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Abstract
We describe the scaling limit of the nearest neighbour prudent walk on Z2, which performs steps
uniformly in directions in which it does not see sites already visited. We show that the scaling

limit is given by the process Zu =
∫ 3u/7

0

�

σ11{W (s)≥0}~e1 +σ21{W (s)<0}~e2
�

ds, u ∈ [0,1], where W is
the one-dimensional Brownian motion and σ1,σ2 two random signs. In particular, the asymptotic
speed of the walk is well-defined in the L1-norm and equals 3

7
.

1 Introduction and description of results

The prudent walk was introduced more than 20 years ago, under the name self-directed walk
in [11, 12] and outwardly directed self-avoiding walk in [9], as a particularly tractable variant
of the self-avoiding walk. Interest in this model has known a vigorous renewal in recent years,
mostly in the combinatorics community [5, 6, 4, 3, 10, 2]. The latter works are concerned with
a variant of the original model, more natural from the combinatorial point of view, obtained by
considering the uniform probability measure on all allowed paths of given length; we’ll refer to it
as the uniform prudent walk. In the present work, we consider the original (kinetic) model and
describe its scaling limit in details.

Let ~e1 = (1,0), ~e2 = (0,1) denote the canonical basis of Z2. Let us describe the construction of
the process associated to the prudent random walk γ·. We first set γ0 := (0, 0). Assume that we
have already constructed1 γ[0,t], then the distribution of γt+1 is obtained as follows. We say that
the direction ~e ∈ {±~e1,±~e2} is allowed if and only if {γt + k~e, k > 0} ∩ γ[0,t] = ∅; in other words,

1For any discrete- or continuous-time process Yt , we denote by Y[0,t] := {Ys}0≤s≤t .
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Scaling Limit of the Prudent Walk 45

allowed directions are those towards which there are no sites that have already been visited. γt+1
is chosen uniformly among the neighbours of γt lying in an allowed direction. Observe that there
are always at least two allowed directions.

There has been considerable interest in such non-Markovian processes recently. Among the moti-
vations are the necessity of developing specific methods to analyse these processes, and the fact
that they sometimes present rather unusual properties. From this point of view, the prudent walk
is quite interesting. On the one hand, it is sufficiently simple that a lot of information can be
extracted, on the other its scaling limit possesses some remarkable features.

Our main result is the following, which describes the scaling limit (in a topology stronger than
weak convergence) of the prudent walk.

Theorem 1.1. On a suitably enlarged probability space, we can construct the prudent walk γ·, a
Brownian motion W· and a pair of ±1-valued random variables σ1,σ2 such that

lim
t→∞

P
�

sup
0≤s≤t





1
t
γs − Zσ1,σ2

s/t





2
> ε
�

= 0,

where, for u ∈ [0, 1],

Zσ1,σ2
u :=

∫ 3u/7

0

�

σ11{W (s)≥0}~e1 +σ21{W (s)<0}~e2
�

ds. (1)

The Brownian motion W· and the two random signs σ1,σ2 are independent of each other, and P(σ1 =
s,σ2 = s′) = 1/4, for s, s′ ∈ {−1,1}.

A typical trajectory of γ· is depicted in Fig. 1. Let us briefly discuss some of the consequences of
Theorem 1.1. To simplify the exposition, we assume that σ1 = σ2 = 1 (with no loss of generality,
given the obvious symmetries of the prudent walk).

• Since ‖Z1,1
u ‖1 = 3u/7, the asymptotic speed of the prudent walk converges to 3/7 in L1-

norm in probability. Note that there is no asymptotic speed in the L2-norm. Actually, using
arguments very similar to those of Section 4, one can prove that the speed converges almost
surely to 3/7.

• The angle αu between Z1,1
u and ~e1 is random, which means that the prudent walk undergoes

macroscopic fluctuations in direction, even though it is ballistic. The distribution of αu can
easily be determined, using the arcsine law for Brownian motion:

P(αu ≤ x) = P(tanαu ≤ tan x)

= P
�
θ+(W[0,u])

u
≥

1

1+ tan x
�

=
2

π
arctan

p
tan x ,

where θ+(W[0,u]) is the time spent by W[0,u] above 0.

• The presence of heavy-tailed random variables (the length of the Brownian excursions) in
the limiting process Z1,1

· allows the construction of various natural observables displaying
ageing. For example, its first component.

We emphasise that the scaling limit of the kinetic prudent walk seems to be different from the
scaling limit of the uniform prudent walk studied in Combinatorics. Indeed, it is shown in [2], for
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Figure 1: The first 50000 steps of a prudent walk. The inset is a blow-up of the first few hundred
steps near the origin.

a simpler variant of the latter (similar to our corner model, see below) that the scaling limit is a
straight line along the diagonal, with a speed in L1-norm approximately given by 0.63. We expect
the same to be true for the real uniform prudent walk.

We also observe that our scaling limit is radically different from what is observed for similar contin-
uous random walks that avoid their convex hull, which again are ballistic but, at the macroscopic
scale, move along a (random) straight line ([13], [1]).

Acknowledgements: We are grateful to Bálint Tóth for suggesting the representation (1) for the
scaling limit, substantially simpler than the one we originally used. We also thank two anonymous
referees for their careful reading. SF was partially supported by CNPq (bolsa de produtividade).
Support by a Fonds National Suisse grant is also gratefully acknowledged.

2 Excursions

We split the trajectory of the prudent walk into a sequence of excursions. To a path γ[0,t], we
associate the bounding rectangleRt ⊂ Z2 with lower left corner (xmin, ymin), and upper right corner
(xmax, ymax). Here, xmin =minAt , ymin =minBt , xmax =maxAt , ymax =maxBt , where

At :=
¦

x ∈ Z : ∃y ∈ Z, (x , y) ∈ γ[0,t]

©

,Bt :=
¦

y ∈ Z : ∃x ∈ Z, (x , y) ∈ γ[0,t]

©

.

Notice that γt always lies on the boundary of its bounding rectangle. The height and width of Rt
(in units of lattice sites) are defined byHt := |At | andWt := |Bt |; in particularH0 =W0 = 1. We
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say that the path visits a corner at time s ∈ {0, . . . , t} if γs coincides with one of the four corners of
Rs.

Without loss of generality, we assume that the first step of the path is in the direction ~e1, i.e.,
γ1 = ~e1, and define the following sequence of random times:

T0 := 0 ,

U0 := inf
�

t > 0 : Ht > 1
	

− 1 ,

and for k ≥ 0,

Tk+1 = inf
�

t > Uk : Wt >Wt−1
	

− 1 ,

Uk+1 = inf
�

t > Tk+1 : Ht >Ht−1
	

− 1 .

During the time interval (Tk, Uk], the walk makes an excursion, denoted E v
k, along one of the

vertical sides ofRt . During the time interval (Uk, Tk+1], the walk makes an excursion, denoted E h
k,

along one of the horizontal sides of Rt . Two relevant quantities are the horizontal displacement
of E v

k: Xk :=WTk+1
−WTk

, and the vertical displacement of E h
k: Yk :=HTk+1

−HTk
. Observe that by

construction, Xk ≥ 1 and Yk ≥ 1.

RTk+1

Tk

0
RTk

Uk

Tk+1

Figure 2: The excursions and their associated times.

2.1 The effective random walk for the excursions

As Figure 2 suggests, the study of excursions along the sides of the rectangle can be reduced to
that of the excursions of an effective one-dimensional random walk, with geometric increments.

Let ξ1,ξ2, . . . be an i.i.d. sequence, ξi ∈ Z, with P(ξi = k) = 1
3
( 1

2
)|k|. Let S0 = 0, Sn = ξ1+ · · ·+ξn.

We call Sn the effective random walk. Let ηL be the first exit time of Sn from the interval [0, L−1]:
ηL := inf{n> 0 : Sn 6∈ [0, L− 1]}. The following lemma will be used repeatedly in the paper.

Lemma 2.1. For all k ≥ 0, m≥ 1,

P(Xk = m|γ[0,Tk]) = P(ηHTk
= m) , (2)

P(Yk = m|γ[0,Uk]) = P(ηWUk
= m) . (3)
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Proof. We show (2). Assume that the walk is at the lower right corner of the rectangle at time
Tk. On {Xk = m} ∩ {HTk

= h}, the excursion E v
k can be decomposed into (α1, . . . ,αm−1,β), where

each αi is an elementary increment made of a vertical segment of length li ∈ [−h+ 1, h− 1]∩ Z
and of a horizontal segment of length 1 pointing to the right, and β is a purely vertical segment
of length l ∈ [−h,+h]∩Z, which ensures that the excursion reaches either the top or the bottom
of the rectangle by time m (see Figure 3). We thus have

P(Xk = m|γ[0,Tk]) =
∑

(α1,...,αm−1,β)

p(α1) . . . p(αm−1)p(β) ,

where the sum is over all possible sets of such elementary increments, and p(αi) =
1
3
( 1

2
)|li |, p(β) =

1
3
( 1

2
)|l|−1. Therefore, in terms of the effective random walk with increments ξi ,

p(α1) . . . p(αm−1) = P(ξ1 = l1, . . . ,ξm−1 = lm−1) .

Moreover, if l < 0 (as on Figure 3), then

p(β) = 1
3
( 1

2
)|l| = 1

3

∑

j≥|l|+1

( 1
2
) j ≡ P(Sm < 0 |Sm−1 = |l|) .

Similarly, if l ≥ 0
p(β) = P(Sm ≥ h |Sm−1 = h− l − 1) .

This shows that

P(Xk = m|γ[0,Tk]) = P(S1 ∈ [0, h− 1], . . . , Sm−1 ∈ [0, h− 1], Sm 6∈ [0, h− 1]) ,

which is (2).

⇒

Xk = m ηh = m

Figure 3: The decomposition of the excursion E v
k. The full segments on the right image represent

the increments of the effective random walk Sn. Observe that Sn starts at γTk+1, and that it exits
[0, h− 1] at time m by jumping to any point on the negative axis.

3 Crossings and visits to the corners

In this section, we show that, almost surely, the prudent walk eventually visits exactly one of the
corners of its bounding rectangle an infinite number of times. This excludes, in particular, the
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possibility of winding around the origin an infinite number of times, and will allow in the sequel
to restrict the study of the prudent walker to a single corner of the rectangle.

Let Ak denote the event in which the kth excursion crosses at least one side of RTk
, that is if the

walk is at a bottom (resp. top) corner of the box at time Tk and at a top (resp. bottom) corner of
the box at time Uk, or if it is at a right (resp. left) corner of the box at time Uk and at a left (resp.
right) corner of the box at time Tk+1.

Proposition 3.1. There exists a constant c1 > 0 such that

P(Ak)≤
c1

k4/3
(4)

for all large enough k. In particular, P(lim supk Ak) = 0, and a.s. exactly one of the corners is visited
infinitely many times.

For k large, the bounding rectangle has long sides, which makes crossing unlikely. As is well
known from the gambler’s ruin estimate for the simple symmetric random walk, the probability
of first leaving an interval of length L at the opposite end is of order L−1. To obtain (4), it will
therefore be sufficient to show that the sides of the rectangle at the kth visit to a corner grow
superlinearly in k.

Before this, we give a preliminary result for the effective random walk Sn starting at 0. Let as
before ηL denote the first exit time of Sn from the interval [0, L − 1]. We will also use η∞ :=
inf{n> 0 : Sn < 0}.

Lemma 3.1. There exists a constant c2 > 0 such that for all L ≥ 1,

P(ηL ≥ n)≥
c2p

n
for all integer n≤ c2 L4/3 . (5)

Proof. Define η→L := inf{n> 0 : Sn ≥ L − 1}, so that

P(ηL ≥ n) = P(η∞ ≥ n,η→L ≥ n)
= P(η∞ ≥ n)− P(η→L < n,η∞ ≥ n)
≥ P(η∞ ≥ n)− P(η→L < n) .

By the gambler’s ruin estimate of Theorem 5.1.7. in [8],

P(η∞ ≥ n)≥
c3p

n
(6)

for some constant c3 > 0. On the other hand,

P(η→L < n)≤ P(max
1≤ j≤n

|S j | ≥ L)≤
E[|Sn|2]

L2 =
2n

L2

The second inequality follows from the Doob-Kolmogorov Inequality.

As a consequence, we can show that by the kth visit to the corner, the sides of the rectangle have
grown by at least k4/3. A refinement of the method below actually shows that WTk

and HTk
grow

like k2.
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Lemma 3.2. There exist positive constants c4 and c5 such that

P(WTk
< c5k4/3)≤ exp

�

− c4k1/3� , (7)

P(HTk
< c5k4/3)≤ exp

�

− c4k1/3� . (8)

Proof. Let m = bk/2c. Since X i ≥ 1 and Yi ≥ 1 for all i, we have that HT j
≥ m, WT j

≥ m, for all
j ≥ m. We consider the width of the rectangle at time Tk. Let I j denote the indicator of the event
{X j ≥ c2m4/3}. We have, for all j ≥ m,

P(I j = 1 |γ[0,T j]) = P(I j = 1 |HT j
)

= P(ηHTj
≥ c2m4/3)

≥ P(ηm ≥ c2m4/3)

by (5)≥ c−3/2
2 m−2/3 ≡ p .

Therefore, the I js can be coupled to Bernoulli variables of parameter p. Since WTk
=
∑k−1

j=0 X j ≥

c2m4/3
∑k−1

j=m I j , we get

P(WTk
< 2−4/3c2k4/3)≤ P(I j = 0 ,∀ j = m, . . . , k− 1)

≤ (1− p)m

≤ e−c4k1/3
.

Proof of Proposition 3.1. Consider the event Av
k in which E v

k crosses the (vertical) side of the rect-
angle. We have

P(Av

k)≤ P
�

HTk
< c5k4/3�+ P

�

Av

k

�

�HTk
≥ c5k4/3�

The first term is treated with Lemma 3.2. Proceeding as in the proof of Lemma 2.1, we see that, in
terms of the effective random walk Sn, the second term is the probability that Sn (started at zero)
reaches [c5k4/3,+∞) before becoming negative. Therefore, again by Theorem 5.1.7. in [8], there
exists a constant c6 > 0 such that

P
�

Av

k

�

�HTk
≥ c5k4/3�≤

c6

k4/3
.

This shows (4). The second claim follows by the Borel-Cantelli Lemma and by recurrence of the
effective walk.

Proposition 3.1 implies that the prudent walker behaves qualitatively, asymptotically, in the same
way as a simplified model in which the evolution is along the corner of the infinite rectangle
RSW := {(x , y) ∈ Z2 : x ≤ 0, y ≤ 0}. Namely, redefine a direction ~e ∈ {±~e1,±~e2} to be allowed if
and only if {γt + k~e, k > 0} ∩ (γ[0,t] ∪RSW ) = ∅. The paths of the corner process bγ· are obtained
by choosing at each step a nearest neighbour, uniformly in the allowed directions. A trajectory of
the corner model is depicted on Figure 4. As before, bγ· can be decomposed into a concatenation
of excursions along the vertical and horizontal sides of RSW , denoted respectively bE v

k, bE h
k. Since

there is no crossing possible here, these are independent.
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0

RSW

Figure 4: A trajectory of the corner process bγ·.

We relate the true excursions of the prudent walk to those of the corner model, by means of the
following coupling. As before, we assume that the first step is horizontal: bγ1 = (1,0). Consider a
given realisation of ( bE v

k, bE h
k)k≥1, from which we construct (E v

k,E h
k)k≥1, with the same distribution

as the excursions of the prudent walk. Let (see Fig. 5)

mv

k := bγTk−1
(2)− min

Tk−1≤t≤Uk−1

bγt(2), mh

k := bγUk−1
(1)− min

Uk−1≤t≤Tk

bγt(1),

where we have denoted by x(1) and x(2) the coordinates of x ∈ Z2. If mv
k > `, let t` denote

the first time Tk−1 ≤ t ≤ Uk−1 such that bγTk−1
(2)− bγt(2) = `+ 1, and let Trunc`( bE v

k) denote the
restriction of bE v

k up to time t`. Similarly, one defines the corresponding objects in the horizontal
case. Let H0 := 0 and set

E v

1 :=

¨

bE v
1 if mv

1 ≤ H0 ,

TruncH0
( bE v

1) if mv
1 > H0 .

Let X0 be the horizontal displacement associated to E v
1 as in Figure 3, and set W0 = X0. We then

set

E h

1 :=

¨

bE h
1 if mh

1 ≤W0 ,

TruncW0
( bE h

1) if mh
1 >W0 .

Let k ≥ 1. Assume (E v
j ,E

h
j ) j=1,...,k have already been defined. To each vertical excursion E v

j , we
associate a horizontal displacement X j as in Figure 3. Similarly, to each horizontal excursion E h

j ,
we associate a vertical displacement Yj .
Set Hk := Y0 + · · ·+ Yk−1, and

E v

k+1 :=

¨

bE v
k+1 if mv

k ≤ Hk ,

TruncHk
( bE v

k+1) if mv
k > Hk .

Let now Wk := X0 + · · ·+ Xk, where Xk is the horizontal displacement of the vertical excursion
E v

k+1, and set

E h

k+1 :=

¨

bE h
k+1 if mh

k ≤Wk ,

TruncWk
( bE h

k+1) if mh
k >Wk .

By construction, vertical and horizontal excursions of the prudent walk alternate. Therefore,
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HkRTk−1

bγTk−1
bγUk−1

bγTk−1
bγUk−1

RTk−1

E v
k

mv
kbE v

k

Hk
mv

k

E v
k = bE

v
k

Figure 5: The construction of the vertical excursion E v
k of γ· from the vertical excursion bE v

k of bγ·.
When bE v

k is compatible withRTk−1
, it is kept (left); when it is not compatible, it is truncated (right).

(E v
k,E h

k)k≥1 is distributed exactly as the excursions of the true prudent walk up to the appropriate
reflection. By Proposition 3.1, almost surely, E h

k = bE
h
k and E v

k = bE
v
k for all but a finite number of ks.

According to Proposition 3.1, the prudent walker γ· eventually fixates in one of the four quadrants
and couples with the trajectory of the corner model γ̂·. Obvious lattice symmetries present in
the model imply that the quadrant is chosen with uniform probability 1/4. In order to lighten
notations, we shall assume that the chosen quadrant is the first one.

Theorem 3.1. Let us denote by Q1 the event that γ· eventually settles in the first quadrant; notice
that P(Q1) = 1/4. We then have, for any ε > 0,

lim
t→∞

P
�

sup
0≤s≤t





1
t
bγs −

1
t
γs





2
≥ ε

�

�Q1
�

= 0.

Proof. By Proposition 3.1, γ· and bγ· couple almost surely in finite time. Since, on Q1, the distance
between the two processes (at the same time) remains constant after coupling, it follows that,
almost surely, supt≥0 ‖bγt − γt‖1 <∞.

4 The scaling limit: Proof of Theorem 1.1

Theorem 1.1 is a consequence of Theorem 3.1 and the following result.

Theorem 4.1. On a suitably enlarged probability space, one can construct simultaneously a realiza-
tion of bγ· and of a Brownian motion W· such that, for any ε > 0,

lim
t→∞

P
�

sup
0≤s≤t





1
t
bγs − Z1,1

s/t





2
≥ ε
�

= 0,

where Z1,1
· was defined in (1).

The rest of this section is devoted to the proof of Theorem 4.1. We start by establishing a suitable
coupling between the corner process and the effective random walk S· introduced in Subsec-
tion 2.1. To this end, we construct a process Ŝ· associated to the effective random walk S·. This
construction is illustrated on Figure 6.

Consider the following alternating ladder times for S·: τ0 := 0 and, for k ∈ Z≥0,

τ2k+1 := inf
¦

n> τ2k : Sn < Sτ2k

©

,

τ2k+2 := inf
¦

n> τ2k+1 : Sn > Sτ2k+1

©

.
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τ2τ1 τ3

∆1

∆2

∆3

S· bS·

Figure 6: The construction of the process Ŝ·.

Observe that τk+1−τk has the same distribution as η∞. Define the overshoots as ∆0 := 0, and for
all k ∈ Z≥0,

∆2k+1 :=−1− (Sτ2k+1
− Sτ2k

),

∆2k+2 :=+1− (Sτ2k+2
− Sτ2k+1

).

Thanks to the memoryless property of the geometric distribution, we have that, for all k, (−1)k+1∆k
is a non-negative random variable, with geometric distribution of parameter 1/2. We now define

bSn := Sn +
∑

j≥0

∆ j1{τ j≤n}. (9)

The trajectory of the corner model can be constructed from the process bS·, by decomposing the
trajectory of the latter into two types of “excursions”: those starting at 0 and ending at −1, and
those starting at −1 and ending at 0. Applying the inverse of the procedure described in Fig. 3 to
an excursion of the first type, we construct a vertical excursion of bγ·; similarly, applying the same
procedure to an excursion of the second type, we construct a horizontal excursion of bγ·. The fact
that these have the proper distribution follows from Lemma 2.1.
The next result shows that the sup-norm between the two processes S· and bS· up to any fixed time
never gets too large.

Lemma 4.1. For any δ > 0,

lim
n→∞

P
�

max
0≤k≤n

|Sk − bSk| ≥ n1/4+δ�= 0.

Proof. By (9), we have Sk− bSk = S̃No(k)−∆k+1/2, where S̃N :=
∑N

j=0 ∆̃i , ∆̃i := (∆i +∆i+1)/2 and

No(k) :=max
¦

j ≥ 0 : τ j ≤ k
©

. Observe that the random variables ∆̃i are i.i.d. and symmetric; in
particular, S̃N is a martingale. If L := n1/4+δ,

lim
n→∞

P
�

max
0≤k≤n

|Sk − bSk| ≥ n1/4+δ�≤ lim
n→∞

P
�

max
k≤n
|S̃No(k)| ≥ L/2

�

≤ lim
n→∞

P
�

max
j≤No(n)

|S̃ j | ≥ L/2
�

≤ lim
n→∞

P
�

max
j≤L2
|S̃ j | ≥ L/2

�

+ lim
n→∞

P(No(n)≥ L2) .

The first limit is zero by the Doob-Kolmogorov inequality, and so is the second by a standard
renewal argument, since P(τ1 = n)∼ n−3/2.
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Lemma 4.2. Fix 1/8> δ > 0. For all ε > 0, we have

lim
n→∞

P
�

max
1≤k≤n

�

�

1
n

k
∑

i=1

1{bSi≥0} −
1
n

k
∑

i=1

1{Si≥n1/4+δ}

�

�> ε
�

= 0,

lim
n→∞

P
�

max
1≤k≤n

�

�

1
n

k
∑

i=1

1{bSi<0} −
1
n

k
∑

i=1

1{Si<−n1/4+δ}

�

�> ε
�

= 0.

Proof. Fix 1/8 > δ > 0. By the local central limit theorem, E(
∑n

i=1 1{|Si |<n1/4+δ}) ≤ c7n3/4+δ.
Therefore

lim
n→∞

P
�

n
∑

i=1

1{|Si |<n1/4+δ} ≥ n3/4+2δ
�

= 0. (10)

Observe now that the signs of Sk and bSk coincide when |Sk| ≥ n1/4+δ, by Lemma 4.1. The conclu-
sion follows, since

P
�

max
1≤k≤n

�

�

1
n

k
∑

i=1

1{bSi≥0} −
1
n

k
∑

i=1

1{Si≥n1/4+δ}

�

�> ε
�

≤ P
�

max
εn/2≤k≤n

�

�

1
n

k
∑

i=1

1{bSi≥0} −
1
n

k
∑

i=1

1{Si≥n1/4+δ}

�

�> ε/2
�

.

The next ingredient is the existence of a strong coupling between the effective random walk S·
and the Brownian motion B· [7]: on a suitably enlarged probability space, we can construct both
processes in such a way that, for n large enough,

P
�

max
k≤n
|Sk −σBk|> n1/4�≤ e−n1/4

,

where σ2 = 2 is the variance of ξi . It thus follows from Lemma 4.1 that, for any δ > 0,

lim
n→∞

P
�

max
k≤n
|bSk −σBk|> n1/4+δ�= 0. (11)

Lemma 4.3. Fix 1/8> δ > 0. For all ε > 0, we have

lim
n→∞

P
�

max
k≤n

�

�

1
n

∫ k

0

1{Bs≥0}ds− 1
n

k
∑

i=1

1{Si≥n1/4+δ}

�

�> ε
�

= 0,

lim
n→∞

P
�

max
k≤n

�

�

1
n

∫ k

0

1{Bs<0}ds− 1
n

k
∑

i=1

1{Si<−n1/4+δ}

�

�> ε
�

= 0.

Proof. It follows from (10) that the number of times k ≤ n for which |Sk−1| ∧ |Sk| ∧ |Sk+1|> n1/4+δ

is at least n− 3n3/4+2δ, with probability going to 1 as n→∞. Of course, the same remains true if
we impose additionally that Sk−1, Sk and Sk+1 have the same sign. For such times k,

P
�

1{Sk≥n1/4+δ} 6=
∫ k+1/2

k−1/2

1{Bs≥0}ds
�

≤ e−c8n1/2+2δ
,

and the conclusion follows.
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Let us now introduce

θ+(bS[0,n]) :=
n
∑

k=0

1{bSk≥0}, θ−(bS[0,n]) := n− θ+(bS[0,n]),

θ+(B[0,t]) :=

∫ t

0

1{Bs≥0}ds, θ−(B[0,t]) := t − θ+(B[0,t]).

Using these notations, we can deduce from Lemmas 4.2 and 4.3 that

lim
n→∞

P
�

max
k≤n

�

�

1
n
θ+(B[0,k])−

1
n
θ+(bS[0,k])

�

�> ε
�

= 0, (12)

for all ε > 0, and similarly for θ−(B[0,k]) and θ−(bS[0,k]). Let us introduce, for m≥ 0,

Γm := θ+(bS[0,m])~e1 + θ
−(bS[0,m])~e2,

Zm := θ+(B[0,m])~e1 + θ
−(B[0,m])~e2.

It follows from (12) that, for all ε > 0,

lim
n→∞

P
�

sup
0≤m≤n





1
n
Γm −

1
n
Zm





2
> ε
�

= 0.

Given n ∈ N, we denote by t(n) :=
∑n

i=1

�

1+ |bSi − bSi−1|
�

the microscopic time such that the point
bSn is mapped on the point bγt(n) by the transformation described before Lemma 4.1.

Lemma 4.4. For any ε > 0,

lim
n→∞

P
�

sup
0≤m≤n





1
n
bγt(m) −

1
n
Γm





2
> ε
�

= 0. (13)

Proof. This follows from Lemma 4.1 and the fact that, for any δ > 0, max0≤k≤n |Sk| ≤ n1/2+δ, with
probability going to 1 as n→∞.

It remains to relate more explicitly the real microscopic time t(n) and the time n of the effective
random walk.

Lemma 4.5. For any ε > 0,

lim
n→∞

P
�

sup
0≤m≤n

|t(m)− 7
3
m|> εn

�

= 0.

Proof. As we have seen limn→∞ P(No(n)≥ n1/2+δ) = 0, for all δ > 0. We thus deduce that

lim
n→∞

P
�

sup
1≤m≤n

�

�

m
∑

i=1

|bSi − bSi−1| −
m
∑

i=1

|Si − Si−1|
�

�> εn
�

= lim
n→∞

P
�

sup
1≤m≤n

�

�

m
∑

i=1

|bSi − bSi−1| −
m
∑

i=1

|Si − Si−1|
�

�> εn, No(n)< n1/2+δ�.

Now, observing that

sup
1≤m≤n

�

�

m
∑

i=1

|bSi − bSi−1| −
m
∑

i=1

|Si − Si−1|
�

�≤
No(n)
∑

i=1

|∆i |,
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we deduce that

lim
n→∞

P
�

sup
1≤m≤n

�

�

m
∑

i=1

|bSi − bSi−1| −
m
∑

i=1

|Si − Si−1|
�

�> εn
�

≤ lim
n→∞

P
�

n1/4+δ
∑

i=1

|∆i |> εn
�

= 0.

It then follows from the Doob-Kolmogorov inequality that, since E(|Si − Si−1|) = E(|ξi |) = 4/3,

lim
n→∞

P
�

sup
1≤m≤n

|t(m)− 7
3
m|> εn

�

≤ lim
n→∞

P
�

sup
1≤m≤n

�

�

m
∑

i=1

�

1+ |Si − Si−1| −
7
3

�

�

�> εn
�

= 0.

Actually, we rather need to express n in terms of the real microscopic time t: n(t) := inf {n≥ 0 : t(n)≥ t}.
However, since t(n+1)−t(n) = |ξn+1|, it follows from the previous lemma that limt→∞ P(sup0≤s≤t |n(s)−
3
7
s|> εt) = 0.

To sum up, we have established that, for all ε > 0,

lim
t→∞

P
�

sup
0≤s≤t





1
t
bγs −

1
t
Z3s/7





2
> ε
�

= 0.

The claim of Theorem 4.1 follows since, for u ∈ [0,1],

1
t
Z3ut/7 =

∫ 3u/7

0

�

1{Ws≥0}~e1 + 1{Ws<0}~e2
�

ds = Z1,1
u ,

where we have set Wu := But/
p

t.

5 Concluding remarks

In the present work, we have focused on some of the most striking features of the scaling limit of
the (kinetic) prudent walk. There remain however a number of open problems. We list a few of
them here.

• It would be interesting to determine the scaling limit of the prudent walk on other lattices,
e.g., triangular. Observe that the scaling limit we obtain reflects strongly the symmetries
of the Z2 lattice, and is thus very likely to be different for other lattices. Nevertheless,
numerical simulations indicate that similar scaling limits hold.

• In this work, we relied heavily on properties specific to the 2-dimensional square lattice.
There are two natural generalizations of the prudent walk in higher dimensions: (i) the nat-
ural extension (forbidding steps in directions where visited sites are present), (ii) forbidding
steps such that the corresponding half-line intersect the bounding parallelepiped. Notice
that both coincide in dimension 2.
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Figure 7: A trajectory of a 3-dimensional generalization of the prudent walk (first variant) with 6
million steps.

The second variant is easier, and it is likely to be in the scope of a suitable extension of our
techniques. The first variant, however, is much more subtle (and interesting). Numerical
simulations suggest the existence of an anomalous scaling exponent: If γt is the location of
the walk after t steps, its norm appears to be of order tα with α' .75 (but we see no reason
to expect α to be equal to 3/4).

• Derive the scaling limit of the uniform prudent walk. In particular, it was observed numeri-
cally [3] that the number of prudent walks has the same growth rate as that of the (explicitly
computed) number of so-called 2-sided prudent walks (which are somewhat analogous to
our corner model). This should not come as a surprise, since one expects the uniform pru-
dent walk to visit all corners but one only finitely many times. It would be interesting to
see whether it is possible to make sense of the fact that the uniform prudent walk is more
strongly concentrated along (one of) the diagonal. This would permit to derive a proof of
the previous result from the one of the kinetic model.
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