each service Cs

i , where s ∈ {x, y, z} has a selectivity of σs
i and the computation cost of cs

i . Here

is how we pick the selectivities and the computation costs for the services.

1. Let m = 2n. For n enough big, we have αm < (1 + ǫ), where ǫ = 1/(2n).

2. Compute K = (1 + ǫ)/(ǫαm). Note that K = (1 + ǫ)/(ǫαm) > (1 + ǫ)/(1.5ǫ) > 2n/1.5 > n + 2
for n ≥ 7, since αm < (1 + ǫ) < 1.5.

3. For the first service, we set selectivity σ0 = 1/(αm(1 + ǫ)) and c0 = K − 1− nσ0. This is feasible,

since c0 = K − 1− nσ0 > n + 2− n + 1 = 1. Therefore, the computation cost is always positive.

4. For services Cx
i , where 1 ≤ i ≤ n, we set the selectivity such that σx

i = αxi . Therefore, 1 < σx
i <

1 + ǫ. We pick cx
i = K/σ0 − σx

i − 1. Again, the computation cost is positive.

5. For the next n services Cy
i where 1 ≤ i ≤ n we set selectivity σy

i = (1 + ǫ)αyi so that 1 + ǫ < σy
i <

(1 + ǫ)2. Similarly, choose cy
i = K/(σ0(1 + ǫ))− 1− σy

i .

6. For the next n services, Cz
i for 1 ≤ i ≤ n, we pick cz

i and σz
i such that 1 + σz

i + cz
i = αziK and set

σz
i = (1 + 2ǫ).

The size of I2 is clearly polynomial in the size of I1.

C0

C
x
λ1(2)

C
y

λ2(n)C
x
λ1(n)

C
y

λ2(1)

C
y

λ2(2)

C
z
1

C
z
2

C
z
n

C
x
λ1(1)

out

out

out

in

Figure 11: Structure of the optimal execution graph.

We now show that I1 has a solution if and only if I2 has a solution. Suppose first that I1 has a solution

with permutations a and b. Then, we prove that I2 has a solution of the form shown in Figure 11. C0

appears first, and has n outgoing links that input into services Cx
1 through Cx

n . All other services just have

one output. For 1 ≤ i ≤ n, the output of service Cx
i goes to service Cy

λ1(i) and the output of service Cy

λ1(i)
goes into the input of service Cz

λ2(i). We now prove that the period of this mapping is exactly K.

1. The period of the first service C0 is 1 + co + nσ0 = 1 + K − 1− nσ0 + nσ0 = K, by construction.

2. The period of services Cx
i is σ0(1 + cx

i + σx
i) = σ0(1 + K/σ0 − σx

i − 1 + σx
i) = K.

3. The next n services are generated using the values from set Y . The period of service Cy

λ1(i) for all

1 ≤ i ≤ n is σ0σ
x
i (1 + cy

λ1(i) + σy

λ1(i)) = σ0σ
x
i (1 + K/(σ0(1 + ǫ)) − 1 − σy

λ1(i) + σy

λ1(i)) =

σ0σ
x
i K/(σ0(1 + ǫ)) < K, since σx

i < (1 + ǫ)

25

4. The period of service fλ2(i) for all 1 ≤ i ≤ n is

P = σ0σ
x
i σy

λ1(i)(1 + cz
λ2(i) + σz

λ2(i))

= σ0.α
xi(1 + ǫ)αyλ1(i) .Kαzλ2(i)

= σ0α
2n(1 + ǫ)K

=
1

(1 + ǫ)α2n
α2n(1 + ǫ)K

= K

We now prove that if we have a solution to I2, then we have a solution to I1. Say we have a mapping of

services with period is at most K.

Observation 1. C0 must appear first in the mapping, and all other services must come after C0.

Proof. If a service Cs
i , s ∈ {x, y, z} is not after C0, its period is at least 1 + cs

i + σs
i , since the selectivity of

all other services is greater than 1.

1. For services Cx
i , the period is at least 1 + cx

i + σx
i = K/σ0 > K, since σ0 < 1.

2. For services Cy
i , we have period 1 + cy

i + σy
i = K/(σ0(1 + ǫ)) > K since σ0 = 1/((1 + ǫ)α2n) <

1/(1 + ǫ)

3. For services Cz
i , we have 1 + σz

i + cz
i > Kα2n > K by definition.

Observation 2. By construction, we know that for the period to be less than K, C0 can have at most n
outgoing communications.

Observation 3. All of C0’s outgoing links go directly into Cx
1 through Cx

n .

Proof. We know that cx
i = K/σ0 − σi − 1. Assume for the sake of contradiction that Cx

i is after some

service Cs
j , s ∈ {x, y, z}. Then the period of Cx

i is σ0σ
s
j (1 + cx

i + σx
i) = σ0σ

s
j (K/σ0) > K since all

σs
j > 1.

Observation 4. Each of these services Cx
1 through Cx

n can have at most one outgoing branch.

Proof. If Cx
i had two branches, the period would be σ0(1 + cx

i + 2σx
i) = σ0(1 + K/σ0− 1− σx

i + 2σx
i) =

K + σ0σ
x
i > K.

Observation 5. The outgoing branches from Cx
1 through Cx

n go into distinct services Cy
1 through Cy

n, not

necessarily in order.

Proof. Assume for contradiction that we can put service Cs
j , s ∈ {y, z} between Cx

k and Cy
i . The period

of Cy
i is σ0σ

x
kσs

j (1 + cy
i + σy

i) > σ0(1 + ǫ)(1 + K/(σ0(1 + ǫ)) − 1 − σy
i + σy

i) = K, since σx
k > 1 and

σs
j > (1 + ǫ).

Observation 6. Again, these services Cy
1 through Cy

n can have only one outgoing edge.

26

Proof. If they had 2 edges and if service Cx
k precedes this service Cy

i , their period is

P = σ0σ
x
k(1 + cy

i + 2σy
i)

> σ0(K/(σ0(1 + ǫ)) + σy
i)

> K/(1 + ǫ) + σ0(1 + ǫ)

= K/(1 + ǫ) + Kǫ(1 + ǫ)/(1 + ǫ)2

= K.

Observation 7. Finally, all of the services Cz
i are on these outgoing n edges.

Therefore, the structure of the graph to get a period of K is exactly as is shown in figure.

Let us consider the service Cz
k , which is chained after services Cx

i and Cy
j . The period of service Cz

k is

σ0σ
x
i σy

j (1 + cz
k + σz

k) ≤ K

σ0.α
xi(1 + ǫ)αyjKαzk ≤ K

σ0(1 + ǫ)Kα(xi+yj+zk) ≤ K

σ0(1 + ǫ)α(xi+yj+zk) ≤ 1

1

(1 + ǫ)α2n
(1 + ǫ)α(xi+yj+zk) ≤ 1

α(xi+yj+zk) ≤ α2n

xi + yj + zk ≤ 2n

Since all the sums are less than or equal to 2n and
∑n

i=1 A[i] = n(n + 1), all sums have to be equal to 2n.

Because xi + yj + zk = 2n ⇔ i + j = A[k], we have a solution to I1. This concludes the proof.

Proposition 7. The problem MINPERIOD-INORDER without dependence constraints is NP-hard.

Proof. We use the same reduction as for Proposition 7, because the optimal operation list fulfilled the

constraints of the INORDER model.

C.3 Problems on chains

Proposition 8. The problem MINPERIOD when restricting to linear chain execution graphs is polynomial

for all models.

Proof. On a chain of servers, the models INORDER and OUTORDER are equivalent: they lead to the same

value of the period. Consider an optimal execution graph EG for either model. Let Ci → Cj be two

successive services. We suppose that

max{1 + ci + σi, σi(1 + cj + σj)} ≤ max{1 + cj + σj , σj(1 + ci + σi)}
otherwise we can exchange their positions. Let c′k = 1+ck+σk for all k. If σi, σj ≤1, we have c′i ≤ c′j , and if

σi, σj ≥ 1, then we have σi

c′i
≤ σj

c′j
and the only remaining case is σi < 1 and σj > 1. Therefore the problem

can be solved by the following greedy algorithm: place services of selectivity less than 1 by increasing value

of c′k, and then have them followed by services of selectivity at least 1 arranged by increasing value of σk

c′
k

.

Similarly, for the model OVERLAP, we can suppose that

max{1, ci, σi, σicj , σiσj} ≤ max{1, cj , σj , σjci, σjσi}
Let c′k = max{1, ck} for all k. Then we see that max{c′i, σic

′
j} ≤ max{c′j , σjc

′
i}. We obtain the same

greedy algorithm as above with the new value of c′k.

27

D Latency minimization

D.1 Optimal latency for a given execution graph

Theorem 3. Given an execution graph, the problem of computing the optimal operation list that leads to

the optimal latency is NP-hard for the three models.

The proof of Theorem 3 is given by Propositions 9, 10 and 11.

Proposition 9. Given an execution graph, the problem of computing the optimal operation list that leads to

the optimal latency is NP-hard for the model OUTORDER.

Proof. We consider the associated decision problem: given an application A = (F ,G), an execution graph

EG for this application, and a bound K, does it exist an operation list for EG such that the latency does

not exceed K? This problem is obviously in NP: given A, EG and an operation list, we can compute

max{EndComm0
(i,j)| Ci → Cj ∈ E} and check whether this value does not exceed K.

The NP-completeness is obtain by reduction from RN3DM. Let I1 be an instance of RN3DM: given an

integer vector A = (A[1], . . . , A[n]) of size n, does there exist two permutations λ1 and λ2 of {1, 2, . . . , n}
such that

∀1 ≤ i ≤ n, λ1(i) + λ2(i) = A[i] (5)

We can suppose that
∑n

i=1 A[i] = n(n + 1), otherwise we know that the instance has no solution. We

associate to I1 an instance I2 with n + 2 services C0 to Cn+1, without dependence constraints, all of

selectivity 1, and whose costs are as follows:

• c0 = cn+1 = 1

• ci = B[i] = n−A[i] + n2 for 1 ≤ i ≤ n

We let K = n + 4 + n2. The execution graph is a fork-join plan EG represented in Figure 12. The size of

the instance I2 is linear in the size of the instance I1.

C2

C1

Cn

Cn+1
outin C0

Figure 12: The fork-join execution graph.

We now show that I1 has a solution if and only if I2 has a solution. Suppose first that I1 has a solution

λ1, λ2. Then for 1 ≤ i ≤ n, the services Ci are fed in the order λ1 and the receptions are done in the order

n+1−λ2. For service Ci, the computation begins at time 2+λ1(i) and is completed at time 2+λ1(i)+B[i].
There remain λ2(i) communications to do when the service Ci sends its data to service Cn+1. So the final

latency is at least l(i) = λ1(i) + B[i] + λ2(i) + 4 for any i. In fact, we see that the latency L is equal to

equal to maxi l(i). Hence L ≤ maxi λ1(i) + B[i] + λ2(i) + 4 = n + 4 + n2. That proves that I2 has a

solution.

Suppose now that I2 has a solution. Let λ1 be the sending order from C0 and λ2 be a permutation such

that n + 1−λ2 is the order of receptions by Cn+1. For service Ci, the computation begins at time 2 + λ1(i)

28

and is completed at time 2 + λ1(i) + B[i]. There remain λ2(i) communications to do when the service Ci

send its data to service Cn+1. So the final latency L is at least l(i) = λ1(i) + B[i] + λ2(i) + 4 for all i, and

we have L ≤ K =≤ n + 4 + n2. Hence λ1(i) + B[i] + λ2(i) ≤ n + n2, or λ1(i) + λ2(i) ≤ A[i] for all i.
Summing up, we see that all these inequalities are in fact equalities, hence a solution to I14.

Proposition 10. Given an execution graph, the problem of computing the optimal operation list that leads

to the optimal latency is NP-hard for the model INORDER.

Proof. We use the same reduction as for Proposition 9, because the optimal operation list fulfilled the

constraints of the INORDER model.

Proposition 11. Given an execution graph, the problem of computing the optimal operation list that leads

to the optimal latency is NP-hard for the model OVERLAP.

Proof. This proof uses the reduction in the proof of Proposition 9. Let I1 be an instance of RN3DM. Let

I2 be the instance associated to I1 by this proof. Let EG be the execution graph presented in Figure 12.

A valid solution for the model OUTORDER is valid for the model OVERLAP. We show the converse: for

any valid solution involving multi-port communications, there is a solution involving only one-port commu-

nications and whose latency is at least as good. Intuitively, when there is a single predecessor common to

several nodes, the best is to feed these nodes sequentially. Sharing the bandwidth would only delay the first

communications without accelerating the other ones.

Suppose that there exists a valid operation list OL1 for OVERLAP on instance I2. Let λ1 be the comple-

tion order of the communications from C0. We construct an operation list OL2 such that all communications

are still done in the order λ1 but their assigned bandwidth ratios are now all equal to 1 (which means that the

communications are done sequentially in OL2). For 1 ≤ i ≤ n, the communication C0 → Ci is completed

not later in OL2 than in OL1: if it is the λ1(i)-th communication, it is completed at least at time λ1(i) after

the end of the computation of C0 in OL1, and this value is obtained in OL2.

Let λ2 be the reverse order of the beginning of the communications to Cn+1 in OL1. In OL2, we execute

these communications in the order n + 1 − λ2 with bandwidth ratio 1. The time needed for the the last i
sends in OL2 is not larger in OL1, because it is equal to i in OL2 and at least this value in OL1.

In this plan, a valid operation list for the model OVERLAP is therefore valid for the model OUTORDER

with the hypothesis λ ≥ max{EndComm0
(i,j)| Ci → Cj ∈ E}. This concludes the proof.

Data: tree T
Result: latency L
if T is restricted to a leaf Ci then1

L = ci2

else3

Let T1, ..., Tk be the subtrees of the children of the root C0 of T ;4

for i = 1 to k do Compute the optimal latency Li of the subgraph Ti;5

Let σ be a permutation such that Lσ(1) ≤ ... ≤ Lσ(k);6

Let Cj be the root of T ;7

Let L = 1 + c0 + σ0 ×max1≤i≤k{(k − i + 1) + Lσ(i)};8

end9

Algorithm 1: Computation of the latency on a tree.

Proposition 12. Algorithm 1 computes in time O(n log(n)) the optimal latency of a plan whose execution

graph is a tree.

4Note that we did not define λ in I2. As pointed out before, we can always enforce a period λ equal to L = K to avoid any

resource conflict.

29

Proof. First we note that for tree-shaped execution graph all models are equivalent with respect to the

latency: as explained in the proof of Proposition 11, one-port communications are always dominant.

For any node, the algorithm feeds the subtrees by non-increasing latency, which is clearly optimal.

D.2 Computing the optimal latency

Theorem 4. Problems MINLATENCY-OVERLAP, MINLATENCY-OUTORDER and MINLATENCY-INORDER

without dependence constraints are all NP-hard.

The proof of Theorem 4 is given by Propositions 13, 14 and 15.

Proposition 13. The problem MINLATENCY-OUTORDER without dependence constraints is NP-hard.

Proof. We consider the associated decision problem: given a period L, is there a mapping of latency less

than L? The problem is obviously in NP: given a A, EG and OL, we can compute max{EndComm0
(i,j)|

Ci → Cj ∈ E} and check wether this value does not exceed K.

The NP-completeness is obtained by reduction from RN3DM, a special instance of 3-dimensional

matching. Let I1 be an instance of RN3DM: given an integer vector A = (A[1], . . . , A[n]) of size n ≥ 2,

does there exist two permutations λ1 and λ2 of {1, 2, . . . , n} such that

∀1 ≤ i ≤ n, λ1(i) + λ2(i) = A[i] (6)

We can suppose that 2 ≤ A[i] ≤ 2n for all i and that
∑n

i=1 A[i] = n(n + 1), otherwise we know that the

instance has no solution. We construct an instance I2 with n + 2 services as follows:

• one service F (where F stands for fork) with cost cf and selectivity σf both equal to 1
20n

• n services Ci, 1 ≤ i ≤ n, with cost ci = 10n−A[i] and selectivity σi = σ = 1− 1
2n

• one service J (where J stands for join) with cost cj = 1 and selectivity σj = 200n2 − 1

Given this construction, we ask whether this set of services be arranged to obtain a latency at most K =
1
2 + 10nσn + 1

20n
. The size of I2 is clearly polynomial in the size of I1.

We now show that I1 has a solution if and only if I2 has a solution. Suppose first that I1 has a solution

with permutations λ1 and λ2. Then, we prove that I2 has a solution whose plan is a fork-join graph with

F as the source, having the n services Ci as its children, and J being the final node, successor of all the n
services Ci. The services Ci are fed in order λ1 and the reception are done in order n + 1− λ2. For service

Ci, the computation begins at cf +σfλ1(i) = σfλ1(i)+ 1
20n

and is completed at cf +σf (λ1(i)+ci). There

remain λ2(i) communications of size σfσ ≤ σf to execute when service Ci sends its data to final service J .

The start-up time of J is bounded by maxi l(i), where

l(i) = cf + σf (λ1(i) + ci + σλ2(i)) ≤ cf + σf (λ1(i) + 10n−A[i] + λ2(i)) = cf + σf (10n) =
1

2
+

1

20n

Hence this plan achieves a latency at most

1

2
+

1

20n
+ σfσn(cj + σj) =

1

2
+ 10nσn +

1

20n
= K

This proves that I2 has a solution.

We now prove that if we have a solution to I2, then we have a solution to I1. Say we have a mapping

of services with latency at most K. Note that σn < σ < 1. Note also that 0.7 > σn > 1
2 for all n, because

the sequence un =
(

1− 1
2n

)n
is non-decreasing (and converges to 1√

(e)
, where e is the base of the natural

logarithm). As a consequence, we have K < 1/2 + 7n.

We show that the plan necessarily is a fork-join. We make some preliminary observations:

30

• if one service Ci has no predecessor, then the latency is at least ci + σ ≥ ci ≥ 8n > K

• if service J has no predecessor, then the latency is at least cj + σj = 200n2 > K

• if service J is a direct successor of service F , then the latency is at least cf +σf (cj +σj) ≥ 10n > L

So we know that F is a predecessor of all nodes and that the predecessors of J include F and at least one of

the Ci. Assume (by contradiction) that we have exactly k < n services Ci in the list of the predecessors of

J . The latency obtained this way is at least Lk:

Lk = cf + σf (min(ci) + σk(cj + σj) ≥
1

20n
+

1

20n

(

8n + σk200n2
)

We derive Lk −K ≥ 10n(σk − σn)− 1
10 . But

σk − σn ≥ σn−1 − σn = σn−1(1− σ) ≥ σn(1− σ) ≥ 1

2

1

2n
=

1

4n

Hence Lk −K ≥ 10n
4n
− 1

10 > 0, the desired contradiction. Hence J is a successor of all other services.

There remains to show that each service Ci is a direct successor of F to obtain the fork-join plan. But if

two services Ci and Cj were serialized, the latency would be at least L′, where

L′ = cf + σf (min(ci) + σ min(ci) + σn(cj + σj)

We get L′ −K ≥ 1
20n

8n(1 + σ)− 1
2 . But σ > 3

4 since n ≥ 2 hence L′ −K > 0, again a contradiction.

Now that we have the fork-join plan, we assume that the services Ci are fed in order λ1 and the reception

are done in order n + 1− λ2. For service Ci, the latency is at least l(i) = cf + σf (λ1(i) + ci + σλ2(i)) and

we must have l(i) ≤ 1
2 + 1

20n
for all i. We have the following case analysis:

• If for some i we had λ1(i) + λ2(i) > A[i], then λ1(i) + λ2(i) ≥ A[i] + 1 (because we deal with

integers) and we would derive

l(i) = cf + σf (10n + λ1(i) + λ2(i)−A[i] + (σ − 1)λ2(i))

and l(i)− 1
2 − 1

20n
≥ σf (1− λ2(i)

2n
) > 0, a contradiction.

• If for some i we had λ1(i) + λ2(i) < A[i], then by symmetry we would have some i′ such that

λ1(i
′) + λ2(i

′) > A[i′]. This is because
∑

i λ1(i) + λ2(i) = n(n + 1) =
∑

i A[i]. Using i′ we obtain

a contradiction as above.

• We conclude that λ1(i) + λ2(i) = A[i] for all i, hence a solution to I1.

This concludes the proof.

Proposition 14. The problem MINLATENCY-INORDER without dependence constraints is NP-hard.

Proof. We use the same reduction as for Proposition 13, because the optimal operation list fulfilled the

constraints of the INORDER model.

Proposition 15. The problem MINLATENCY-OVERLAP without dependence constraints is NP-hard.

Proof. The reasoning for the proof of Proposition 11 can be applied to Proposition 13, because the optimal

plans have the same structure.

31

D.3 Problems on chains and forests

Proposition 16. The problem MINLATENCY when restricting to plans whose execution graphs are linear

chains is polynomial for all models.

Proof. Let EG be an optimal chain for the latency. Suppose that Ci is the direct predecessor of Cj . We

have
1 + ci + σi + σicj ≤ 1 + cj + σj + σjci

⇐⇒ 1−σi

1+ci
≥ 1−σj

1+cj

We obtain the following greedy algorithm : order the services by decreasing values 1−σi

1+ci
.

Proposition 17. The problem MINLATENCY when restricting to plans whose execution graphs are forests

is NP-hard for all models.

Proof. We consider the associated decision problem: given a latency K, is there a plan with an execution

graph that is a forest of latency less than K? We have proved in Subsection 5.1 that for an execution graph

that is a forest we can compute the optimal operation list for the latency in polynomial time. That means

that the problem is in NP.

The NP-completeness is obtained by reduction from 2-Partition [18]. Let I1 be an instance from

2-Partition: given an integer set X = {x1, ..., xn}, does there exist a subset I such that
∑

xi∈I xi =
1
2

∑

xj∈X xj? Let xM = maxxi∈X{xi}, S =
∑

xj∈X xj , β = A−S
2A+S

and A > 4
3n3nβn × x3

M . We

construct an instance I2 with n + 1 services such that:

• ∀i ≤ n, ci = xi

A

• ∀i ≤ n, σi = 1− xi

A
+ β

x2
i

A2

• cn+1 = 2A+S
2A−2S

• σn+1 = 1

• K = cn+1 − 3S2

8A(A−S) +
n3nβnx3

M

A3

The size of I2 is polynomial in the size of I1.

We now show that I1 has a solution if and only if I2 has a solution. Suppose first that I1 has a solution

I . We place the services of I in a chain, as predecessors of Cn+1 in any order. The remaining services are

placed in parallel without any predecessor. Their latency is smaller than 1 and K > 1. That means that

I2 has a solution if and only if the latency L of cn+1 is smaller than K. Suppose that the services in I are

placed in the order C ′
1, ..., C

′
k−1 along the chain, and let Cn+1 = C ′

k. We have:

L =
∑

i<k

∏

j<i σ
′
jc

′
i +

∏

j<k σ′
jcn+1

≤ ∑

i<k

x′

i

A
(1−∑

j<i

x′

j

A
+ 3nβn(xM

A
)2)

+cn+1(1−
∑

i<k

x′

i

A
+ β

∑

i<k(
x′

i

A
)2 +

∑

i<k(
x′

i

A
)2 + 2

∑

i<j<k

x′

ix
′

j

A2 + 3nβn x3
M

A3)

≤ cn+1 +
∑

i<k

x′

i

A
(1− cn+1) +

∑

i<k(
x′

i

A
)2cn+1(β + 1) +

∑

i<j<k

x′

ix
′

j

A2 (2cn+1 − 1) + n3nβn x3
M

A3

≤ cn+1 +
∑

i<k x′
i(

−3S
2A(A−S)) +

∑

i<k x′
i
2(3

2A(A−S)) +
∑

i<j<k x′
ix

′
j(

1
A(A−S)) + n3nβn x3

M

A3

≤ cn+1 + (3
2A(A−S))(−S

∑

i<k x′
i +

∑

i<k x′
i
2 + 2

∑

i<j<k x′
ix

′
j) + n3nβn x3

M

A3

≤ cn+1 + (3
2A(A−S))(

S
2 −

∑

i<k x′
i)

2 − (3
2A(A−S))

S2

4 + n3nβn x3
M

A3

≤ K

32

Then, the instance I2 has a solution.

Suppose now that I2 has a solution. Let L be the latency of Cn+1 and I be its set of predecessors. The

plan is a forest, which means that the services of I are chained. We prove as in the previous computation

that

L ≥ (K + (
3

2A(A− S)
)(

S

2
−

∑

i∈I

x′
i)

2)− 2n3nβn x3
M

A3

By hypothesis, we have L ≤ K. Hence:

(3
2A(A−S))(

S
2 −

∑

i∈I x′
i)

2) ≤ 2n3nβn x3
M

A3

⇐⇒ (S
2 −

∑

i∈I x′
i)

2 ≤ 4n3nβn x3
M

(A−S)

3A2

By construction of A, we have 4n3nβn x3
M

(A−S)

3A2 ≤ 4n3nβn x3
M

3A
< 1. This proves that (S

2 −
∑

i∈I x′
i)

2 = 0.

Then I is a valid solution for the instance I1. This concludes the proof.

33

