
HAL Id: ensl-00365490
https://ens-lyon.hal.science/ensl-00365490v1

Preprint submitted on 3 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resource Allocation for Multiple Concurrent
In-Network Stream-Processing Applications

Anne Benoit, Henri Casanova, Veronika Rehn-Sonigo, Yves Robert

To cite this version:
Anne Benoit, Henri Casanova, Veronika Rehn-Sonigo, Yves Robert. Resource Allocation for Multiple
Concurrent In-Network Stream-Processing Applications. 2009. �ensl-00365490�

https://ens-lyon.hal.science/ensl-00365490v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Resource Allocation for Multiple

Concurrent In-Network Stream-Processing

Applications

Anne Benoit ,

Henri Casanova ,

Veronika Rehn-Sonigo ,

Yves Robert

February 2009

Research Report No 2009-07

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique :lip@ens-lyon.fr

Resource Allocation for Multiple Concurrent In-Network

Stream-Processing Applications

Anne Benoit , Henri Casanova , Veronika Rehn-Sonigo , Yves Robert

February 2009

Abstract

This paper investigates the operator mapping problem for in-network
stream-processing applications. In-network stream-processing amounts
to applying one or more trees of operators in steady-state, to multiple
data objects that are continuously updated at different locations in the
network. The goal is to compute some final data at some desired rate.
Different operator trees may share common subtrees. Therefore, it may
be possible to reuse some intermediate results in different application
trees.
The first contribution of this work is to provide complexity results for
different instances of the basic problem, as well as integer linear pro-
gram formulations of various problem instances. The second second
contribution is the design of several polynomial-time heuristics. One of
the primary objectives of these heuristics is to reuse intermediate results
shared by multiple applications. Our quantitative comparisons of these
heuristics in simulation demonstrates the importance of choosing appro-
priate processors for operator mapping. It also allow us to identify a
heuristic that achieves good results in practice.

Keywords: in-network stream-processing, trees of operators, multiple concurrent
applications, operator mapping, polynomial heuristics.

Résumé

Dans ce rapport, on s’intéresse à des applications qui traitent des flux de
données de manière pipelinée. Chaque application consiste en un arbre
d’opérateurs qu’on applique sur les données successives. En régime per-
manent, les opérateurs interrogent des bases de données qui sont mises à
jour périodiquement. L’objectif est de calculer le résultat final à un débit
fixé. Des arbres d’opérateurs distincts peuvent partager des résultats. De
ce fait, il peut être possible de réutiliser quelques résultats intermédiaires
pour traiter différentes applications.
La première contribution de ce travail est l’obtention de résultats de
complexité pour les différentes instances du problème, ainsi que la for-
mulation de ces instances en terme de programme linéaire. La deuxième
contribution est le développement de plusieurs heuristiques polyno-
miales. La réutilisation des résultats intermédiaires partagés par plu-
sieurs applications est un objectif premier de ces heuristiques. Nos com-
paraisons par simulation des heuristiques démontrent toute l’importance
du choix des processeurs pour le placement des opérateurs. De même elles
nous permettent d’identifier une heuristique performante, qui obtient de
bons résultats dans la pratique.

Mots-clés: traitement de flux en réseau, arbres d’opérateurs, multiples applications
concurrentes, placement d’opérateurs, heuristiques polynomiales.

2

Concurrent In-Network Stream Applications 1

1 Introduction

We consider the execution of applications structured as trees of operators, where the leaves
of the tree correspond to basic data objects that are distributed over servers in a distributed
network. Each internal node in the tree denotes the aggregation and combination of the
data from its children, which in turn generates new data that is used by the node’s parent.
The computation is complete when all operators have been applied up to the root node,
thereby producing a final result. We consider the scenario in which the basic data objects are
constantly being updated, meaning that the tree of operators must be applied continuously.
The goal is to produce final results at some desired rate. This problem is called stream
processing [5] and arises in several domains.

An important domain of application is the acquisition and refinement of data from a set
of sensors [27, 22, 8]. For instance, [27] outlines a video surveillance application in which
the sensors are cameras located at different locations over a geographical area. The goal
of the application could be to identify monitored areas in which there is significant motion
between frames, particular lighting conditions, and correlations between the monitored areas.
This can be achieved by applying several operators (e.g., filters, pattern recognition) to the
raw images, which are produced/updated periodically. Another example arises in the area of
network monitoring [14, 28, 13]. In this case routers produce streams of data pertaining to
forwarded packets. More generally, stream processing can be seen as the execution of one of
more “continuous queries” in the relational database sense of the term (e.g., a tree of join and
select operators). A continuous query is applied continuously, i.e., at a reasonably fast rate,
and returns results based on recent data generated by the data streams. Many authors have
studied the execution of continuous queries on data streams [4, 20, 10, 26, 19].

In practice, the execution of the operators must be distributed over the network. In some
cases the servers that produce the basic objects may not have the computational capability to
apply all operators. Besides, objects must be combined across devices, thus requiring network
communication. Although a simple solution is to send all basic objects to a central compute
server, it often proves unscalable due to network bottlenecks. Also, this central server may
not be able to meet the desired target rate for producing results due to the sheer amount
of computation involved. The alternative is then to distribute the execution by mapping
each node in the operator tree to one or more servers in the network, including servers that
produce and update basic objects and/or servers that are only used for applying operators.
One then talks of in-network stream-processing. Several in-network stream-processing systems
have been developed [3, 12, 17, 11, 23, 28, 9, 21]. These systems all face the same question:
where should operators be mapped in the network?

In this paper we address the operator-mapping problem for multiple concurrent in-network
stream-processing applications. The problem for a single application was studied in [25] for
an ad-hoc objective function that trades off application delay and network bandwidth con-
sumption. In a recent paper [7] we have studied a more general objective function, enforcing
the constraint that the rate at which final results are produced, or throughput, is above a
given threshold. This corresponds to a Quality of Service (QoS) requirement of the applica-
tion and the objective is to meet this requirement while using as few resources as possible.
In this paper we extend the work in [7] in two ways. First we study a “non-constructive”
scenario, i.e., we are given a set of compute and network elements, and we attempt to use
as few resources as possible while meeting QoS requirements. Instead, in [7], we studied a
“constructive” scenario in which resources could be purchased and the objective was to spend

2 A. Benoit , H. Casanova , V. Rehn-Sonigo , Y. Robert

as little money as possible. Second, and more importantly, while in [7] we studied the case of
a single application, in this paper we focus on multiple concurrent applications that contend
for the servers. Each application has its own QoS requirement and the goal is to meet them
all. In this case, a clear opportunity for higher performance with a reduced resource consump-
tion is to reuse common sub-expression between operator trees when applications share basic
objects [24]. We restrict our study to trees of operators that are general binary trees and
discuss relevant special cases (e.g., left-deep trees [18]). We consider target platforms that are
either fully homogeneous, or with a homogeneous network but heterogeneous servers, or fully
heterogeneous. Our specific contributions are twofold: (i) we formalize operator mapping
problems for multiple in-network stream-processing applications and give their complexity;
(ii) we propose a number of algorithms to solve the problems and evaluate them via extensive
simulation experiments.

The rest of this paper is organized as follows. In Section 2 we define our application and
platform models, and we formalize a number of operator mapping problems. In Section 3
we discuss the computational complexity of our mapping problems and in Section ?? we give
integer linear programming formulations. In Section 5 we propose several heuristics, which
we evaluate in Section 6. Finally we conclude in Section 7 with a summary of our results and
future directions.

2 Framework

2.1 Application Model

We consider K applications, each needing to perform several operations organized as a binary
tree (see Figure 1). Operators are taken from the set OP = {op1, op2, . . .}, and operations
are initially performed on basic objects from the set OB = {ob1, ob2, . . .}. These basic objects
are made available and continuously updated at given locations in a distributed network.
Operators higher in the tree rely on previously computed intermediate results, and they may
also require to download basic objects periodically.

op3

op2

op1

ob1 ob2

ob1

ob3

op5

op2

op1

op4

op1

ob1

ob1 ob2 ob1 ob2

Figure 1: Sample applications structured as binary trees of operators.

For an operator opp we define objects(p) as the index set of the basic objects in OB
that are needed for the computation of opp, if any; and operators(p) as the index set of

Concurrent In-Network Stream Applications 3

operators in OP whose intermediate results are needed for the computation of opp, if any.
We have the constraint that |objects(p)| + |operators(p)| ≤ 2 since application trees are
binary. An application is fully defined by the operator at the root of its tree. For instance,
if we consider Fig. 1, we have one application rooted on op3, and another application rooted
on op5. Operator op1 needs to download objects ob1 and ob2, while operator op2 downloads
only object ob1 but also requires an intermediate result from operator op1.

The tree structure of application k is defined with a set of labeled nodes. The ith internal

node in the tree of application k is denoted as n
(k)
i , its associated operator is denoted as

op(n
(k)
i), and the set of basic objects required by this operator is denoted as ob(n

(k)
i). Node

n
(k)
1 is the root node. Let opp = op(n

(k)
i) be the operator associated to node n

(k)
i . Then

node n
(k)
i has |operators(p)| child nodes, denoted as n

(k)
2i , n

(k)
2i+1 if they exist. Finally, the

parent of a node n
(k)
i , for i > 1, is the node of index ⌊i/2⌋ in the same tree.

The applications must be executed so that they produce final results, where each result is
generated by executing the whole operator tree once, at a target rate. We call this rate the
application throughput, ρ(k), and the specification of the target throughput is a QoS require-
ment for each application. Each operator in the tree of the kth application must compute
(intermediate) results at a rate at least as high as the target application throughput ρ(k).
Conceptually, operator opp executes two concurrent threads in steady-state:
• It periodically downloads the most recent copies of the basic objects in objects(p), if any.
Note that these downloads may simply amount to constant streaming of data from sources
that generate data streams. Each download has a prescribed cost in terms of bandwidth based
on application QoS requirements (e.g., so that computations are performed using sufficiently
up-to-date data). A basic object obj has a size dj (in bytes) and needs to be downloaded by

the processors that use it for application k with frequency f
(k)
j . Therefore, these basic object

downloads consume an amount of bandwidth equal to rate
(k)
j = dj ×f

(k)
j on each network link

and network card through which this object is communicated for application k. Note that if
a processor requires object obj for several applications with different update frequencies, it

downloads the object only once at the maximum required frequency ratej = maxk{rate
(k)
j }.

• It receives intermediate results computed by operators(p), if any, and it performs some
computation using basic objects it is continuously downloading, and/or data received from
other operators. The operator produces some output, which is either an intermediate result
which will be sent to another operator, or the final result of the application (root operator).
The computation of operator opp (to evaluate the operator once) requires wp operations, and
produces an output of size δp.

2.2 Platform Model

The target distributed network is a fully connected graph (i.e., a clique) interconnecting a set
of processors P. These processors can be assigned operators of the application tree and per-
form some computation. Some processors also hold and update basic objects. Each processor
Pu ∈ P is interconnected to the network via a network card with maximum bandwidth Bu.
The network link between two distinct processors Pu and Pv is bidirectional and has band-
width bu,v(= bv,u) shared by communications in both directions. In addition, each processor
Pu ∈ P is characterized by a compute speed su. Resources operate under the full-overlap,
bounded multi-port model [16]. In this model, a processor Pu can be involved in comput-

4 A. Benoit , H. Casanova , V. Rehn-Sonigo , Y. Robert

ing, sending data, and receiving data simultaneously. The “multi-port” assumption states
that each processor can send/receive data simultaneously on multiple network links. The
“bounded” assumption states that the total transfer rate of data sent/received by processor
Pu is bounded by its network card bandwidth Bu. The case in which some dedicated proces-
sors are only providing basic objects but cannot be used for computations is obtained simply
by setting their compute speed to 0.

2.3 Mapping Model and Constraints

Our objective is to map internal nodes of application trees onto processors. As explained in
Section 2.1, if the operator associated to a node requires basic objects, the processor in charge
of this internal node must continuously download up-to-date basic objects, which consumes
bandwidth on its processor’s network card. Each used processor is in charge of one or several
nodes. If there is only one node on processor Pu, while the processor computes for the t-th
final result it sends to its parent (if any) the data corresponding to intermediate results for
the (t − 1)-th final result. It also receives data from its children (if any) for computing the
(t + 1)-th final result. All three activities are concurrent (see Section 2.2). Note however
that different nodes can be assigned to the same processor. In this case, the same overlap
happens, but possibly on different result instances (an operator may be applied for computing
the t1-th result while another is being applied for computing the t2-th). A particular case is
when several nodes with the same operator are assigned to the same processor. In this case,
computation is done only once for this operator, but it should occur at the highest required
rate among those of the corresponding applications.

A basic object can be duplicated, and thus available and updated at multiple processors.
We assume that duplication of basic objects is achieved in some out-of-band manner specific to
the target application (e.g., due to the use of a distributed database infrastructure that allows
consistent data replication). In this case, a processor can choose among multiple data sources
when downloading a basic object, or perform a local access if the basic object is available
locally. Conversely, if two nodes require the same basic object and are mapped to different
processors, they must both continuously download that object (and incur the corresponding
network overheads.)

We use an allocation function, a, to denote the mapping of the nodes onto the processors

in P: a(k, i) = u if node n
(k)
i is mapped to processor Pu. Conversely, ā(u) is the index set of

nodes mapped on Pu: ā(u) = {(k, i) | a(k, i) = u}. Also, we denote by aop(u) the index set

of operators mapped on Pu: aop(u) = {p | ∃(k, i) ∈ ā(u) opp = op(n
(k)
i)}. We introduce the

following notations:

• Ch(u) = {(p, v, k)} is the set of (operator, processor, application) tuples such that
processor Pu needs to receive an intermediate result computed by operator opp, which is
mapped to processor Pv, at rate ρ(k); operators opp are children of aop(u) in the operator
tree.

• Par(u) = {(p, v, k)} is the set of (operator, processor, application) tuples such that
Pu needs to send to Pv an intermediate result computed by operator opp at rate ρ(k);
p ∈ aop(u) and the sending is done to the parents of opp in the operator tree.

• Do(u) = {(j, v, k)} is the set of (object, processor, application) tuples where Pu down-
loads object obj from processor Pv at rate ρ(k).

The formal definition of Ch(u) and Par(u) is as follows. We first define two sets of tuples,
ACh(u) and APar(u), used to account for communications for the same data but for different

Concurrent In-Network Stream Applications 5

applications:

ACh(u) =
n

(p, v, k) | ∃i, p
′

p ∈ aop(v); p′ ∈ aop(u); p ∈ operators(p′); opp = op(n
(k)
i); opp′ = op(n

(k)

⌊i/2⌋

o

APar(u) =
n

(p, v, k) | ∃i, p
′

p ∈ aop(v); p′ ∈ aop(u); p ∈ operators(p′); opp = op(n
(k)
i); opp′ = op(n

(k)

⌊i/2⌋

o

Then we determine which application has the higher throughput for redundant entries, where
arg max randomly chooses one application if there are equalities:

kchosen(p, v, X) = arg max
k∈K

n

ρ
(k) | ∃(p, v, k) ∈ X

o

Finally, X(u) = {(p, v, kchosen(p, v, AX)) | opp ∈ OP, Pv ∈ P}. X stands for Ch or Par,
and we have thus thus fully defined Ch(u) and Par(u).

Given these notations, we can now express constraints for the application throughput: each
processor must compute and communicate fast enough to respect the prescribed throughput
of each application which is being processed by it. The computation constraint is expressed
below. Note that each operator is computed only once at the maximum required throughput.

∀Pu ∈ P
X

p∈aop(u)

max
(k,i)∈ā(u) | op(n

(k)
i

)=opp

“

ρ
(k)
” wp

su

!

≤ 1 . (1)

Communication occurs only when a child or the parent of a given node and this node are
mapped on different processors. In other terms, we neglect intra-processor communications.
An operator computing for several applications may send/receive results to/from different
processors. If the parent/child nodes corresponding to the different applications are mapped
onto the same processor, the communication is done only once, at the most constrained
throughput. This throughput, as well as the processors with which Pu needs to communicate,
are obtained via Ch(u) and Par(u). In these expressions v 6= u since we neglect intra-
processor-communications.

The first part of Eq. 2 expresses constraints on receiving, while the second part refers to
sending:

∀Pu ∈ P
X

(p,v,k)∈Ch(u)

„

ρ
(k) δp

bv,u

«

≤ 1 ; ∀Pu ∈ P
X

(p,v,k)∈Par(u)

„

ρ
(k) δp

bu,v

«

≤ 1 . (2)

Pu must have enough bandwidth capacity to perform all its basic object downloads, to
support downloads of the basic objects it may hold, and also to perform all communication
with other processors, all at the required rates. This is expressed in Eq. 3. The first term
corresponds to basic object downloads; the second term corresponds to download of basic
objects from other processors; the third term corresponds to inter-node communications when
a node is assigned to Pu and its parent node is assigned to another processor; and the last
term corresponds to inter-node communications when a node is assigned to Pu and some of
its children nodes are assigned to another processor.

∀Pu ∈ P
X

(j,v,k)∈Do(u)

rate
(k)
j +

X

Pv∈P

X

(j,u,k)∈Do(v)

rate
(k)
j +

X

(p,v,k)∈Ch(u)

δpρ
(k) +

X

(p,v,k)∈Par(u)

δpρ
(k) ≤ Bu (3)

Finally, we need to express the fact that the link between processor Pu and processor Pv

must have enough bandwidth capacity to support all possible communications between the
nodes mapped on both processors, as well as the object downloads between these processors.
Eq. 4 is similar to Eq. 3, but it considers two specific processors:

∀Pu, Pv ∈ P
X

(j,v,k)∈Do(u)

rate
(k)
j +

X

(j,u,k)∈Do(v)

rate
(k)
j +

X

(p,v,k)∈Ch(u)

δpρ
(k) +

X

(p,v,k)∈Par(u)

δpρ
(k) ≤ bu,v (4)

6 A. Benoit , H. Casanova , V. Rehn-Sonigo , Y. Robert

2.4 Optimization Problems

The overall objective of the operator-mapping problem is to ensure that a prescribed through-
put per application is achieved while minimizing a cost function. Several relevant problems
can be envisioned. Proc-Nb minimizes the number of processors enrolled for computations
(processors that are allocated at least one node); Proc-Power minimizes the compute ca-
pacity and/or the network card capacity of processors enrolled for computations (e.g., a linear
function of both criteria); BW-Sum minimizes the sum of the bandwidth capacities used by
the application; and finally BW-Max minimizes the maximum percentage of bandwidth used
on all links (minimizing the impact of the applications on the network for other users).

Different platform types may be considered depending on the heterogeneity of the re-
sources. We consider the case in which the platform is fully homogeneous (su = s, Bu = B
and bu,v = b), which we term Hom. The heterogeneous case in which network links can have
various bandwidths is termed Het.

Each combination of problems and platforms could be envisioned, but we will see that
Proc-Power on a Hom platform is actually equivalent to Proc-Nb. Proc-Nb makes
more sense in this setting, while Proc-Power is used for Het platforms only. Both types
of platforms are considered for the BW-Sum and BW-Max problems.

3 Complexity

Problem Proc-Nb is NP-complete in the strong sense. This is true even for a simple case:
a Hom platform and a single application (|K| = 1), that is structured as a left-deep tree, in
which all operators take the same amount of time to compute and produce results of size 0,
and in which all basic objects have the same size. We refer the reader to a technical report for
the proof [6], which relies on a straightforward reduction to 3-Partition, which is known to be
NP-hard in the strong sense [15]. It turns out that the same proof holds for Proc-Power

on a Hom platform.

The BW-Max problem is NP-hard because downloading objects with different rates on
two processors is the same problem as 2-Partition, which is known to be NP-hard [15]. Here
is a sketch of the straightforward proof, which holds even in the case of a single application.
Consider an application in which all operators produce zero-size results, and in which each
basic object is used only by one operator. Consider three processors, with one of them holding
all basic objects but unable to compute any operator. The two remaining processors are able
to compute all the operators, and they are connected to the first one with identical network
links. Such an instance can be easily constructed. The problem is then to partition the set
of operators in two subsets so that the bandwidth consumption on the two network links in
use is as equal as possible. This is exactly the 2-Partition problem.

The BW-Sum problem is NP-hard because it can be reduced to the Knapsack problem,
which is NP-hard [15]. Here is a proof sketch for a single application. Consider the same
application as for the proof of the NP-hardness of BW-Max above. Consider two identical
processors, A and B, with A holding all basic objects. Not all operators can be executed on A
and a subset of them need to be executed on B. Such an instance can be easily constructed.
The problem is then to determine the subset of operators that should be executed on A. This
subset should satisfy the constraint that the computational capacity of A is not exceeded,
while maximizing the bandwidth cost of the basic objects associated to the operators in the
subset. This is exactly the Knapsack problem.

Concurrent In-Network Stream Applications 7

All these problems can be solved thanks to an integer linear program (see Section 4).
However, they cannot be solved in polynomial time (unless P=NP). Therefore, in the Section 5
we describe polynomial-time heuristics for one of these problems.

4 Linear Programming Formulation

In this section, we give an integer linear program (ILP) formulation of the Proc-Power-Het,
BW-Sum-Het and BW-Max-Het problems, in terms of an integer linear program (ILP).
These are the most general versions of our operator-mapping problems. More restricted
versions, e.g., with Hom platforms, can be solved using the same ILPs. We describe the input
data to the ILP, its variables, its constraints, and finally its objective functions.

In all that follows, i and i′ are indices spanning nodes in set of nodes of an application
tree; p and p′ are indices spanning operators in OP; j is an index spanning objects in OB; u,
u′, and v are indices spanning processors in P; k is an application index spanning K.

4.1 Input Data

Parameters i, wi for operators, rate
(k)
j for object download rates, and su, Bu, bu,v for processors

and network elements, are rational numbers and defined in Section 2. ρ(k) is a rational number
that represents the throughput QoS requirement for application k. For convenience, we also
introduce families of boolean parameters: par, oper, and object, that pertain to application
trees; and obj, that pertain to location of objects on processors. We define these parameters
hereafter:

• par(k, i, i′) is equal to 1 if internal node n
(k)
i is the parent of n

(k)
i′ in the tree of applica-

tion k, and 0 otherwise.

• oper(k, i, p) is equal to 1 if op(n
(k)
i) = p, and 0 otherwise.

• object(k, i, j) is equal to 1 if node n
(k)
i needs object obj (i.e., p ∈ objects(op(n

(k)
i))), and

0 otherwise.

• obj(u, j) is equal to 1 if processor Pu owns a copy of object obj , and 0 otherwise.

4.2 Variables

• xk,i,u is a variable equal to 1 if node n
(k)
i is mapped on Pu, and 0 otherwise.

• dj,u,v,k is a variable equal to 1 if processor Pu downloads object obj for application k
from processor Pv, and 0 otherwise.

• yk,i,u,i′,u′ is a variable equal to 1 if n
(k)
i is mapped on Pu, n

(k)
i′

is mapped on Pu′ , and

n
(k)
i is the parent of n

(k)
i′ in the application tree.

• usedu is a variable equal to 1 if there is at least one node mapped to processor Pu, and
0 otherwise.

• xopk,p,u is a variable equal to 1 if opp of application k is mapped to processor Pu, and
0 otherwise.

8 A. Benoit , H. Casanova , V. Rehn-Sonigo , Y. Robert

• yopk,p,u,p′,u′ is a variable equal to 1 if opp of application k is mapped on processor Pu, opp′

of application k is mapped on processor Pu′ , and opp is a parent of opp′ in application
k, and 0 otherwise.

• Chu,p,v,k is a variable equal to 1 if (p, v, k) ∈ Ch(u), and 0 otherwise.

• Paru,p,v,k is a variable equal to 1 if (p, v, k) ∈ Par(u), and 0 otherwise.

• rhou,p is a rational variable equal to the throughput of opp if it is mapped on processor
Pu, and 0 otherwise.

• ratemaxj,u,v is a rational variable equal to the download rate of object obj by processor
Pu from processor Pv, and 0 otherwise.

4.3 Constraints

We first give constraints to guarantee that the allocation of nodes to processors is valid, and
that each required download is done from a server that holds the relevant object.

• ∀k, i
∑

u

xk,i,u = 1: each node is placed on exactly one processor;

• ∀j, u, v, k dj,u,v,k ≤ obj(v, j): object obj can be downloaded from processor Pv only if
Pv holds it;

• ∀i, j, u, k 1 ≥
∑

v

dj,u,v,k ≥ xk,i,u.object(k, i, j): processor Pu must download object obj

from exactly one processor Pv if there is a node n
(k)
i mapped on processor Pu that

requires obj .

The next two constraints aim at properly defining variables y. Note that a straightforward
definition would be yk,i,u,i′,u′ = par(k, i, i′).xk,i,u.xk,i′,u′ , but this leads to a non-linear program.
Instead we write, for all k, i, u, i′, u′:

• yk,i,u,i′,u′ ≤ par(k, i, i′); yk,i,u,i′,u′ ≤ xk,i,u; yk,i,u,i′,u′ ≤ xk,i′,u′ : yk,i,u,i′,u′ is forced to be
0 if one of these three conditions does not hold.

• yk,i,u,i′,u′ ≥ par(k, i, j).
(

xk,i,u + xk,i′,u′ − 1
)

: yk,i,u,i′,u′ is forced to be 1 only if the three
conditions are true (otherwise the right term is lower than or equal to 0).

The following two constraints ensure that usedu is properly defined:

• ∀u usedu ≤
∑

k,i

xk,i,u: processor Pu is not used if no node is mapped to it;

• ∀k, i, u usedu ≥ xk,i,u: processor Pu is used if at least one node ni is mapped to it.

The following four constraints ensure that xopk,p,u and yopk,p,u are properly defined:

• ∀i, k, p, u xopk,p,u ≥ xk,i,u.oper(k, i, p): xop is forced to be 1 if operator opp of application
k is mapped on processor Pu;

• ∀k, p, u xopk,p,u ≤
∑

i

xk,i,u.oper(k, i, p): xop is forced to be 0 if operator opp of appli-

cation k is not mapped on processor Pu;

Concurrent In-Network Stream Applications 9

• ∀k, p, p′, u, u′, i, i′ yopk,p,u,p′,u′ ≤ xopk,p,u; yopk,p,u,p′,u′ ≤ xopk,p′,u′ ; yopk,p,u,p′,u′ ≤
par(k, i, i′); yopk,p,u,p′,u′ ≤ oper(k, i, p); yopk,p,u,p′,u′ ≤ oper(k, i′, p′): yopk,p,u,p′,u′ is
forced to be 0 if one of these conditions does not hold;

• ∀k, p, p′, u, u′, i, i′ yopk,p,u,p′,u′ ≥ par(k, i, i′).oper(k, i, p).oper(k.i′, p′).(xopk,p,u+xopk,p′,u′−
1): yopk,p,u,p′,u′ is forced to be 1 only if all five conditions are true.

The next four constraints ensure that Chu,p,v,k and Paru,p,v,k are defined properly:

• ∀u, p, v, k Chu,p,v,k ≤
∑

p′
yopk,p′,u,p,v: in application k, if the parent operator of operator

opp, which is mapped on Pv, is not mapped on processor Pu, Ch is forced to be 0;

• ∀p′, u, p, v, k Chu,p,v,k ≥ yopk,p′,u,p,v: in application k, if operator opp of application k
is mapped to Pv and its parent operator in the application tree is mapped to Pu, Ch is
forced to be 1.

• ∀u, p, v, k Paru,p,v,k ≤
∑

p′
yopk,p′,v,p,u: in application k, if the parent operator of operator

opp, which is mapped to Pu, is not mapped to processor Pv, Par is forced to be 0;

• ∀p′, u, p, v, k Paru,p,v,k ≥ yopk,p′,v,p,u: in application k, if operator opp is mapped to Pu

and its parent operator in the application tree is mapped to Pv, Par is forced to be 1.

The following two constraints ensure that the throughput QoS requirement of each application,
ρ(k), is met:

• ∀k, u, p rhou,p ≥ xopk,p,u.ρ(k): the throughput of processor Pu, to which operator opp of
application k is mapped, has to satisfy the throughput QoS requirement of application
k;

• ∀k, p, u, v ratemaxp,u,v ≥ dp,u,v,k.rate
(k)
p : the update rate of operator opp on processor

Pu has to satisfy the throughput QoS requirement of application k;

The following constraint ensures that the compute capacity of each processor is not exceeded
while meeting QoS throughput requirements:

• ∀u
∑

p

rhou,p
wp

su
≤ 1.

The following two constraints ensure that the bandwidth capacity of network elements are
not exceeded:

• Bandwidth constraint for the processor network cards:

∀u
∑

p,v,k

Chu,p,v,k.rhou,p.δp +
∑

p,v,k

Paru,p,v,k.rhou,p.δp+

∑

j,v,k

dj,u,v,k.ratemaxj,u,v +
∑

j,v,k

dj,v,u,k.ratemaxj,v,u ≤ Bu

(5)

• Bandwidth constraints for links between processors:

∀u, v
∑

p,k

Chu,p,v,k.rhou,p.δp +
∑

p,k

Paru,p,v,k.rhou,p.δp+

∑

j,k

dj,u,v,k.ratemaxj,u,v +
∑

j,k

dj,v,u,k.ratemaxj,v,u ≤ bu,v

(6)

10 A. Benoit , H. Casanova , V. Rehn-Sonigo , Y. Robert

4.4 Objective Function

We have to define the objective function to optimize. We have a different definition for each
problem:

Proc-Power-Het:

min

(

∑

u,p

rhou,p

wp

su

)

. (7)

BW-Sum-Het:

min
∑

u,v,p,k

Chu,p,v,k.rhou,p.δp +
∑

u,v,p,k

Paru,p,v,k.rhou,p.δp+

∑

u,v,j,k

dj,u,v,k.ratemaxj,u,v +
∑

u,v,j,k

dj,v,u,k.ratemaxj,v,u .
(8)

BW-Max-Het: For this problem we need to add one variable, bwmax, and |P|2 con-
straints:

∀u, v
∑

p,k

Chu,p,v,k.rhou,p.δp +
∑

p,k

Paru,p,v,k.rhou,p.δp+

∑

j,k

dj,u,v,k.ratemaxj,u,v +
∑

j,k

dj,v,u,k.ratemaxj,v,u ≤ bwmax
(9)

and the objective becomes: min (bwmax).

5 Heuristics

In this section we propose several polynomial heuristics1 for the Proc-Power problem, in
which we consider only the compute capacity of processors enrolled for computation. Two
heuristics use a random approach to process application nodes, while the others are based
on tree traversals. As for the choice of an appropriate resource for the current node, four
different processor selection strategies are implemented (and shared by all heuristics). Two
selection strategies are blocking and two are non-blocking. Blocking means that once chosen
for a given operator op1, a processor cannot be reused later for another operator op2, and
it is only possible to add relatives (i.e., father or children) of op1 to this processor. On the
contrary, non-blocking strategies impose no such restrictions. We start with a description of
the four processor selection strategies, and then we move to a brief overview of each heuristic.

Processor Allocation Strategies

(1) Fastest processor first (blocking) – Every time we have to chose a processor, the
fastest remaining (not already chosen) processor is chosen.

(2) Biggest network card first (blocking) – Every time we have to chose a processor,
the remaining processor with the biggest network card is chosen.

1To ensure the reproducibility of our results, the code for all heuristics is available on the web [2].

Concurrent In-Network Stream Applications 11

(3) Fastest remaining processor (non-blocking) – The actual amount of computation
is subtracted from the computation capability, and the processor with the most remaining
computation power is chosen.

(4) Biggest remaining network card (non-blocking) – In this strategy the current
(already assigned) communication volume is subtracted from the network card capacity to
evaluate the processor whose remaining communication capacity is the biggest. This processor
is chosen.

Significance of Node Reuse

Our heuristics, except RandomNoReuse (H1), are designed for node reuse. This means that
we try to benefit from the fact that different applications may have common subtrees, i.e.,
subtrees composed of the same operators. Instead of recomputing the result for such a subtree,
we aim at reusing the result. For this purpose we try to add additional communications as
can be seen in Figure 2. The processor that computes the left op1 in application 1 sends its
result not only to the processor that computes op2, but also to the processor that computes
op4. The operator op1 on the right of application 1 no longer has to be computed. In the
same way, we save the whole computation of the subtree rooted by op2 in application 2 when
we add the communication between op2 in application 1 and op3 in application 2.

op3

ob3op2

ob1

ob1 ob2

op1

op5

op2

op1

op4

op1

ob1

ob1 ob2 ob1 ob2

application 1 application 2

Figure 2: Example for the reuse of nodes. op1 is only computed once and its result is reused for
the computation of op2 and op4. op3 uses the result of op2 in application 1 for its computation.

We give hereafter a brief overview of each heuristic:

H1: RandomNoReuse

The H1 heuristic does not reuse any result. While there are unassigned operators, H1 ran-
domly picks one of them. If the father is already mapped, it tries to map the operator on the
father’s processor, or it tries the children’s processors, if those are already mapped. If none of
these mappings is possible, H1 chooses a new processor according to the processor selection
strategy, and maps the operator. If this is not possible, H1 fails.

12 A. Benoit , H. Casanova , V. Rehn-Sonigo , Y. Robert

H2: Random

The H2 random heuristic is more sophisticated as it tries to reuse common results. If the
randomly chosen operator has not already been mapped, possibly for another application, we
use the same mechanism as in H1: first try to map the operator on its father’s processor or
one of the children’s, and in case of failure choose a new processor. But, if the operator has
already been mapped somewhere else in the forest, we try to add a link from the already
mapped operator to the father of the actual operator to reuse the common result. When this
is possible, we mark the whole subtree (rooted at the operator) as mapped. Otherwise, we
choose a new processor.

H3: TopDownBFS

The H3 heuristic performs a breadth-first-search (BFS) traversal of all applications. We use
an artificial root node to link all applications, i.e., all application roots become children of
the artificial root. For each operator, we check whether the operator has not been mapped
yet and whether its father has. In this case, H3 tries to map the operator on the same
processor as its father, and in case of success continues the BFS traversal. In the case where
the actual operator has already been mapped onto one or more processors, H3 tries to add a
communication link between the mapped operator and the father of the actual operator: the
mapped operator sends its result not only to its father but also to the father of the actual
operator. If none of these two conditions holds, or if the mapping was not possible, H3 tries
to map the operator onto a new processor. The processor is chosen according to the processor
selection strategy. When the mapping is successful, the BFS traversal is continued, otherwise
H3 fails.

H4: TopDownDFS

The H4 heuristic uses the same mechanism as H3, but operators are treated in depth-first-
search (DFS) manner. Thus, each time a mapping of a node is successful, the heuristic
continues the DFS traversal of the current application tree.

H5: BottomUpBFS

As the H4 heuristic, the H5 heuristic makes a BFS traversal of the application forest. For
this purpose we use the same mechanism of a new artificial root that links all applications.
For each operator, H5 verifies whether it has already been mapped on a processor. In this
case a communication link is added (if possible), connecting the mapped operator and the
father of the unmapped operator. If the operator is not yet mapped and if it has some
children, we try to map the operator to one of its children’s processors. If no such possibility
is successful, or if the operator is at the bottom of a tree, H5 tries to map the operator onto
a new processor (where the processor is chosen according to the processor selection strategy).
When the mapping is successful, the BFS traversal continues, otherwise H5 fails.

H6: BottomUpDFS

The H6 heuristic is similar to H5, but instead of a BFS traversal, it performs a DFS traversal
of the application forest. This makes the heuristic a little bit more complicated, as there are

Concurrent In-Network Stream Applications 13

more cases to be considered. For each node we check if its operator has already been mapped
on a processor, and none of its children are. In this case we go up in the tree until we reach
the last node n1 such that there exists a node n2 somewhere else in the forest which is already
mapped, and such that op(n1) = op(n2). In this case we try to add a communication between
n2 and the father of n1 to benefit from the calculated result. If the children have already
been mapped we simply try to map the operator to one of the children’s processors. If this is
not possible or if the additional communication was not possible or again if the operator has
not been mapped anywhere in the forest, H6 tries to map the operator onto a new processor,
according to the processor selection strategy. Otherwise H6 fails.

6 Experimental Results

We have conducted several experiments to assess the performance of the different heuristics
described in Section 5. In particular, we are interested in the impact of node reuse on the
number of solutions found by the heuristics.

6.1 Experimental Plan

Except for Experiment 1, all application trees are fixed to a size of at most 50 operators,
and except for Experiment 5, we consider 5 concurrent applications. The leaves in the tree
correspond to basic objects, and each basic object is chosen randomly among 10 different
types. The size d of each object type is also chosen randomly and varies between 3MB and
13MB. The download frequencies of objects for each application, f , as well as the application
throughput, ρ, are chosen randomly such that 0 < f ≤ 1 and 1 ≤ ρ ≤ 2. The parameters for
operators are also chosen randomly. In all experiments (except Experiment 4), the computa-
tion amount wi for an operator lies between 0.5MFlop/sec and 1.5MFlop/sec, and the output
size of each operator δi is randomly chosen between 0.5MB and 1.5MB.

Throughout most of our experiences we use the following platform configuration (variants
will be mentioned explicitly when needed.) We dispose of 30 processors. Each processor is
equipped with a network card, whose bandwidth limitation varies between 50MB and 180MB.
We use the same range for computation power, i.e., CPU speeds of 50MIPS to 180MIPS.
The different processors are interconnected via heterogeneous communication links, whose
bandwidth are between 60MB/s and 100MB/s. The 10 different types of objects are randomly
distributed over the processors. Execution time and communication time are scaled units,
thus execution time is the ratio between computation amount and processor speed, while
communication time is the ratio between object size (or output size) and link bandwidth.

To assess performances, we study the relative performance of each heuristic compared
to the best solution found by any heuristic. This allows to compare the cost, in amount of
resources used, of the different heuristics. The relative performance for the heuristic h is

obtained by: 1
|runs|

∑|runs|
r=1 ah(r), where ah(r) = 0 if heuristic h fails in run r and ah(r) =

costbest(r)
costh(r) . costbest(r) is the best solution cost returned by one of the heuristics for run r,

and costh(r) is the cost involved by the solution proposed by heuristic h. Note that in the
definition of the relative performance we do account for the case when a heuristic fails on a
given instance. The number of runs is fixed to 50 in all experiments. The complete set of
figures summarizing all experimental results is available on the web [1].

14 A. Benoit , H. Casanova , V. Rehn-Sonigo , Y. Robert

6.2 Results

6.2.1 Experiment 1: Number of Processors

In a first set of experiments, we test the influence of the number of available processors,
varying it from 1 to 70. Figure 3(a) shows the number of successes of the different heuristics
using selection strategy 3 (biggest remaining network card). Between 1 and 20 processors, the
number of solutions steeply increases for TopDownDFS, TopDownBFS and BottomUpBFS
and for higher numbers of processors all three heuristics find solutions for most of the 50
runs. BottomUpDFS finds solutions when more than 30 processors are available. Random
already finds solutions when only 20 processors are available, but for the runs with more than
30 processors, it finds fewer solutions than BottomUpDFS. RandomNoReuse is not successful
at all, it does not find any solution. To summarize, TopDownBFS finds the most solutions,
shortly followed by TopDownDFS and BottomUpBFS. Comparing the success rates of the dif-
ferent selection strategies, all heuristics find the most solutions using strategy 3, followed by
strategy 4, strategy 2, and finally strategy 1. But the differences are small. More interesting
is the relative performance of the heuristics using the different processor selection strategies
in comparison to the number of solutions. Figure 4(a) shows the relative performance using
strategy 3. Comparing with Figure 4(b), we can conclude that for the same number of suc-
cessful runs, the performances of the heuristics significantly differ according to the selected
processor selection strategy. Using strategy 3 (and also strategies 2 and 4), TopDownDFS
performs better than TopDownBFS, which performs better than BottomUpBFS. However,
BottomUpBFS outperforms both TopDown heuristics when strategy 1 is used. The perfor-
mance of BottomUpDFS and of the random ones mirrors exactly the number of successful
runs. As for the heuristics without reuse of common subtrees, we see that they do not find
results until at least 35 processors are available (strategy 3) or even 60 (strategy 2). Inde-
pendently of the processor selection strategy, both TopDown heuristics outperform all other
heuristics in success and performance, but the results are poor (see Figure 3(b)).

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70

nu
m

be
r

of
 s

ol
ut

io
ns

number of processors

TopDownBFS
TopDownDFS

BottomUpBFS
BottomUpDFS

Random
Random NoReuse

(a) Successful runs, strategy 3

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70

nu
m

be
r

of
 s

ol
ut

io
ns

number of processors

TopDownBFS
TopDownDFS

BottomUpBFS
BottomUpDFS

Random
Random NoReuse

(b) Successful runs without reuse, strategy 3

Figure 3: Experiment 1: Increasing number of processors. Number of successful runs.

Concurrent In-Network Stream Applications 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70

re
la

tiv
e

pe
rf

or
m

an
ce

 (
co

st
)

number of processors

TopDownBFS
TopDownDFS

BottomUpBFS
BottomUpDFS

Random
Random NoReuse

(a) Relative performance, strategy 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70

re
la

tiv
e

pe
rf

or
m

an
ce

 (
co

st
)

number of processors

TopDownBFS
TopDownDFS

BottomUpBFS
BottomUpDFS

Random
Random NoReuse

(b) Relative performance, strategy 1

Figure 4: Experiment 1: Increasing number of processors. Relative performance.

6.2.2 Experiment 2: Number of Applications

In this set of experiments we vary the number of applications, K. As the number of application
increases, all heuristics are less successful with strategies 1 and 2 than with strategies 3 and
4, and relative performance is poorer as well. Regardless of the strategy used, both TopDown
heuristics show a better relative performance than BottomUpBFS, with the only exception
using strategy 1 with a small number of applications (Figure 5(a)). BottomUpDFS and
both random heuristics perform poorly. For instance, BottomUpDFS only finds solutions
with up to 4 applications. The best strategy seems to be strategy 3 in combination with
TopDownBFS for more than 10 applications and TopDownDFS for less than 10 applications
(see Figure 5(b)).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

re
la

tiv
e

pe
rf

or
m

an
ce

 (
co

st
)

number of applications

TopDownBFS
TopDownDFS

BottomUpBFS
BottomUpDFS

Random
Random NoReuse

(a) Relative performance, strategy 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

re
la

tiv
e

pe
rf

or
m

an
ce

 (
co

st
)

number of applications

TopDownBFS
TopDownDFS

BottomUpBFS
BottomUpDFS

Random
Random NoReuse

(b) Relative performance, strategy 3

Figure 5: Experiment 2: Increasing number of applications.

6.2.3 Experiment 3: Application Size

When increasing the application sizes, strategy 3 is the most robust. Up to application sizes
of 40 operators, the other strategies are competitive, but for applications bigger than 40 oper-

16 A. Benoit , H. Casanova , V. Rehn-Sonigo , Y. Robert

ators both TopDown heuristics and BottomUpBFS achieve the best relative performance and
find the most solutions. The success ranking of the three heuristics is the same, independently
of the strategy: TopDownBFS finds more solutions than TopDownDFS, which, in turn, finds
more solutions than BottomUpBFS. RandomNoReuse finds solutions for applications with
fewer than 20 operators, BottomUpBFS up to 40 operators and Random up to 50 operators,
but the number of solutions from the latter is poor. As far as relative performance is con-
cerned, both TopDown heuristics achieve the best results for application sizes bigger than 20
using strategy 3. BottomUpDFS is competitive when using strategy 1 for applications smaller
than 40 operators (compare Figures 6(a) and 6(b)). As for the heuristics without reuse of
common subtrees, they no longer find results when application sizes exceed 40 operators.
TopDown heuristics perform better, and the best strategy is one of the two non-blocking ones
(3 or 4).

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140

re
la

tiv
e

pe
rf

or
m

an
ce

 (
co

st
)

size of applications

TopDownBFS
TopDownDFS

BottomUpBFS
BottomUpDFS

Random
Random NoReuse

(a) Relative performance, strategy 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140

re
la

tiv
e

pe
rf

or
m

an
ce

 (
co

st
)

size of applications

TopDownBFS
TopDownDFS

BottomUpBFS
BottomUpDFS

Random
Random NoReuse

(b) Relative performance, strategy 2

Figure 6: Experiment 3: Relative performance for increasing application sizes.

6.2.4 Experiment 4: Communication-to-Computation Ratio (CCR)

For this experimental set we introduce a new parameter, the CCR, which is the ratio be-
tween the mean amount of communications and the mean amount of computations, where
the communications correspond to the output sizes of operators (δi) and the computations
to the computational volume wi of the operators. When increasing the CCR, strategies 3
and 4 react very sensitively. As can be seen in Figure 7(a), TopDownBFS, TopDownDFS
and BottomUpBFS have a 100% success rate for CCR ≤ 60, but then the success decreases
drastically until no solution is found at all for a CCR of 180 (using strategy 2, TopDownBFS
still finds 32 solutions). BottomUpDFS is largely outperformed by Random, and Random-
NoReuse fails completely. In this experiment, strategy 2 seems to be the most successful
processor selection strategy (see Figure 7(b)). TopDownBFS achieves the best results, fol-
lowed by BottomUpBFS for CCR < 120, and by TopDownDFS for CCR > 120. Interestingly,
the relative performances of the heuristics using the different strategies do not directly mirror
their success rates. Compare Figures 8(a) and 8(b): BottomUpBFS finds fewer solutions
using strategy 1 than 2, but its relative performance using strategy 1 and CCR smaller than
80 is better than when using strategy 2. Furthermore, TopDownBFS using strategy 1 always
finds the most solutions of all heuristics, but its relative performance is only the best when the

Concurrent In-Network Stream Applications 17

CCR becomes bigger than 120. Also, TopDownDFS finds fewer solutions than TopDownBFS
and BottomUpBFS using strategy 2 and CCR= 30, but its relative performance is the best.

 0

 10

 20

 30

 40

 50

 20 40 60 80 100 120 140 160 180 200

nu
m

be
r

of
 s

ol
ut

io
ns

CCR

TopDownBFS
TopDownDFS

BottomUpBFS
BottomUpDFS

Random
Random NoReuse

(a) Successful runs, strategy 3

 0

 10

 20

 30

 40

 50

 20 40 60 80 100 120 140 160 180 200

nu
m

be
r

of
 s

ol
ut

io
ns

CCR

TopDownBFS
TopDownDFS

BottomUpBFS
BottomUpDFS

Random
Random NoReuse

(b) Successful runs, strategy 2

Figure 7: Experiment 4: Communication-Computation Ratio CCR. Number of successful
runs.

6.2.5 Experiment 5: Similarity of Applications

In this last experiment, we use only two applications for each run and the processing plat-
form is smaller, consisting of only 10 processors. We study the influence on our heuristics
when applications are very similar or completely different. For this purpose we create ap-
plications that differ in more and more operators. Strategies 1 and 2 are more sensitive to
application differences and we observe the following ranking for the success of the heuristics:
strategy 3 > strategy 4 > strategies 1 and 2, which have similar success rates (compare Fig-
ures 9(a) and 9(b).) The ranking of the heuristics within the different strategies is the same:
TopDownBFS is the most successful, followed by TopDownDFS and BottomUpBFS. Bot-
tomUpDFS and Random keep the fourth place, while RandomNoReuse fails. TopDownBFS
has the best relative performance using the blocking strategies, whereas in the non-blocking
cases TopDownDFS achieves the best results, which is important as its success rate is slightly
poorer. BottomUpBFS always ranks at the third position.

6.2.6 Summary of Experiments

Our results show that a random approach for multiple applications is not feasible. Neglecting
the possibility to reuse results from common subtrees dramatically limits the success rate and
also the quality of the solution in terms of cost. The TopDown approach turns out to be
the best, whereupon in most cases BFS traversal achieves the best result. The BottomUp
approach is only competitive using a BFS traversal. The DFS traversal seems unable to
reuse results efficiently (it often finds itself with no bandwidth left to perform necessary
communications.) Furthermore we see a strong dependency of the processor selection strategy
on solution quality. The blocking strategies outperform the non-blocking strategies when the
CCR is large. In the other cases, TopDownBFS in combination with strategy 3 proves to be
a solid combination.

18 A. Benoit , H. Casanova , V. Rehn-Sonigo , Y. Robert

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180 200

re
la

tiv
e

pe
rf

or
m

an
ce

 (
co

st
)

CCR

TopDownBFS
TopDownDFS

BottomUpBFS
BottomUpDFS

Random
Random NoReuse

(a) Relative performance, strategy 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180 200

re
la

tiv
e

pe
rf

or
m

an
ce

 (
co

st
)

CCR

TopDownBFS
TopDownDFS

BottomUpBFS
BottomUpDFS

Random
Random NoReuse

(b) Relative performance, strategy 2

Figure 8: Experiment 4: Communication-Computation Ratio CCR. Relative performance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

re
la

tiv
e

pe
rf

or
m

an
ce

 (
co

st
)

difference of the applications

TopDownBFS
TopDownDFS

BottomUpBFS
BottomUpDFS

Random
Random NoReuse

(a) Successful runs, strategy 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

re
la

tiv
e

pe
rf

or
m

an
ce

 (
co

st
)

difference of the applications

TopDownBFS
TopDownDFS

BottomUpBFS
BottomUpDFS

Random
Random NoReuse

(b) Successful runs, strategy 3

Figure 9: Experiment 5: Similarity of applications.

7 Conclusion

In this paper, we have studied the operator mapping problem of multiple concurrent in-
network stream-processing applications onto a collection of heterogeneous processors. These
stream-processing applications come as a set of operator trees, that have to continuously
download basic objects at different sites of the network and at the same time have to pro-
cess this data to produce some final result. We have considered the problem under a non-
constructive scenario, in which a fixed set of computation and communication resources is
available and the goal is to minimize a cost function. Four different optimization problems
were identified. All are NP-hard but can be formalized as integer linear programs. On the
practical side we focused on one of the optimization problems, for which we designed a set of
polynomial-time heuristics. We evaluated these heuristics via extensive simulations, and our
experiments showed the importance of node reuse across applications. Reusing nodes leads to
an important number of additional solutions, and also the quality of the solutions improves
considerably. We concluded that top-down traversals of the application trees is more efficient
than bottom-up approaches, and in particular the combination of a top-down traversal with a

Concurrent In-Network Stream Applications 19

breadth-first search (i.e., our heuristic TopDownBFS) achieved good results across the board.

As future work, we could develop heuristics for the other optimization problems defined in
Section 2.4. We could also envision a more general cost function wi,u (time required to com-
pute operator i onto processor u), in order to express even more heterogeneity. This would
lead to the design of more sophisticated heuristics. Also, we believe it would be interesting to
add a storage cost for objects downloaded onto processors, which could lead to new objective
functions. Finally, we could address more complicated scenarios with many (conflicting) rel-
evant criteria to consider simultaneously, some related to performance (throughput, response
time), some related to safety (replicating some computations for more reliability), and some
related to environmental costs (resource costs, energy consumption).

References

[1] Diagrams of all experiments. http://graal.ens-lyon.fr/∼vsonigo/code/query-
multiapp/diagrams/.

[2] Source Code for the Heuristics. http://graal.ens-lyon.fr/∼vsonigo/code/query-
multiapp/.

[3] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch Cherni-
ack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag S Maskey, Alexander Rasin, Esther
Ryvkina, Nesime Tatbul, Ying Xing, and Stan Zdonik. The Design of the Borealis Stream
Processing Engine. In Second Biennial Conference on Innovative Data Systems Research
(CIDR 2005), Asilomar, CA, January 2005.

[4] S. Babu and J. Widom. Continuous Queries over Data Streams. SIGMOD Record, 30(3),
2001.

[5] B. Badcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in
data stream systems. In Proceedings of the Intl. Conf. on Very Large Data Bases, pages
456–467, 2004.

[6] Anne Benoit, Henri Casanova, Veronika Rehn-Sonigo, and Yves Robert. Resource Al-
location Strategies for Constructive In-Network Stream Processing. Research Report
2008-20, LIP, ENS Lyon, France, June 2008.

[7] Anne Benoit, Henri Casanova, Veronika Rehn-Sonigo, and Yves Robert. Resource Al-
location Strategies for Constructive In-Network Stream Processing. In Proceedings of
APDCM’09, the 11th Workshop on Advances in Parallel and Distributed Computational
Models. IEEE, 2009.

[8] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems. In Proceedings
of the Conference on Mobile Data Management, 2001.

[9] J. Chen, D.J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous query
system for internet databases. In Proceedings of the SIGMOD Intl. Conf. on Management
of Data, pages 379–390, 2000.

20 A. Benoit , H. Casanova , V. Rehn-Sonigo , Y. Robert

[10] Jianjun Chen, David J. DeWitt, and Jeffrey F. Naughton. Design and Evaluation of
Alternative Selection Placement Strategies in Optimizing Continuous Queries. In Pro-
ceedings of ICDE, 2002.

[11] Liang Chen, K. Reddy, and G. Agrawal. GATES: a grid-based middleware for processing
distributed data streams. High performance Distributed Computing, 2004. Proceedings.
13th IEEE International Symposium on, pages 192–201, 4-6 June 2004.

[12] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y. Xing, and
S. Zdonik. Scalable distributed stream processing. In Proc. of the CIDR Conf., January
2003.

[13] E. Cooke, R. Mortier, A. Donnelly, P. Barham, and R. Isaacs. Reclaiming Network-wide
Visibility Using Ubiquitous End System Monitors. In Proceedings of the USENIX Annual
Technical Conference, 2006.

[14] C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, and O. Spatscheck. Gigascope: high-
performance network monitoring with an SQL interface. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 623–633, 2002.

[15] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

[16] B. Hong and V.K. Prasanna. Distributed adaptive task allocation in heterogeneous com-
puting environments to maximize throughput. In International Parallel and Distributed
Processing Symposium IPDPS’2004. IEEE Computer Society Press, 2004.

[17] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham Boon, Thau Loo, Scott Shenker,
and Ion Stoica. Querying the Internet with PIER, September 2003.

[18] Yannis E. Ioannidis. Query optimization. ACM Computing Surveys, 28(1):121–123, 1996.

[19] J. Kräme and B. Seeger. A Temporal Foundation for Continuous Queries over Data
streams. In Proceedings of the Intl. Conf. on Management of Data, pages 70–82, 2005.

[20] L. Liu, C. Pu, and W. Tang. Continual Queries for Internet Scale Event-Driven Informa-
tion Delivery. IEEE Transactions on Knowledge and Data Engineering, 11(4):610–628,
1999.

[21] D. Logothetis and K. Yocum. Wide-Scale Data Stream Management. In Proceedings of
the USENIX Annual Technical Conference, 2008.

[22] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The design of an acquisitional
query processor for sensor networks. In Proceedings of the 2003 ACM SIGMOD Intl.
Conf. on Management of Data, pages 491–502, 2003.

[23] Suman Nath, Amol Deshpande, Yan Ke, Phillip B. Gibbons, Brad Karp, and Srinivasan
Seshan. IrisNet: An Architecture for Internet-scale Sensing Services.

[24] Vinayaka Pandit and Huibo Ji. Efficient in-network evaluation of multiple queries. In
HiPC, pages 205–216, 2006.

Concurrent In-Network Stream Applications 21

[25] P. Pietzuch, J. Leflie, J. Shneidman, M. Roussopoulos, M. Welsh, and M. Seltzer.
Network-Aware Operator Placement for Stream-Processing Systems. In Proceedings of
the 22nd International Conference on Data Engineering (ICDE’06), pages 49–60, 2006.

[26] B. Plale and K. Schwan. Dynamic Querying of Streaming Data with the dQUOB System.
IEEE Transactions on Parallel and Distributed Systems, 14(4):422–432, 2003.

[27] U. Srivastava, K. Munagala, and J. Widom. Operator Placement for In-Network Stream
Query Processing. In Proceedings of the 24th ACM Intl. Conf. on Principles of Database
Systems, pages 250–258, 2005.

[28] R. van Rennesse, K. Birman, D. Dumitriu, and W. Vogels. Scalable Management and
Data Mining Using Astrolabe. In Proceedings from the First International Workshop on
Peer-to-Peer Systems, pages 280–294, 2002.

	1 Introduction
	2 Framework
	2.1 Application Model
	2.2 Platform Model
	2.3 Mapping Model and Constraints
	2.4 Optimization Problems

	3 Complexity
	4 Linear Programming Formulation
	4.1 Input Data
	4.2 Variables
	4.3 Constraints
	4.4 Objective Function

	5 Heuristics
	6 Experimental Results
	6.1 Experimental Plan
	6.2 Results
	6.2.1 Experiment 1: Number of Processors
	6.2.2 Experiment 2: Number of Applications
	6.2.3 Experiment 3: Application Size
	6.2.4 Experiment 4: Communication-to-Computation Ratio (CCR)
	6.2.5 Experiment 5: Similarity of Applications
	6.2.6 Summary of Experiments

	7 Conclusion

