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Experimental verification of a modified fluctuation-dissipation relation for a

micron-sized particle in a non-equilibrium steady state

J. R. Gomez-Solano, A. Petrosyan, S. Ciliberto, R. Chetrite, and K. Gawȩdzki
Université de Lyon, Laboratoire de Physique, Ecole Normale Supérieure de Lyon,

CNRS, 46, Allée d’Italie, 69364 Lyon CEDEX 07, France

A modified fluctuation-dissipation-theorem (MFDT) for a non-equilibrium steady state (NESS)
is experimentally checked by studying the position fluctuations of a colloidal particle whose motion
is confined in a toroidal optical trap. The NESS is generated by means of a rotating laser beam
which exerts on the particle a sinusoidal conservative force plus a constant non-conservative one.
The MFDT is shown to be perfectly verified by the experimental data. It can be interpreted as an
equilibrium-like fluctuation-dissipation relation in the Lagrangian frame moving at the mean local
velocity of the particle.

The validity of the fluctuation-dissipation theorem
(FDT) in systems out of thermal equilibrium has been
the subject of intensive study during the last years. We
recall that for a system in equilibrium with a thermal
bath at temperature T the FDT establishes a simple re-
lation between the 2-time correlation function C(t − s)
of a given observable and the linear response function
R(t− s) of this observable to a weak external perturba-
tion

∂sC(t − s) = kBTR(t− s). (1)

However, Eq. (1) is not necessarily fulfilled out of equi-
librium and violations are observed in a variety of sys-
tems such as glassy materials [1, 2, 3, 4, 5], granu-
lar matter [6], and biophysical systems [7]. This mo-
tivated a theoretical work devoted to a search of a gen-
eral framework describing FD relations, see the review
[8] or [9, 10, 11, 12, 13, 14] for recent attempts in
simple stochastic systems. In the same spirit, a modi-
fied fluctuation-dissipation theorem (MFDT) has been
recently formulated for a non-equilibrium steady dy-
namics governed by the Langevin equation with non-
conservative forces [15]. In particular, this MFDT holds
for the overdamped motion of a particle on a circle
0 ≤ θ < 2π in the presence of a periodic potential
H(θ) = H(θ+2π) and a constant non-conservative force
F

θ̇ = −∂θH(θ) + F + ζ, (2)

where ζ is a white noise term of mean 〈ζt〉 = 0 and co-
variance 〈ζtζs〉 = 2Dδ(t−s), with D the diffusivity. The
non-equilibrium steady state (NESS) associated to Eq.
(2) corresponds to a constant non-vanishing probability
current j along the circle and an invariant probability
density function ρ0(θ) that allow us to define a mean
local velocity v0(θ) = j/ρ0(θ). This is the average ve-
locity of the particle at θ. For a stochastic system in
NESS evolving according to Eq. (2), the MFDT reads
for t ≥ s

∂sC(t − s) − b(t − s) = kBTR(t− s), (3)

where the 2-time correlation of a given observable O(θ)
is defined by

C(t − s) = 〈O(θt)O(θs) 〉0, (4)

and the linear response function to a δ-perturbation of
the conjugated variable ht is given by the functional
derivative

R(t − s) =
δ

δhs

∣

∣

∣

∣

h=0

〈O(θt) 〉h. (5)

In Eq. (5), 〈...〉h denotes the average in the perturbed
time-dependent state obtained from the NESS by re-
placing H(θ) in Eq. (2) by H(θ) − htO(θ). It reduces
for h = 0 to the NESS average 〈...〉0. In Eq. (3), the
correlation b(t − s) is given by

b(t − s) = 〈O(θt)v0(θs)∂θO(θs) 〉0. (6)

This new term takes into account the extent of the vi-
olation of the usual fluctuation-dissipation relation (1)
due to the probability current and it plays the role of a
corrective term to C(t−s) in the MFDT, Eq. (3), which
can be rewritten in the integral form:

C(0) − C(t) − B(t) = kBTχ(t), (7)

where B(t) ≡
∫ t

0
b(t − s)ds and χ(t) =

∫ t

0
R(t − s)ds is

the integrated response function.
In this letter, we present an experimental test of

Eq. (7) in the NESS attained by a micron-sized par-
ticle in a toroidal optical trap similar to the one used in
[12]. We first show that the dynamics of the particle is
well described by the Langevin equation (2) on a circle.
Secondly, by measuring v0, B(t), C(t) and χ(t), we ver-
ify Eq. (7) for the observable O(θ) = sin θ. The result
can be interpreted as an equilibrium-like fluctuation-
dissipation relation in the Lagrangian frame moving at
the mean local velocity v0(θ) [15]. We also check that
ρ0(θ) is frame invariant.

The experiment is performed using a spherical silica
particle of radius r =1 µm in ultrapure water at room
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Figure 1: (a) Invariant probability density function of the
angular position of the particle in NESS. Inset: Mean local
velocity of the particle. (b) Profile of the potential U(θ). The
arrow indicates the direction of the non-conservative force f .

temperature T = 20.0±0.5◦C at which the dynamic vis-
cosity of water is η = (1.002 ∓ 0.010) × 10−3 Pa s. The
particle is kept by an optical tweezers in a toroidal opti-
cal trap. This kind of trap consists on a Nd:YAG diode
pumped solid state laser beam (λ = 1064 nm) focused
by a microscope objective (63×, NA = 1.4) scanning a
circle of radius a = 4.12 µm in the horizontal plane at a
rotation frequency of 200 Hz. The rotation of the beam
is accomplished by means of two coupled acousto-optic
deflectors working with a π/2 phase shift. The toroidal
trap is created 10 µm above the inner bottom surface of
the cell where hydrodynamic boundary-coupling effects
on the particle are negligible. At a rotation frequency
of 200 Hz, the laser beam is not able to hold the parti-
cle but drags it regularly a small distance on the circle
when passing through it [16]. The diffusive motion of
the particle along the radial and vertical directions dur-
ing the absence of the beam (mean square displacement
of 40 nm) is small enough so that the angular position of
the particle θ (measured modulo 2π) is the only relevant
degree of freedom of the dynamics. The laser power is si-
nusoidally modulated around 30 mW with an amplitude

of 7% of the mean power, synchronously with the deflec-
tion of the beam at 200 Hz creating a static sinusoidal
intensity profile along the circle. This trapping situa-
tion acts as a constant non-conservative force f associ-
ated to the mean kick which drives the particle across
a sinusoidal potential U(θ) due to the periodic intensity
profile. Images of the intensity contrast of the particle
on the horizontal focal plane x − y are recorded with a
resolution of 160 × 130 pixels at a sampling rate of 150
frames per second. Tracking of the particle barycenter
(xt, yt) with the accuracy of ∼ 1 nm permits to deter-
mine the angular position of the particle θt with respect
to the trap center. We determine the value of f and the
profile of U(θ) by means of the method described in [17].
This method exploits the probability current j and the
invariant density ρ0(θ) in NESS to reconstruct the ac-
tual energy landscape of the particle. We recorded 200
time series {θt} of duration 66.67 s with different ini-
tial conditions {θ0} sampled every 5 minutes in order to
measure j and ρ0(θ). The probability current is related
to the global mean velocity of the particle by the expres-
sion j = 〈θ̇〉0/(2π). The value of 〈θ̇〉0 is calculated from
the slope of the linear fit of the mean angular position
of the particle (not taken modulo 2π) as a function of
time leading to j = 3.76 × 10−2 s−1 in the direction of
the laser beam rotation. The invariant density, shown in
Fig. 1(a), is computed from the histogram of each time
series {θt} averaged over the 200 different initial condi-
tions. In Fig. 1(a) we also show the mean local velocity
v0(θ) = j/ρ0(θ) of the particle. From these quantities we

obtain f = 3ηraj
∫ 2π

0
ρ0(θ

′)−1dθ′ = 6.60 × 10−14 N and

U(θ) = −kBT log ρ0(θ)+
∫ θ

0
(f − 6πηrajρ0(θ

′)−1)adθ′ =
A sin θ with amplitude A = 68.8kBT . The experimen-
tal potential profile is shown in Fig. 1(b) (black solid
line). Hence, the time evolution of θ is claimed to fol-
low the Langevin dynamics of Eq. (2) [17] with F =
f/(6πηra) = 0.85 rad s−1, H(θ) = U(θ)/(6πηra2) =
H0 sin θ, H0 = A/(6πηra2) = 0.87 rad s−1, and D =
kBT/(6πηra2) = 1.26 × 10−2 rad2 s−1. Note that in
the corresponding equilibrium situation (f = 0) the
probability maximum would be located at the mini-
mum of U(θ) (θ = 3π/2). However, in NESS the non-
conservative force f > 0 shifts the maximum of ρ0(θ)
in the positive direction, as shown in Fig. 1(a). The
position of the maximum depends on the value of f . In
order to enhance the stochastic nature of the dynamics,
we purposely create by choosing F . H0 a situation in
which the particle stays long time around the maximum
θ ≈ 6 rad whereas the rest of the circle is rarely visited.

Additionally, 500 times series of duration 100 s were
specially devoted for the determination of χ(t). In this
case, during each interval of 100 s we apply from time t0
to t0 +∆t with 0 < t0 < 66.67 s and ∆t = 33.33 s a step
perturbation changing the value of A to A + δA. This
is accomplished by suddenly switching the laser power
modulation from 7% to 7.35% of the mean power (30
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Figure 2: (a) Comparison between the different terms needed
to verify Eq. (7), as functions of the time lag t. (b) Expanded
view of the comparison between the curves C(0)−C(t)−B(t)
and kBTχ(t) shown in Fig 2(a). The thin red dashed lines
represent the error bars of the measurement of the integrated
response.

mW). By keeping constant the mean power during the
switch we ensure that the value of f remains also con-
stant, compare to a different time-dependent protocol
explored recently in [18]. The experimental shape of the
perturbed potential with amplitude A + δA is shown in
Fig. 1(b) (red dashed line). In this way, we extract 500
perturbed trajectories {θt}δA of duration ∆t = 33.33 s.
We ensure that after switching off the perturbation the
system actually has attained a NESS before the begin-
ning of the next step perturbation. We checked that
the value of δA obtained by means of this procedure
(δA = 0.05A) is small enough to remain within the lin-
ear response regime for time lags 0 ≤ t ≤ 3.5 s. For 3.5 s
< t nonlinearities become important. Consequently, the
response function is only measured for the first 3.5 s of
the perturbed trajectories.

With the purpose of determining correctly the dif-
ferent terms involved in Eq. (7), the observable O(θ)
must be chosen consistently on both sides of such rela-
tion. The change of the potential U(θ) → U(θ)+δA sin θ
due the application of the step perturbation implies that
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Figure 3: Example of trajectories used to compute the in-
tergrated response. We show an perturbed trajectory (thick
dashed red line) and four out of a total of 200 of the corre-
sponding unperturbed ones (see text).

O(θ) = sin θ is the observable that must be studied with
−δA as its conjugate variable. Hence, we compute the
correlation function C(t), the corrective term B(t) (with
∂θO(θ) = cos θ and the experimental curve v0(θ) shown
in Fig. 1(a)) and the integrated response χ(t) for this
observable, as functions of the time lag t.

The determination of C(t) and B(t) is straightforward
according to Eqs. (4) and (6). The stationarity of the
system allows to perform an average over the time ori-
gin in addition to the ensemble average 〈...〉0 over the
200 different time series devoted to this purpose, which
increases enormously the statistics. The dependence of
C(0) − C(t) and B(t) on t is shown in Fig. 2(a) in
dotted-dashed green and blue dashed lines, respectively.

On the other hand, the integrated response χ(t) is
given by

χ(t) =
〈O(θt) 〉δA − 〈O(θt) 〉0

−δA
. (8)

In Eq. (8) the value t = 0 corresponds to instant t0
when the perturbation of the potential amplitude δA is
switched on. To decrease the statistical errors in com-
parison of the terms in Eq. (8), for a given perturbed
trajectory θtδA we look for as many unperturbed ones
θt as possible among the 200 time series {θt} starting at
a time t∗ such that O(θt∗) = O(θ0δA). Then we redefine
t∗ as t = 0 in Eq. (8), as shown in Fig. 3. The unper-
turbed trajectories found in this way allow us to define a
subensemble over which the average 〈O(θt)〉0 in Eq. (8)
is computed at a given t. The average 〈O(θt)〉δA is sim-
ply computed over the 500 perturbed time series. In Fig.
2(a) we show in thick dashed red line the dependence of
the integrated response on t.

The comparison between the different terms needed
to verify Eq. (3) is shown in Fig. 2(a), for the time lag
interval 0 < t < 3.5 s where the linear response regime is
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Figure 4: Invariant density of the angular position measured
in the Eulerian frame (same as in Fig. 1(b)) and in the
Lagrangian frame. Inset: example of a trajectory measured
in both frames.

valid. As expected, the usual FD relation (1) is strongly
violated in this NESS because of the broken detailed bal-
ance, with the correlation term C(0)−C(t) being one or-
der of magnitude larger than the response term kBTχ(t).
However, with the corrective term B(t) associated to
the probability current subtracted, C(0) − C(t) − B(t)
shown in solid black line in Fig. 2(a), becomes equal to
kBTχ(t). For clarity, in Fig. 2(b) we show an expanded
view of the of the curves C(0)−C(t)−B(t) and kBTχ(t).
We observe that, within the experimental error bars, the
agreement between both terms is quite good, verifying
the integrated form of the modified FD relation (7). The
error bars of the integrated response curve at each time
lag t are obtained from the standard deviation of the

subensemble of unperturbed trajectories found for each
perturbed trajectory, like the ones shown in thin solid
lines in Fig. 3.

As shown in [15], the validity of Eq. (7) for the fluc-
tuations of the angular position of the silica particle in
NESS gains a simpler interpretation in the Lagrangian
frame moving with the mean local velocity along the cir-
cle shown in Fig. 1(a). In the inset of Fig. 4 we show an
example of one trajectory measured in both the labora-
tory (Eulerian) and the Lagrangian frames. Using the
observables that are time independent in the Lagrangian
frame, the MFDT may be rewritten in the form

∂sC(t, s) = kBTR(t, s),

close to that of the equilibrium FDT (Eq. (1)) except
for the lack of the time translation invariance of the
functions involved. One of the new predictions of the
Lagrangian analysis of the system is that the density
ρ0 stays unchanged in the Lagrangian frame. We have
checked that on the experimental data shown in Fig. 4.

We have verified experimentally a modified
fluctuation-dissipation relation describing the dy-
namics of a system with one degree of freedom in NESS,
namely a Brownian particle moving in a toroidal optical
trap. We point out that the experimental results
reported here represent an alternative approach to
non-equilibrium fluctuation-dissipation relations to that
of Ref. [12] which dealt with the velocity fluctuations
relative to the mean local velocity. The approach
followed in our work relies on an observable depending
on the particle position. It quantifies the extent of the
violation of the usual FDT by means of the term B(t),
admitting a transparent Lagrangian interpretation of
the resulting MFDT.
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