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Abstract
In this paper, we focus on computing the throughput of replicated workflows.
Given a streaming application whose dependence graph is a linear chain, and
a mapping of this application onto a fully heterogeneous platform, how can
we compute the optimal throughput, or equivalently the minimal period? The
problem is easy when workflow stages are not replicated, i.e., assigned to a
single processor: in that case the period is dictated by the critical hardware
resource. But when stages are replicated, i.e., assigned to several processors,
the problem gets surprisingly complicated, and we provide examples where
the optimal period is larger than the largest cycle-time of any resource. We
then show how to model the problem as a timed Petri net to compute the opti-
mal period in the general case, and we provide a polynomial algorithm for the
one-port communication model with overlap. Finally, we report comprehen-
sive simulation results on the gap between the optimal period and the largest
resource cycle-time.

Keywords: Scheduling, workflows, heterogeneous platforms, period, critical resource, timed Petri nets.

Résumé
Dans ce papier, nous étudions le débit de graphes de tâches répliqués. Étant
donnée une application de streaming dont le graphe de dépendance est une
chaîne, et un placement de cette application sur une plate-forme hétérogène,
comment pouvons-nous calculer le débit optimal, ou, de façon équivalente,
la période minimale ? Ce problème est simple quand les différentes tâches ne
sont traitées que par un seul processeur : dans ce cas, la période est donnée
par le débit de la ou des ressources critiques. Cependant, quand les tâches sont
répliquées, c’est-à-dire placées sur plusieurs processeurs, le problème devient
étonnamment compliqué, et nous présentons des exemples d’instances sans
aucune ressource critique, c’est-à-dire que chacune des ressources connaît des
moments d’inactivité lors de l’exécution du système. Nous montrons comment
calculer la période du système en utilisant les réseaux de Petri temporisés, et
nous donnons un algorithme polynomial pour la calculer pour le modèle de
communication avec overlap. Nous exposons également les résultats de nom-
breuses simulations montrant l’écart entre la période réelle entre le système et
le maximum des temps d’occupation des ressources.

Mots-clés: Ordonnancement, graphes de tâches, plate-formes hétérogènes, période, ressource critiques, réseaux
de Petri temporisés.



11 Introduction

In this paper we deal with streaming applications, or workflows, whose dependence graph is a linear chain
composed of several stages. Such applications operate on a collection of data sets that are executed in a pipeline
fashion [11, 10, 14]. They are a popular programming paradigm for streaming applications like video and audio
encoding and decoding, DSP applications, etc [7, 13, 16]. Each data set is input to the linear chain and traverses it
until its processing is complete. While the first data sets are still being processed by the last stages of the pipeline,
the following ones have started their execution. In steady state, a new data set enters the system every P time-units,
and several data sets are processed concurrently within the system. A key criterion to optimize is the period, or
equivalently its inverse, the throughput. The period P is defined as the time interval between the completion of
two consecutive data sets. With this definition, the system can process data sets at a rate 1/P (the throughput).

The workflow is executed on a fully heterogeneous platform, whose processors have different speeds, and
whose interconnection links have different bandwidths. When mapping application stages onto processors, we
enforce the rule that any given processor will execute at most one stage. However, the converse is not true. If the
computations of a given stage are independent from one data set to another, then two consecutive computations
(different data sets) for the same stage can be mapped onto distinct processors. Such a stage is said to be replicated,
using the terminology of Subhlok and Vondran [11, 12] and of the DataCutter team [4, 10, 15]. This corresponds
to the dealable stages of Cole [6].

Given an application and a target heterogeneous platform, the problem to determine the optimal mapping (maxi-
mizing the throughput) has been shown NP-hard in [3]. The main objective of this paper is to assess the complexity
of computing the throughput when the mapping is given. The problem is easy when workflow stages are not repli-
cated, i.e., assigned to a single processor: in that case the period is dictated by the critical hardware resource.
But when stages are replicated, i.e., assigned to several processors, the problem gets surprisingly complicated,
and we provide examples where the optimal period is larger than the largest cycle-time of any resource. In other
words, during the execution of the system, all the resources will be idle at some points. We then show how to use
timed Petri nets to compute the optimal period in the general case, and we provide a polynomial algorithm for the
one-port model with overlap. Finally, we report comprehensive simulation results on the gap between the optimal
period and the largest resource cycle-time.

2 Framework

We deal with streaming applications, or workflows, whose dependence graph is a linear chain composed of n
stages, called Sk (0 ≤ k ≤ n − 1). Each stage Sk has a size wk, expressed in FLOP, and needs an input file Fk−1

of size δk−1, expressed in BYTES. Finally, Sk produces an output file Fk of size δk, which is the input file of stage
Sk+1. All these sizes are independent of the data set. Note that S0 produces the initial data and does not receive
any input file, while Sn−1 gathers the final data and does not send any file. Figure 1 shows a simple example of a
4-stage pipeline.

The workflow is executed on a fully heterogeneous platform with p processors. The speed of processor Pu is
denoted as Πu. We assume bidirectional links linku,v : Pu → Pv between any processor pair Pu and Pv, with
bandwidth bu,v. These links are not necessarily physical, they can be logical. For instance, we can have a physical
star-shaped platform, where all processors are linked to each other through a central switch. The time needed to
transfer a file Fi from Pu to Pv is δi

bu,v
, while the time needed to process Sk on Pu is wk

Πu
. Two realistic common

models are used for communications:
• OVERLAP ONE-PORT– This first model permits overlap of communications by computations: any processor
can simultaneously receive data set i + 1, compute the result of data set i and send the resulting data set i − 1 to
the next processor. Requiring multi-threaded programs and full-duplex network interfaces, this model allows for
a better use of computational resources.
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Figure 1. Example of a 4-stage pipeline.

• STRICT ONE-PORT– In this model, there is no overlap of communications by computations: a processor can
either receive a given set of data, compute its result or send this result. This is the typical execution of a single-
threaded program, with one-port serialized communications. Although leading to a less efficient use of physical
resources, this model allows for simpler programs and hardware.

When mapping application stages onto processors, we enforce the rule that any given processor will execute
at most one stage. However, the converse is not true. If the computations of a given stage are independent
from one data set to another, then two consecutive computations (different data sets) for the same stage can be
mapped onto distinct processors. Such a stage is said to be replicated, using the terminology of Subhlok and
Vondran [11, 12] and of the DataCutter team [4, 10, 15]. This corresponds to the dealable stages of Cole [6]. Note
that the computations of a replicated stage can be fully sequential for a given data set, what matters is that they do
not depend from previous results for other data sets, hence the possibility to process different data sets in different
locations. The following schema illustrates the replication of a stage Sk onto three processors:

. . . Sk−1

� Sk on P1: data sets 1, 4, 7, . . . �

−− Sk on P2: data sets 2, 5, 8, . . . −−
� Sk on P3: data sets 3, 5, 9, . . . �

Sk+1 . . .

As outlined in the schema, the processors allocated to a replicated stage execute successive data sets in a round-
robin fashion. This may lead to a load imbalance: more data sets could be allocated to faster processors. But this
would imply out-of-order execution and would require a complicated data management if, say, a replicated stage
is followed by a non-replicated one in the application pipeline. As a result, round-robin execution is enforced in
all the papers referenced above, and we enforce this rule too.

The objective is to maximize the throughput ρ of the system, defined as the average number of data sets which
can be processed within one time unit. Equivalently, we aim at minimizing the period P , which is the inverse of
the throughput and corresponds to the time-interval that separates two consecutive data sets entering the system.
We can derive a lower bound for the period as follows. Let Cexec(k) be the cycle-time of processor Pk. If we
enforce the OVERLAP ONE-PORT model, then Cexec(k) is equal to the maximum of its reception time Cin(k), its
computation time Ccomp(k), and its transmission time Cout(k) 1:

Cexec(k) = max {Cin(k), Ccomp(k), Cout(k)} .

If we enforce the STRICT ONE-PORT model, then Cexec(k) is equal to the sum of the three operations:

Cexec(k) = Cin(k) + Ccomp(k) + Cout(k).

In both models, the maximum cycle-time, Mct = max1≤k≤p Cexec(k), is a lower bound for the period.
Given an application and a target heterogeneous platform, determining a mapping which maximizes the through-

put has been shown to be a NP-hard problem in [3], even in the simple case where no stage can be replicated

1Note that Cin(0) =Cout(n − 1) =0
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Figure 2. Example A: Mapping with replication: S1 on 2 processors, S2 on 3 processors.

(thereby enforcing a one-to-one mapping of stages to processors). The proof of [3] was given for the STRICT

ONE-PORT model but can be easily extended to the OVERLAP ONE-PORT model. In this paper, we deal with
the following problem, which in appearance looks simpler: given the mapping of stages to processors, how can
we compute the period P ? If no stage is replicated, then the period is simply determined by the critical resource
(maximum cycle-time): P = Mct. Again, this problem is addressed in [3] for the STRICT ONE-PORT model but
the same result can be easily shown for the OVERLAP ONE-PORT model. However, when stages are replicated,
the previous result is no longer true, and we need to use more sophisticated techniques such as timed Petri nets.

3 Timed Petri net models

3.1 Mappings with replication

In this section, we aim at modeling mappings with timed Petri nets (TPNs) as defined in [1], in order to be able
to compute the period of a given mapping. In the following only TPNs with the event graph property (each place
has exactly one input and one output transition) will be considered (see [2]). We consider mappings where some
stages may be replicated, as defined in Section 2: a stage can be processed by one or more processors. As already
stated, two rules are enforced to simplify the model: a processor can process at most one stage, and if several
processors are involved in the computation of one stage, they are served in a round-robin fashion. In all our Petri
net models, the use of a physical resource during a time t (i.e., the computation of a stage or the transmission
of a file from a processor to another one) is represented by a transition with a firing time t, and dependences are
represented using places. Now, let us focus on the path followed in the pipeline by a single input data set, for a
mapping with several stages replicated on different processors. Consider Example A described in Figure 2: the
first data set enters the system and proceeds through processors P0, P1, P3 and P6. The second data set is first
processed by processor P0, then by processor P2 (even if P1 is available), by processor P4 and finally by processor
P6. Paths followed by the first eight input data sets are summarized up in Table 1: as we can see, there are 6
different paths followed by the data sets, and then data set i takes the same path as data set i − 6. We have the
following easy result:

Proposition 1. Consider a pipeline of n stages S0, . . . , Sn−1, such that stage Si is mapped onto mi distinct proces-

sors. Then the number of paths followed by the input data in the whole system is equal to m = lcm (m0, . . . ,mn−1).

Proof. Let m be the number of paths Pj followed by the input data. Assume that stage Si is processed by
processors Pi,0, . . . , Pi,mi−1. By definition, all paths are distinct. Moreover, the round-robin order is respected:
path Pj is made of processors

(

P0,j mod m0
, . . . , Pi,j mod mi

, . . . , Pn−1,j mod mn−1

)

. The first path P0 is made
of (P0,0, P1,0, . . . , Pn−1,0). By definition, m is the smallest positive integer, such that the (m + 1)-th used path is
identical to the first one:

∀i ∈ {0, . . . , n − 1} ,m mod mi = 0.



4 Input data Path in the system
0 P0 → P1 → P3 → P6

1 P0 → P2 → P4 → P6

2 P0 → P1 → P5 → P6

3 P0 → P2 → P3 → P6

4 P0 → P1 → P4 → P6

5 P0 → P2 → P5 → P6

6 P0 → P1 → P3 → P6

7 P0 → P2 → P4 → P6

Table 1. Example A: Paths followed by the first input data.

Indeed, m is the smallest positive integer, which is divisible by each mi, i.e., m = lcm (m0, . . . ,mn−1).

The TPN model given here is the same flavor as what has been done to model jobshops with static schedules
using TPNs [8]. Here, however, replication imposes that each path followed by the input data must be fully devel-
oped in the TPN: if P0 appears in several distinct paths, as in Figure 2, there are several transitions corresponding
to P0. Furthermore, we have to add dependences between all the transitions corresponding to the same physical
resource to avoid the simultaneous use of the same resource by different input data. These dependences differ
according to the model used for communications and computations.

3.2 OVERLAP ONE-PORT model

First, let us focus on the OVERLAP ONE-PORT model: any processor can receive a file and send another one
while computing. All paths followed by the input data in the whole system have to appear in the TPN. We use the
notations of Proposition 1.

Let m denote the number of paths of our mapping. Then the i-th input data follows the (i mod m)-th path,
and we have a rectangular TPN, with m rows of 2n − 1 transitions, due to the n transitions representing the use
of processors and the n − 1 transitions representing the use of communication links. The i-th transition of the
j-th row is named T j

i . The time required to fire a transition T j
2i (corresponding to the processing of stage Si on

processor Pu) is set to wi

Πu
, and the one required by a transition T j

2i+1 (corresponding the transmission of a file Fi

from Pu to Pv) is set to δi

bu,v
.

Then we add places between these transitions to model the following set of constraints:
1. The file Fi cannot be sent before the computation of Si: a place is added from T j

2i to T j
2i+1 on each row.

Similarly, the stage Si+1 cannot be processed before the end of the communication of Fi: a place is added
from T j

2i+1 to T j

2(i+1) on each row j. All these places are shown in Figure 3(a).
2. When a processor appears in several rows, the round-robin distribution imposes dependences between these

rows. Assume that processor Pi appears on rows j1, j2, . . . , jk. Then we add a place from T jl

2i to T
jl+1

2i with
1 ≤ l ≤ k − 1, and a place from T jk

2i to T j1
2i . All these places are shown in Figure 3(b).

3. The one-port model and the round-robin distribution of communications also impose dependences between
rows. Assume that processor Pi appears on rows j1, j2, . . . , jk. Then we add a place from T jl

2i+1 to T
jl+1

2i+1

with 1 ≤ l ≤ k−1, and a place from T jk

2i+1 to T j1
2i+1 to ensure that Pi does not send two files simultaneously,

if Pi does not compute the last stage. All these places are shown in Figure 3(c).
4. In the same way, we add a place from T jl

2i−1 to T
jl+1

2i−1 with 1 ≤ l ≤ k − 1, and a place from T jk

2i−1 to T j1
2i−1

to ensure that Pi does not receive two files simultaneously, if Pi does not compute the first stage. All these
places are shown in Figure 3(d).
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Figure 3. OVERLAP ONE-PORT model: places imposed by the different constraints described in Sub-

section 3.2. Circuits model the round-robin distribution, and the single token in each circuit models

the fact that any resource can process at most one job at a time.
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Figure 4. Complete TPN of Example A for the OVERLAP ONE-PORT model.

Finally, any resource before its first use is ready to compute or communicate, only waiting for the input file.
Indeed, a token is put in every place going from a transition T jk

i to a transition T j1
i , as defined in the previous

lines. The complete TPN of Example A for the OVERLAP ONE-PORT model is given in Figure 4.

3.3 STRICT ONE-PORT model

In the STRICT ONE-PORT model, any processor can either send a file, receive another one, or perform a
computation while these operations were happening concurrently in the OVERLAP ONE-PORT model. Hence,
we require a processor to successively receive the data corresponding to an input file Fi, compute the stage Si+1

and send the file Fi+1 before receiving the next data set of Fi. Paths followed by the input data are obviously the
same as in Subsection 3.2, and the structure of the TPN remains the same (m rows of 2n − 1 transitions).

The first set of constraints is also identical to that of the OVERLAP ONE-PORT model, since we still have
dependences between communications and computations, as in Figure 3(a). However, the other dependences are
replaced by those imposed by the round-robin order of the STRICT ONE-PORT model. Indeed, when a processor
appears in several rows, the round-robin order imposes dependences between these rows. Assume that processor
Pi appears on rows j1, j2, . . . , jk. Then we add a place from T jl

2i+1 to T
jl+1

2i−1 with 1 ≤ l ≤ k − 1, and a place from

T jk

2i+1 to T j1
2i−1. These places ensure the respect of the model: the next reception cannot start before the completion

of the current sequence reception-computation-sending. All these places are shown in Figure 5(a).
Any physical resource can immediately start its first communication, since it is initially only waiting for the

input file. Thus a token is put in every place from a transition T jk

i to a transition T j1
i , as defined in the previous

lines. The complete TPN of Example A for the STRICT ONE-PORT model is given in Figure 5(b).
The automatic construction of the TPN in both cases has been implemented. The time needed to construct the

Petri net is linear in its size: O(mn).

4 Computing mapping throughputs

TPNs with the event graph property make the computation of the throughput of a complex system possible
through the computation of critical cycles, using (max, +) algebra [2]. For any cycle C in the TPN, let L(C) be
its length (number of transitions) and t(C) be the total number of tokens in places traversed by C. Then a critical
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(b) Complete TPN.

Figure 5. STRICT ONE-PORT model: places imposed by the different constraints described in Sub-

section 3.3.

cycle achieves the largest ratio maxCcycle
L(C)
t(C) , and this ratio is the period P of the system: indeed, after a transitive

period, every transition of the TPN is fired exactly once during a period of length P [2].
Critical cycles can be computed with softwares like ERS [9] or GreatSPN [5] with a complexity O(m3n3). By

definition of the TPN, the firing of any transition of the last column corresponds to the completion of the last stage,
i.e., to the completion of an instance of the workflow. Moreover, we know that all the m transitions (if m is still
the number of rows of the TPN) of this last column are fired in a round-robin order. In our case, m data sets are
completed during any period P : the obtained throughput ρ is m

P
.

4.1 OVERLAP ONE-PORT model

The TPN associated to the OVERLAP ONE-PORT model has a regular structure, which facilitates the determi-
nation of critical cycles. In the complete TPN, places are linked to transitions either in the same row and oriented
forward, or in the same column. Hence, any cycle only contains transitions belonging the same “column”: we can
split the complete TPN into 2n−1 smaller TPNs, each sub-TPN representing either a communication or a compu-
tation. However, the size of each sub-TPN (the restriction of the TPN to a single column) is not necessarily poly-
nomial in the size of the instance, due to the possibly large number of rows, equal to m = lcm (m0, . . . ,mn−1).

It turns out that a polynomial algorithm exists to find the weight L(C)/t(C) of a critical cycle: only a fraction
of each sub-TPN is required to compute this weight, without computing the cycle itself. This is the main technical
contribution of this paper, given in the following theorem.

Theorem 1. Consider a pipeline of n stages S0, . . . , Sn−1, such that stage Si is mapped onto mi distinct proces-

sors. Then the average throughput of this system can be computed in time O
(

∑n−2
i=0

(

(mimi+1)
3
)

)

.

The complete proof of this theorem is given in the appendix A.
In Example A, a critical resource is the output port of P0, whose cycle-time is equal to the period, 189. However

it is possible to exhibit cases without critical resource: see for instance Example B presented in Figure 6. Its critical
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100
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100
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1000

1000

1000
1000

1000
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Figure 6. Example B: Stage 0 is replicated on 3 processors, and Stage 1 on 4 processors.

resource cycle-time is Mct = 258.3 and corresponds to the outgoing communications of P2. It is strictly smaller
than the actual period of the complete system, P = 291.7.

4.2 STRICT ONE-PORT model

Cycles in the TPN associated to the STRICT ONE-PORT model are more complex and less regular, since corre-
sponding TPNs have backward edges. An example of such a cycle is shown in Figure 8. The intuition behind these
backward edges is that a processor Pu cannot compute an instance of Si before having completely sent the result
Fi of the previous instance of Si to the next processor Pv. Thus, Pu can be slowed by Pv. As for the OVERLAP

ONE-PORT model, there exist mappings for which all resources have idle times during a complete period. With
the STRICT ONE-PORT model, this is the case for Example A, whose Gantt diagram is shown in Figure 7g the
critical resource is P2, which has a cycle-time Mct = 215.8, strictly smaller than the period P = 230.7.

5 Experiments

In Section 4, we have shown examples of mappings without any critical resource, i.e., whose period is larger
than any resource cycle-time, for both communication models. We have conducted extended experiments to assess
whether such situations are very common or not. Several sets of applications and platforms were considered,
with between 2 and 20 stages and between 7 and 30 processors. All relevant parameters (processor speeds, link
bandwidths, number of processors computing the same stage) were randomly chosen uniformly within the ranges
indicated in Table 2. Finally, each experiment was run for both models. We compared the inverse of the critical
resource cycle-time and the actual throughput of the whole platform. A grand total of 5, 152 different experiments
were run. Table 2 shows that the cases without critical resources are very rare. In fact no such case was actually
found with the OVERLAP ONE-PORT model!

The computation times closely depends on the duplication factor of each stage: the computation of an example
with 10 stages and 20 processors ranges from 2 to 150, 000 seconds on powerful machines such as a quadri-core
server.

6 Conclusion

In this paper, we have studied the throughput of streaming applications mapped on heterogeneous platforms.
The major originality of our work, and also its major difficulty, is that we consider stage replication. Although this
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Figure 7. Gantt diagram of a schedule without critical resource.
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Figure 8. Complex critical cycles on Example A.



10 Size (stages, processors) Computation times Communication times #exp without critical
resource / total

With overlap:
(10, 20) and (10, 30) between 5 and 15 between 5 and 15 0 / 220
(10, 20) and (10, 30) between 10 and 1000 between 10 and 1000 0 / 220

(20, 30) between 5 and 15 between 5 and 15 0 / 68
(20, 30) between 10 and 1000 between 10 and 1000 0 / 68

(2, 7) and (3, 7) 1 between 5 and 10 0 / 1000
(2, 7) and (3, 7) 1 between 10 and 50 0 / 1000

Without overlap:
(10, 20) and (10, 30) between 5 and 15 between 5 and 15 14 / 220 (diff less than 9%)
(10, 20) and (10, 30) between 10 and 1000 between 10 and 1000 0 / 220

(20, 30) between 5 and 15 between 5 and 15 5 / 68 (diff less than 7%)
(20, 30) between 10 and 1000 between 10 and 1000 0 / 68

(2, 7) and (3, 7) 1 between 5 and 10 10 / 1000 (diff less than 3%)
(2, 7) and (3, 7) 1 between 10 and 50 0 / 1000

Table 2. Numbers of experiments without critical resource.

technique is classical in the literature, the computation of the throughput of such complex mappings has not been
addressed yet (at the best of our knowledge). We have introduced TPNs (timed Petri nets) to determine the critical
cycles of the mapping. The complexity of throughput evaluation depends on the communication model. Even the
simple round-robin distribution implies complex interactions between involved resources, resulting in schedules
without any critical resource: there exist schedules, such that all resources remain partially idle, and this is true for
both models. However, experiments show that such cases are very rare under the OVERLAP ONE-PORT model.
In addition, we have established the polynomial complexity of the problem for this OVERLAP ONE-PORT model,
while it remains open for the STRICT ONE-PORT model.

This paper was focused on static platforms, opening the way to future work on finding good schedules on
dynamic platforms, whose speeds and bandwidths are modeled by random variables.
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Figure 9. Sub-TPN corresponding to the transmission of F1 in Example A (OVERLAP ONE-PORT

model).

A Proof of Theorem 1

Theorem 1. Let us consider a set (S0, . . . , Si+1) of stages, and a one-to-many mapping of them, such that Si is

mapped on mi processors. Then the average throughput of this system can be computed in time O
(

∑n−2
i=0

(

(mimi+1)
3
)

)

.

Proof. We saw that the throughput of the platform is given by the weight of a critical cycle. As said before, a
critical cycle can only be found in a column of transitions, and we have two cases:

• transitions correspond to the computation of a stage Si,
• transitions correspond to the transmission of a file Fi.

The first case is the simplest one: each transition appears in exactly one cycle, and each cycle passes through
exactly one physical resource (all the transitions correspond to the same stage Si on the same processor Pu). Thus,

the time passed during a complete period of length P by a processor Pu is exactly equal to
(

wi

Πu

)(

m
mi

)

(we recall

that mi is the number of processors devoted to the computation of Si). This is also the weight of this cycle. Thus,
if a critical cycle of the TPN appears in such a column, then its average weight is easy to compute. The running

time to compute critical cycles for those columns is O
(

∑n−1
i=0 mi

)

.

The second case is more complex: each transition appears in exactly two cycles. The first cycle is created
by the round-robin distribution on the output port of the emitter, and the second one comes from the round-
robin distribution on the input port of the receiver. By construction, this sub-TPN is made of several elemental
cycles, each elemental cycle corresponding to the successive receptions of Fi by a processor participating to the
computation of Si+1, or to the successive transmissions of Fi by a processor working on Si. If any critical cycle
passes through both types of elemental cycles, then all resources can have idle times in the final schedule, as shown
in Figure 12, representing the Gantt chart of the first instances of Example B. This example, presented in Figure 6,
is made of a single communication, whose sub-TPN is displayed in Figure 10; a critical cycle is drawn with dotted
arrows.

This communication of Fi involves mi senders and mi+1 receivers. The transmission of F1 in example C,
displayed in Figure 11, is used for a better understanding of our proof. Let m be the least common multiple
of (m0, . . . ,mn−1), and p the greatest common divisor of mi and mi+1. Let u be equal to mi/p and v be
equal to mi+1/p. Then the complete sub-TPN G is made of p connected components, each of them based on
c = m

lcm(mi,mi+1) patterns P of size u × v. One of these components is shown in Figure 13. Let Ca be a critical
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Figure 10. Sub-TPN corresponding to the transmission of F0 in Example B (OVERLAP ONE-PORT

model).
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Figure 11. Example C: Stages are respectively replicated on 5, 21, 27 and 11 processors.
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Figure 12. Gantt diagram of the first three periods of Example B.
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u = 7

v = 9

pattern

55 patterns

Figure 13. A complete connected component G (corresponding to Example C).

cycle. By definition of a cycle, Ca is contained in one of the p connected components. Thus, without any loss of
generality, we now assume that the complete sub-TPN is reduced to a single connected component.

In the case of Example C, m0 = 5, m1 = 21, m2 = 27 and m3 = 11. Thus, we have m = 10395, p = 3,
c = 55, u = 7 and v = 9. There are 3 connected components, reflecting the fact that any sender communicates
with only 9 distinct receivers. As example, P5 only communicates with P26, P29, P32, . . . , P50, and P6 only
communicates with P27, P30, P33, . . . , P51. Let us call xk

ij the transition on column i (0 ≤ i < u), row j
(0 ≤ j < v) and pattern k (0 ≤ k < c).

The structure of any connected component is very regular:

• if 0 ≤ i < u, then there is a place from xk
ij to xk

(i+1)j , corresponding to the round-robin on the receiver,

• if 0 ≤ j < v, then there is a place from xk
ij to xk

i(j+1), corresponding to the round-robin on the sender,

• if 0 ≤ k < c, then there is a place from xk
(u−1)j to xk+1

0j and from xk
i(v−1) to xk+1

i0 ,

• there is a place from xc−1
(u−1)j to x0

0j and from xc−1
i(v−1) to x0

i0.

Thus, any critical cycle passes through all patterns of G. Now, let us call G′ the smaller graph made of a single
pattern of G. G′ has uv transitions, denoted by xij (with 0 ≤ i < u and 0 ≤ j < vb) and 2uv places, such that:

• if 0 ≤ i < u, then there is a place from xij to x(i+1)j ,

• if 0 ≤ j < v, then there is a place from xij to xi(j+1),

• there is a place from x(u−1)j to x0j and from xi(v−1) to xi0,

In figure 14, we can see this graph G′, corresponding the full graph shown in Figure 13.
We need some other definitions:
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u = 7 rows

v = 9 columns

Figure 14. A single pattern G′.

• If we consider a cycle Ca in G, then by construction of P , the only way to pass through P is to enter by
either the first column or the first line. Let ka be the number of such entrances. Similarly, if we consider a
cycle Ca in G′, let ka be the number of places x(u−1)j → x0j and xi(v−1) → xi0.

• Let La be the sum of all transitions of a cycle Ca.

• If Ca =
(

xk0

i0,j0
, xk1

i1,j1
, . . . , xka

ia,ja

)

is a cycle in G, let Cb = (xi0,j0 , xi1,j1 , . . . , xia,ja) be its projection in G′

; by construction, the same place can appears many times in Cb.

• A cycle Ca in G′ can be dived into G to obtain a cycle Cb in G. This transformation is shown in Figure 15.

• On the contrary, a cycle Ca in G can be projected on G′ to obtain a cycle Cb in G′. This transformation is
shown in Figure 16.

Obviously, if Ca is a cycle in G, then ka is a multiple of p, the total number of patterns in G. Now, by construction
of the sub-TPN, there is a single token in each place between the last and the first pattern. Thus, the number of
tokens in Ca is equal to ka/p.

1. Let C1 be any critical cycle of G. Its weight (or length) is L1, and the number of tokens is equal to k1/p.
Since C1 is critical, L1 × p

k1 is maximal.

2. Let C2 be the projection of C1 in G′. By construction of C2, k2 = k1 and L2 = L1. However, there is no
reason for C2 to be elemental. We split C2 into

(

C2
1 , . . . , C2

r2

)

, where C2
i is elemental. Morever, we have

∑r2

i=1 L
2
i = L2 and

∑r2

i=1 k2
i = k2.

3. Let C3 be one of the C2
i such that L3/k3 ≥ L2/k2. Such an C2

i exists, otherwise we have a contradiction:
assume that we have

∀i,L2
i /k2

i < L2/k2

⇔ ∀i,L2
i /k2

i <

∑r2

j=1 L
2
i

∑r2

j=1 k2
i
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CbCa

G ′
G

Figure 15. Diving Ca from G′ to G to obtain Cb.

Cb

G G ′

Ca

Figure 16. Projection of Ca from G to G′ to obtain Cb.
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⇔ ∀i,L2

i

r2
∑

j=1

k2
j < k2

i

r2
∑

j=1

L2
j

We can sum these inequalities:

⇒

r2
∑

i=1



L2
i

r2
∑

j=1

k2
j



 <

r2
∑

i=1



L2
i

r2
∑

j=1

k2
j





⇔

(

r2
∑

i=1

L2
i

)





r2
∑

j=1

k2
j



 <

(

r2
∑

i=1

L2
i

)





r2
∑

j=1

k2
j





This last inequality is obviously wrong, showing that our C3 exists.

4. Let C4 be any elemental cycle of G′, such that L4/k4 is maximal. Since C3 is elemental, we have L4/k4 ≥

L3/k3. Such a critical cycle can be found in time O
(

(uv)3
)

[2].

5. Let C5 the diving of C4 in G. C5 is made of c = lcm(p, k4)/k4 copies of C4. Thus, we have L5 = nL4 and
k5 = nk4. Finally, L5/k5 = L4/k4. Again, there is no reason for C5 to be an elemental cycle. We split C5

into
(

C5
1 , . . . , C5

r5

)

, where C5
i is elemental.

6. Let C6 be one of the C5
i such that L6/k6 ≥ L5/k5. As before, we can ensure that C6 exists, and C6 is

elemental. Moreover, the number of tokens in C6 is equal to k6/p.

7. Finally, we have:
L6/k6 ≥ L5/k5 = L4/k4 ≥ L3/k3 ≥ L2/k2 = L1/k1

Since p is positive, we have:

L6p/k6 ≥ L5p/k5 = L4p/k4 ≥ L3p/k3 ≥ L2p/k2 = L1p/k1

We know that L1p/k1 is maximal; since C6 is an elemental cycle, we have: L6/k6 = L1/k1 and thus,

L4/k4 = L1/k1

.

We have shown that:

• C4 has the same critical weight as C1,

• C4 can be found without any knowledge on G nor C1,

• C4 is computed over G′, which has a polynomial size.

Hence, even if the sub-TPN has an exponential size, the length of its critical cycles can be found in polynomial
time for each of its connected components.

The Karp’s algorithm runs in time O
(

(uv)2
)

. Since we run this algorithm on all the p connected components,
the total running time for the i-th communication is O

(

(uv)2p
)

= O
(

(mimi+1)
2
)

.

Thus, the total running time for all communications is O
(

∑n−2
i=0

(

(mimi+1)
2
)

)

.
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