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Experimental verification of a modified fluctuation-dissipation relation for a

micron-sized particle in a non-equilibrium steady state

J. R. Gomez-Solano, A. Petrosyan, S. Ciliberto, R. Chetrite, and K. Gawȩdzki
Université de Lyon, Laboratoire de Physique, Ecole Normale Supérieure de Lyon,

CNRS, 46, Allée d’Italie, 69364 Lyon CEDEX 07, France

A modified fluctuation-dissipation-theorem (MFDT) for a non-equilibrium steady state (NESS)
is experimentally checked by studying the position fluctuations of a colloidal particle whose motion
is confined in a toroidal optical trap. The NESS is generated by means of a rotating laser beam
which exerts on the particle a sinusoidal conservative force plus a constant non-conservative one.
The MFDT is shown to be perfectly verified by the experimental data. It can be interpreted as an
equilibrium-like fluctuation-dissipation relation in the Lagrangian frame of the mean local velocity
of the particle.

The validity of the fluctuation-dissipation theorem
(FDT) in systems out of thermal equilibrium has been
the subject of intensive study during the last years. We
recall that for a system in equilibrium with a thermal
bath at temperature T the FDT establishes a simple re-
lation between the 2-time correlation function C(t − s)
of a given observable and the linear response function
R(t− s) of this observable to a weak external perturba-
tion

∂sC(t − s) = kBTR(t− s). (1)

However, Eq. (1) is not necessarily fulfilled out of equi-
librium and violations are observed in a variety of sys-
tems such as glassy materials [1, 2, 3, 4, 5], granu-
lar matter [6], and biophysical systems [7]. This mo-
tivated a theoretical work devoted to a search of a gen-
eral framework describing FD relations, see the review
[8] or [9, 10, 11, 12, 13, 14] for recent attempts in
simple stochastic systems. In the same spirit, a modi-
fied fluctuation-dissipation theorem (MFDT) has been
recently formulated for a non-equilibrium steady dy-
namics governed by the Langevin equation with non-
conservative forces [15]. In particular, this MFDT holds
for the overdamped motion of a particle on a circle, with
angular position θ, in the presence of a periodic poten-
tial H(θ) = H(θ + 2π) and a constant non-conservative
force F

θ̇ = −∂θH(θ) + F + ζ, (2)

where ζ is a white noise term of mean 〈ζt〉 = 0 and
covariance 〈ζtζs〉 = 2Dδ(t− s), with D the (bare) diffu-
sivity. This is a system that may exhibit an increase in
the effective diffusivity [16, 17]. Here, we shall study the
dynamical non-equilibrium steady state (NESS) reached
for observables that depend only on the particle posi-
tion on the circle so are periodic functions of the angle
θ. Such a state corresponds to a constant non-vanishing
probability current j along the circle and a periodic in-
variant probability density function ρ0(θ) that allow us
to define a mean local velocity v0(θ) = j/ρ0(θ). This is
the average velocity of the particle at θ. For a stochas-
tic system in NESS evolving according to Eq. (2), the

MFDT reads for t ≥ s

∂sC(t − s) − b(t − s) = kBTR(t − s), (3)

where the 2-time correlation of a given observable O(θ)
is defined by

C(t − s) = 〈O(θt)O(θs) 〉0, (4)

and the linear response function to a δ-perturbation of
the conjugated variable ht is given by the functional
derivative

R(t − s) =
δ

δhs

∣

∣

∣

∣

h=0

〈O(θt) 〉h. (5)

In Eq. (5), 〈...〉h denotes the average in the perturbed
time-dependent state obtained from the NESS by re-
placing H(θ) in Eq. (2) by H(θ) − htO(θ). It reduces
for h = 0 to the NESS average 〈...〉0. In Eq. (3), the
correlation b(t − s) is given by

b(t − s) = 〈O(θt)v0(θs)∂θO(θs) 〉0. (6)

This new term takes into account the extent of the vi-
olation of the usual fluctuation-dissipation relation (1)
due to the probability current and it plays the role of a
corrective term to C(t−s) in the MFDT, Eq. (3), which
can be rewritten in the integral form:

C(0) − C(t) − B(t) = kBTχ(t), (7)

where B(t) ≡
∫ t

0
b(t − s)ds and χ(t) =

∫ t

0
R(t − s)ds is

the integrated response function.
In this letter, we present an experimental test of

Eq. (7) in the NESS attained by a micron-sized par-
ticle in a toroidal optical trap similar to the one used in
[12]. We first show that the dynamics of the particle is
well described by the Langevin equation (2) on a circle.
Secondly, by measuring v0, B(t), C(t) and χ(t), we ver-
ify Eq. (7) for the observable O(θ) = sin θ. The result
can be interpreted as an equilibrium-like fluctuation-
dissipation relation in the Lagrangian frame of the mean
local velocity v0(θ) [15]. We also check that ρ0(θ) is
frame invariant.
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Figure 1: (a) Invariant density of the angular position of the
particle in NESS for a modulation of 7% (black solid line)
and 7.35% (red dashed line) around the laser mean power.
Inset: Mean local velocity of the particle in the former case.
(b) Corresponding potential profiles. The arrow indicates
the direction of the non-conservative force f .

The experiment is performed using a spherical silica
particle of radius r =1 µm in ultrapure water at room
temperature T = 20.0 ± 0.5◦C at which the dynamic
viscosity of water is η = (1.002 ∓ 0.010) × 10−3 Pa s.
The particle is kept by an optical tweezers in a toroidal
optical trap. This kind of trap consists on a Nd:YAG
diode pumped solid state laser beam (λ = 1064 nm)
which is focused by a microscope objective (63×, NA
= 1.4) and scans (by means of two acousto-optic deflec-
tors) a circle of radius a = 4.12 µm in the horizontal
plane at a rotation frequency of 200 Hz. The toroidal
trap is created 10 µm above the inner bottom surface of
the cell where hydrodynamic boundary-coupling effects
on the particle are negligible. At a rotation frequency
of 200 Hz, the laser beam is not able to hold the parti-
cle but drags it regularly a small distance on the circle
when passing through it [18]. The diffusive motion of
the particle along the radial and vertical directions dur-
ing the absence of the beam is less than 40 nm, thus
the angular position of the particle θ (measured modulo
2π) is the only relevant degree of freedom of the dynam-
ics. The laser power is sinusoidally modulated around
30 mW with an amplitude of 7% of the mean power,
synchronously with the deflection of the beam at 200
Hz creating a static sinusoidal intensity profile along the
circle. This trapping situation acts as a constant non-
conservative force f associated to the mean kick which
drives the particle across a sinusoidal potential U(θ) due
to the periodic intensity profile. The particle barycenter

(xt, yt) is measured by image analysis with an accuracy
of ∼ 1 nm at a sampling rate of 150 Hz. This mea-
sure allows us to determine the angular position of the
particle θt with respect to the trap center. We deter-
mine the value of f and the profile of U(θ) by means
of the method described in [19]. This method exploits
the probability current j and the invariant density ρ0(θ)
in NESS to reconstruct the actual energy landscape of
the particle. We recorded 200 time series {θt} of dura-
tion 66.67 s with different initial conditions {θ0} sam-
pled every 5 minutes in order to measure j and ρ0(θ).
The probability current is related to the global mean
velocity of the particle by the expression j = 〈θ̇〉0/(2π).

The value of 〈θ̇〉0 is calculated from the slope of the
linear fit of the mean angular position of the particle
(not taken modulo 2π) as a function of time leading to
j = 3.76×10−2 s−1 in the direction of the laser beam ro-
tation. The invariant density, shown as a solid black line
in Fig. 1(a), is computed from the histogram of each time
series {θt} averaged over the 200 different initial condi-
tions. In Fig. 1(a) we also show the mean local velocity
v0(θ) = j/ρ0(θ) of the particle. From these quantities we

obtain f = 3ηraj
∫

2π

0
ρ0(θ

′)−1dθ′ = 6.60 × 10−14 N and

U(θ) = −kBT log ρ0(θ)+
∫ θ

0
(f − 6πηrajρ0(θ

′)−1)adθ′ =
A sin θ with amplitude A = 68.8kBT . The experimen-
tal potential profile is shown in Fig. 1(b) (black solid
line). Hence, the time evolution of θ is claimed to fol-
low the Langevin dynamics of Eq. (2) [19] with F =
f/(6πηra) = 0.85 rad s−1, H(θ) = U(θ)/(6πηra2) =
H0 sin θ, H0 = A/(6πηra2) = 0.87 rad s−1, and D =
kBT/(6πηra2) = 1.26 × 10−2 rad2 s−1. Note that in
the corresponding equilibrium situation (f = 0) the
probability maximum would be located at the mini-
mum of U(θ) (θ = 3π/2). However, in NESS the non-
conservative force f > 0 shifts the maximum of ρ0(θ) in
the positive direction, as shown in Fig. 1(a). In order to
enhance the stochastic nature of the dynamics, we place
ourselves at (F − H0)/H0 ≈ −2%, close to the maxi-
mum increase of the effective diffusivity [16, 17] where
the particle stays long time around the maximum θ ≈ 6
rad sweeping intermittently the rest of the circle.

Additionally, 500 times series of duration 100 s were
specially devoted for the determination of χ(t). In this
case, during each interval of 100 s we apply from time
t0 to t0 + ∆t with 0 < t0 < 66.67 s and ∆t = 33.33 s
a step perturbation changing the value of A to A + δA.
This is accomplished by suddenly switching the laser
power modulation from 7% to 7.35% of the mean power
(30 mW). The experimental value of the amplitude per-
turbation (δA = 0.05A) is determined from independent
NESS measurements of ρ0(θ) and U(θ) for a power mod-
ulation of 7.35% (shown in Figs. 1(a) and 1(b) respec-
tively as red dashed lines) as described previously. By
keeping constant the mean power during the switch we
ensure that the value of f remains also constant, com-
pare to a different time-dependent protocol explored re-
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Figure 2: (a) Comparison between the different terms needed
to verify Eq. (7), as functions of the time lag t. (b) Expanded
view of the comparison between the curves C(0)−C(t)−B(t)
and kBTχ(t) shown in Fig 2(a). The thin red dashed lines
represent the error bars of the measurement of the integrated
response.
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Figure 3: Example of trajectories used to compute the in-
tegrated response. We show a perturbed trajectory (thick
dashed red line) and four out of a total of 200 of the corre-
sponding unperturbed ones (see text).

cently in [20]. In this way, we extract 500 perturbed

trajectories {θt}δA of duration ∆t = 33.33 s. We ensure
that after switching off the perturbation the system ac-
tually has attained a NESS before the beginning of the
next step perturbation.

With the purpose of determining correctly the differ-
ent terms involved in Eq. (7), the observable O(θ) must
be chosen consistently on both sides of such relation.
The change of the potential U(θ) → U(θ)+ δA sin θ due
to the application of the step perturbation implies that
O(θ) = sin θ is the observable that must be studied with
−δA as its conjugate variable. Hence, we compute the

correlation function C(t), the corrective term B(t) (with
∂θO(θ) = cos θ and the experimental curve v0(θ) shown
in Fig. 1(a)) and the integrated response χ(t) for this
observable, as functions of the time lag t.

The determination of C(t) and B(t) is straightforward
according to Eqs. (4) and (6). The stationarity of the
system allows us to perform an average over the time
origin in addition to the ensemble average 〈...〉0 over the
200 different time series devoted to this purpose, which
increases enormously the statistics. The dependence of
C(0)−C(t) and B(t) on t is shown in Fig. 2(a) in green
dotted-dashed and blue dashed lines, respectively.

On the other hand, the integrated response χ(t) is
given by

χ(t) =
〈O(θt) 〉δA − 〈O(θt) 〉0

−δA
. (8)

In Eq. (8) the value t = 0 corresponds to instant t0
when the perturbation of the potential amplitude δA is
switched on. To decrease the statistical errors in com-
parison of the terms in Eq. (8), for a given perturbed
trajectory θtδA we look for as many unperturbed ones
θt as possible among the 200 time series {θt} starting at
a time t∗ such that O(θt∗) = O(θ0δA). Then we redefine
t∗ as t = 0 in Eq. (8), as shown in Fig. 3. The unper-
turbed trajectories found in this way allow us to define a
subensemble over which the average 〈O(θt)〉0 in Eq. (8)
is computed at a given t. The average 〈O(θt)〉δA is sim-
ply computed over the 500 perturbed time series. In Fig.
2(a) we show in thick dashed red line the dependence of
the integrated response on t.

The comparison between the different terms needed
to verify Eq. (3) is shown in Fig. 2(a), for the time lag
interval 0 < t < 3.5 s. As expected, the usual FD re-
lation (1) is strongly violated in this NESS because of
the broken detailed balance, with the correlation term
C(0) − C(t) being one order of magnitude larger than
the response term kBTχ(t). However, with the correc-
tive term B(t) associated to the probability current sub-
tracted, C(0) − C(t) − B(t) shown in solid black line in
Fig. 2(a), becomes equal to kBTχ(t). For clarity, in Fig.
2(b) we show an expanded view of the of the curves
C(0) − C(t) − B(t) and kBTχ(t). We observe that,
within the experimental error bars, the agreement be-
tween both terms is quite good, verifying the integrated
form of the modified FD relation (7). The error bars
of the integrated response curve at each time lag t are
obtained from the standard deviation of the subensem-
ble of unperturbed trajectories found for each perturbed
trajectory, like the ones shown in thin solid lines in
Fig. 3. We checked that the perturbation δA = 0.05A
is small enough to remain within the linear response
regime for time lags 0 ≤ t ≤ 3.5 s. This is quantita-
tively seen in Fig. 2(b) where the response measured at
δA = 0.07A is represented by circles. We see that χ(t)
is independent of δA within the experimental error bars
showing that we are in the linear response regime. The
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Figure 4: Invariant density of the angular position measured
in the Eulerian frame (continuous line) (same as in Fig. 1(a))
and in the Lagrangian frame (∗). Inset : example of a tra-
jectory measured respectively in the Eulerian (a) and La-
grangian (b) frames.

response function is measured for the first 3.5 s of the
perturbed trajectories for two reasons. The first is that
because of the divergence of the trajectories (see Fig. 3)
the statistical error bars (Fig. 2(b)) become important.
The second is that after 3.5 s the system is approaching
the new steady state at A+δA that depends non-linearly
on δA.

As shown in [15], the validity of Eq. (7) for the fluc-
tuations of the angular position of the silica particle in
NESS gains a simpler interpretation in the Lagrangian
frame of the mean local velocity v0(θ) along the circle.

Indeed, using the observables that are time indepen-
dent in the Lagrangian frame, the MFDT may be rewrit-
ten in the form

∂sCL(t, s) = kBTRL(t, s), (9)

where CL and RL are the correlation and the response
measured in the Lagrangian frame. Eq. (9) is close to
that of the equilibrium FDT (Eq. (1)) except for the
lack of the time translation invariance of the functions
involved. One of the new predictions of the Lagrangian
analysis of the system is that, although the trajectories
in the Eulerian and the Lagrangian frame are quite dif-
ferent, their average density ρ0 is the same in the two
frames. This property is clearly illustrated by the exper-
imental data in Fig. 4, where we compare the densities
measured in the two frames. The insets of Fig. 4 point
out to the difference between a trajectory measured in
the Eulerian frame and the same trajectory measured in
the Lagrangian frame.

We have verified experimentally a modified
fluctuation-dissipation relation describing the dy-
namics of a system with one degree of freedom in NESS,
namely a Brownian particle moving in a toroidal optical
trap. We point out that the experimental results
reported here represent an alternative approach to
non-equilibrium fluctuation-dissipation relations to that
of Ref. [12] which dealt with the velocity fluctuations
relative to the mean local velocity. The approach
followed in our work relies on an observable depending
on the particle position. It quantifies the extent of the
violation of the usual FDT by means of the term B(t),
admitting a transparent Lagrangian interpretation of
the resulting MFDT.
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