
HAL Id: ensl-00366845
https://ens-lyon.hal.science/ensl-00366845

Preprint submitted on 9 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

UDT and TCP without Congestion Control for Profile
Pursuit

Sébastien Soudan, Pascale Vicat-Blanc Primet, Romaric Guillier

To cite this version:
Sébastien Soudan, Pascale Vicat-Blanc Primet, Romaric Guillier. UDT and TCP without Congestion
Control for Profile Pursuit. 2009. �ensl-00366845�

https://ens-lyon.hal.science/ensl-00366845
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon

Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

UDT and TCP without Congestion Control for

Profile Pursuit

Romaric Guillier ,
Sébastien Soudan ,
Pascale Vicat-Blanc Primet

March 2009

Research Report No 2009-10

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr

UDT and TCP without Congestion Control for Profile Pursuit

Romaric Guillier , Sébastien Soudan , Pascale Vicat-Blanc Primet

March 2009

Abstract
Instead of relying on the congestion control algorithm and its objective of sta-
tistical fair sharing when transfers are assorted with strict deadlines, it might
be beneficial to share the links in a different manner. The goal of this research
report is to confront two solutions to send data according to a pre-established
profile of bandwidth: one based on UDT, one on TCP and PSPacer. In this re-
search report, we have shown how they can be used to implement transfers on
such profiles. Based on real experiments a model to predict completion time
using RTT and profiles is proposed. For TCP, it is shown to be accurate as
soon as the margin is more than 2.5 % of the capacity. Furthermore, the cost
of transition is shown to be independent of RTT and height of the steps.

Keywords: Rate Based Transport Protocols, Profile

Résumé
Au lieu de s’appuyer sur un algorithme de contrôle de congestion et son objec-
tif de partage statistique équitable de la bande passante, il pourrait être béné-
fique de partager les liens réseaux différamment quand il s’agit d’effectuer des
transferts de données constraints par des échéances. Le but de ce rapport de
recherche est de confronter deux méthodes permettant d’envoyer des données
en suivant un profil de débit pré-défini. La première utilise UDT et la seconde
est basée sur TCP et PSPacer. Dans ce rapport de recherche, nous montrons
comment ces méthodes peuvent être utilisées pour éxécuter de tels transferts
suivant un profil de débit. Un modèle, basé sur des éxpérimentations réelles,
est proposé pour estimer le temps de terminaison des transferts en fonction du
RTT et du profil appliqué. Pour TCP, nous montrons que ce modèle est pré-
cis dès que l’on prend une marge de plus de 2.5 % de la capacité du lien. De
plus, nous montrons que le coût des transitions est indépendant du RTT et de
la hauteur des transitions.

Mots-clés: Protocoles de Transports émettant à débit fixé , Profil de Débit

Profile Pursuit 1

Contents

1 Introduction 2

2 Profile pursuit 2
2.1 Profile pursuit in gridftp . 2
2.2 Description of modified UDT xio driver . 2
2.3 Description of TCP without congestion control . 3

3 Methodology 3
3.1 Testbed . 3
3.2 Stage 0 – Preliminary experiments . 4
3.3 Stage 1 – Model calibration . 5

3.3.1 Model . 5
3.3.2 Scenario for calibration . 5

3.4 Stage 2 – Model evaluation . 5

4 Preliminary experiments 6
4.1 CPU utilization . 6
4.2 Memory to Memory . 7
4.3 Disk to Disk . 7

5 Model calibration 7
5.1 Results . 7
5.2 Model fitting . 8
5.3 Model validation on single rate profile . 11

6 Model evaluation 14
6.1 Two profiles, margin & lateness . 14
6.2 Transitions . 16

7 Conclusion 17

8 Acknowledgments 17

2 R. Guillier, S. Soudan, P. Primet

1 Introduction

Instead of relying on the congestion control algorithm and its objective of statistical fair sharing, which
has been shown to be unpredictable [HDA05], it might be beneficial to share the links in a different
manner when transfers are assorted with strict deadlines for example. One of the possible way is to
schedule the bandwidth allocated to transfers and try to limit the congestion level.

The goal of this research report is to confront two solutions to send data according to a pre-
established profile of bandwidth and find the most suited to perform reliable bulk-data transfers in
high-speed shared networks. The first one is based on the UDT implementation of BLAST [HLYD02],
and the second one uses TCP with the congestion control part removed combined with PSPacer packet
pacing solution.

The rest of the paper is organized as follows: first, we will setup the context of the study by
introducing the transport protocols used and their subsequent modifications to allow them to follow a
rate profile. Section 3 presents the evaluation methodology that was used. Sections 4, 5 and 6 show
the different results we obtained during respectively the calibration, the model-fitting and the model
evaluation phases. Finally we conclude in Sect. 7.

2 Profile pursuit

This work studies how planned data transfers can be executed. Due to the need of transfer time pre-
dictability or resources consumption planning, the considered file transfers have to be done following
a given profile. This profile can be a single rate profile or a multi-interval profile giving the bandwidth
that can be used during a specified time interval. In the next sections we describe the mechanisms we
will use to enforce such a profile.

2.1 Profile pursuit in gridftp

For this study to be fair, it was necessary to use a file-transfer application able to use both TCP and
UDT. gridftp suited our needs, but we had to adapt it to follow a profile. The basic idea is to provide
gridftp client with a file to transfer and a profile to follow.

To do so, a modified implementation of the UDT xio driver has been implemented. Similarly for
TCP, the congestion control mechanism has been modified and a script has been created to configure
PSPacer qdisc to follow a profile.

2.2 Description of modified UDT xio driver

UDT [GG05] is a library built on top of the UDP transport protocol by adding a congestion con-
trol scheme and a retransmission mechanism. It was designed to provide an alternative for TCP in
networks where the bandwidth-delay product is large.

We have modified the UDT available in the gridftp program so that it follows a rate profile: a set
of dates according to a relative timer and the corresponding rates that it is allowed to send at. This
has been achieved by using the CUDPBlast class of UDT4 implementation and an extra thread which
reads the profile file and calls the setRate(int mbps) method on time.

The performance of this version in terms of maximum achievable throughput is strictly identical
to the original UDT xio module. It was done so to allow a fair comparison between the TCP and the
UDT tests.

Profile Pursuit 3

2.3 Description of TCP without congestion control

In order to have a profile pursuit mechanism for gridftp with TCP, its congestion control mechanism
has been modified to better fill a profile and PSPacer has been used to limit the sending rate.

We briefly describe the modified TCP version used in this paper.
It consists in the normal TCP implementation of TCP in the GNU/Linux kernel with two modifica-

tions. First every function of the struct tcp_congestion_ops keeps the congestion window
constant by doing:

tcp_sk(sk)->snd_ssthresh = 30000;

tcp_sk(sk)->snd_cwnd = 30000;

tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;

tcp_sk(sk)->snd_cwnd_cnt = 0;

As a side effect it also removes the slow-start.
Second modification, in function tcp_select_initial_window of the receiver’s kernel,

rcv_wnd is not reset to the initial receiver window value (3.mss) when it is too large during the
slow-start phase. This enables the sender to send at the maximum rate from the start of the connexion
(except before receiving first ACK as the scaling of the advertised receiver window is not possible
before).

Basically, it is designed as a hack of the TCP stack that disables the congestion control and sets
the congestion control window to a large value. This kind of scheme has already been used in the
past [KXK04] and has shown significant improvement over the classical congestion control in some
situations (lossy links). Similar modifications have been proposed by Mudambi et al. under the name
of C-TCP in [MZV06]. It is referred throughout this paper as TCP.

To limit the bandwidth used by this TCP without congestion control, the PSPacer kernel mod-
ule [RTY+05] is used. It allows a precise pacing of the packets on the emission site. To allow fast
transition from a low to high rate, the txqueuelen variable is set to a very large value (100 000
packets) so that packets can be sent upon rate changes without needing to packetise new data.

3 Methodology

The next sections present the methodology and scenarios. The key questions this study tries to answer
are the following:

1. Can we use a transport protocol to implement a profile – use all the specified bandwidth without
overflowing?

2. How can we model the performances (bandwidth utilization/goodput)?

3. How can we control the rate to implement a given profile of throughput?

4. Can we predict the completion time of a transfer performed using a profile?

3.1 Testbed

Two different settings were used. The first one is using the Grid’5000 [BCC+06] testbed, whose
simplified topology is shown in Fig. 1. Nodes from the Lyon site and the Rennes site, separated by a
12 ms RTT, are communicating through the 10 Gbps Ethernet backbone network. The bottleneck is

4 R. Guillier, S. Soudan, P. Primet

Nancy

Grenoble

Rennes

Lille

Sophia
Toulouse

10 GbE Links

Orsay

Bordeaux

 1 GbE Links

Lyon

Figure 1: Grid’5000 topology

the 1 Gbps node (or the output port of the switch just before) that is used as the server. This setting is
used in Sect. 6 of this research report.

The second setting involves a AIST GtrcNet-1 [KKT+04], a hardware latency emulator that is
directly connected to two nodes from the Grid’5000 Lyon site. The GtrcNet-1 box is also used to
perform precise throughput measurements. This setting is used for the calibration and model fitting
part of this research report in sections 4 and 5.

The Rennes nodes are from the paravent cluster (HP ProLiant DL145G2 nodes) and have similar
CPU and memory as the Lyon sagittaire nodes (Sun Fire V20z). Both nodes type are 1-Gbps capable.

3.2 Stage 0 – Preliminary experiments

In order to eliminate potential hardware bottlenecks on the machine, preliminary experiments are con-
ducted to evaluate CPU utilization and to compare disk to disk and memory to memory performance
of the two alternatives. This is done by measuring the CPU utilization while sending at a constant rate
under different latencies.

For disk to disk and memory to memory performance evaluation, a 7500MB file is transfered at a
maximum rate and average rate is measured.

Finally a comparison of performance achieved under different number of parallel flows is done to
determine how many flows to use for the remainder of the experiments.

Profile Pursuit 5

Throughput

Goodput

Reference Input

TPCtrl

Figure 2: Model

3.3 Stage 1 – Model calibration

3.3.1 Model

In this section, we present the model we use to predict the rates (goodput/throughput) obtained from
the two different transport protocols for a given input and then to control the throughput to desired
value (with an open loop control).

Figure 2 shows the two blocks of the considered model. TP is transport protocol (along with rate
limitation and file serialization mechanisms). It takes as an “input” a rate and gives as an output a
“throughput” and a “goodput”. The first one being the bandwidth used on the wire and the second one
the transfer rate of the file.

Since UDT and TCP don’t use the same mechanism to control their sending rates and as they have
a different packet format, the input signal doesn’t have the same meaning for both of them.

The second block of this model aims at determining the input rate that must be specified to profile
enforcement mechanisms to attain the desired throughput. This target throughput is specified by the
means of the “reference”. We used throughput-like references (instead of goodput-like) since shared
resources, namely the links or bottlenecks, constrain the throughput that the flows can share.

3.3.2 Scenario for calibration

The goal of the scenarios presented in this section is to evaluate the relation between input rate and
goodput and between input rate and throughput.

These scenarios are based on a systematic exploration of input rate space under different RTT
for a single rate profile. Input rate ranges from 1 to 1000 Mbps by steps of 1 Mbps. RTT is set to
0 ms, 10 ms, 100 ms and 300 ms. The mean goodput is obtained by dividing the file size by the
transfer duration. The mean and maximum instant throughput are measured using GtrcNet-1 which
also emulates the latency.

3.4 Stage 2 – Model evaluation

The results from the previous section will provide us with relations between “input” and “good-
put”/“throughput”. They will be used to predict the completion time of a transfer under a specified
profile. The transfered file has a size of 3200MB.

But before this, this model is used to predict the completion time of a single rate transfer under
different RTT and at different rates. The metric used in this scenario is lateness as the model is
supposed to predict the completion time.

Two complementary profiles are used in this section. These profiles are presented in Fig. 3. It can
be noted that a margin m is introduced as a fraction of the bottleneck capacity that none of the flow
are supposed to use. We will vary this to evaluate the contention when the profiles are run together.

6 R. Guillier, S. Soudan, P. Primet

C

m

Upper profile

Lower profile

Figure 3: Ideal profiles with link capacity C and margin m.

 0

 10

 20

 30

 40

 50

 60

 100 200 300 400 500 600 700 800 900

C
P

U
 (

%
)

Input (Mbps)

Busy CPU UDT 0ms
Busy CPU UDT 10ms

Busy CPU UDT 100ms
Busy CPU TCP 0ms

Busy CPU TCP 10ms
Busy CPU TCP 100ms

Figure 4: CPU utilization for TCP and UDT as a function of input rate under different latencies.

Both profile ends with a steps at the same rate so that both can finish on this step and we can compare
the completion time as the average bandwidth allocated to each flow is the same during the first steps.

In order to evaluate the suitability of our model to the profiles, two transfers with complementary
profiles take place at the same time. Lateness is used to compare the performances of our prediction
under different margins m ranging between 1 and 10% for both TCP and UDT. This experiment takes
place on an inter-site link of Grid’5000 with 12ms RTT. This latency is not one used to fit the model
but is in the range covered by the fitting.

4 Preliminary experiments

4.1 CPU utilization

It can be observed on Fig. 4 that TCP’s CPU utilization is the same regardless of the latency and
that the slope of CPU utilization as a function of input rate is smaller than with UDT. UDT consumes
about three times more CPU. But in both cases, CPU is not a bottleneck for the whole range of input
rate.

Profile Pursuit 7

Flow number UDT TCP Reno TCP
1 723.44 640.4 649.28

1 (-p 1) 887.1 878.4 884.8
2 900.8 891.5 888.8
5 900.8 896.9 888.8
10 900.8 895.5 872.8

Table 1: Evolution of the average goodput in Mbps for different transport protocols and number of
parallel streams

4.2 Memory to Memory

In this test, we use gridftp to tunnel the file /dev/zero from source to the file /dev/null of destination.
Locally, it has been measured that /dev/zero has a throughput of about 4300 Mbps, which means that
our bottleneck will be in the network, not in the node.

Table 1 summarizes the result for this test.
The cap of performance of TCP can be accounted for (lower than the 941 Mbps limit of a TCP

transfer using 1500 bytes MTU over a Gbps Ethernet link) by the cost of using the gridftp application.
Both TCP variants are able to achieve similar goodputs. UDT is able to perform a little better than
TCP, but as the difference is less than 1%, it is then negligible. Same thing for when we are using
multiple parallel flows.

When the “-p” option is activated, a multi-threaded version of gridftp is used, which accounts for
the fact that we don’t get the same results when we are using only one flow.

4.3 Disk to Disk

In this test, we have pregenerated a large file and we tried to transfer it from nodeA to nodeB. We have
observed that every protocol tested averaged to about 360 Mbps. As it corresponds to the speed limits
(found through the hdparm tool) of the disk in the nodes, it shows that all these protocols are able to
fill up the bottleneck.

Local tests have shown that the differences between D2D and M2M measurements vary very
slightly (less than 1 %) when the rate is below the disk’s bottleneck speed1. So for the remaining
experiments, we focused on the M2M experiments.

Setting the rate higher than the disk’s bottleneck value is useless and will only lead to suboptimal
usage of the networking resources.

5 Model calibration

As seen in the previous section, disk to disk transfer is not interesting as it just adds as an hardware
bottleneck. This section will establish the model between input rate, goodput and throughput.

5.1 Results

Figures 5 and 6 present the mean throughput and the mean goodput obtained by TCP, resp. by UDT,
as a function of the input rate for different RTT values.

1once above the disk speed limit, we stay at this value for the D2D measurement

8 R. Guillier, S. Soudan, P. Primet

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600 700 800 900 1000

O
u

tp
u

t
(M

b
p

s)

Input (Mbps)

Goodput TCP 0ms
Goodput TCP 10ms

Goodput TCP 100ms
Goodput TCP 300ms

y=x
Throughtput TCP 0ms

Throughtput TCP 10ms
Throughtput TCP 100ms
Throughtput TCP 300ms

Figure 5: Goodput and throughput of TCP as a function of “input” rate under different latencies.

Even though TCP’s throughput as a function of input rate is below y = x and UDT’s is above,
nothing can be concluded from this regarding performance. It simply means that the “input” must
be different in order to obtain the same throughput/goodput from them. As we can see that we have
straight lines for the most part, we can perform a linear regression to model throughput and goodput
as a function of the input rate. This is true for each RTT.

Figures 7 and 8 present the mean and max throughput achieved by TCP, resp. UDT. As observed
in the previous set of figures, the mean throughput for TCP and UDT are lines, but for TCP the
maximum instant throughput is also a straight line, while for UDT it is wildly fluctuating, reaching
values larger than 10 % of the mean throughput. This behavior could be problematic when several
flows are contending for a bottleneck as, at some instants, UDT can use more bandwidth than in
average. It is more bursty than TCP with PSPacer.

For both protocols, the behavior is different for the 300 ms RTT experiment. The GtrcNet-1 box
is unable to handle this latency at higher rates, due to the limited buffer size, which leads to packet
drops (approximately 10 % loss rate for a 940 Mbps input rate). UDT seems to be deeply affected
by this as the mean throughput doesn’t go above 320 Mbps. TCP behavior doesn’t change until the
input/throughput reaches 900 Mbps.

This can be explained by the fact that UDT generates bursts at a much higher rate than the input
value, leading to heavy losses in this case. These bursts don’t exist for TCP as PSPacer is used to limit
and pace the throughput on the emitter. The slight change of slope for the UDT goodput at 300 ms
RTT is due to the use of a timeout to limit the duration of one transfer.

The modelling presented in the following section takes this problem into consideration as we
restricted the fitting over the linear parts.

5.2 Model fitting

In this section, we model the mean throughput and goodput obtained in the previous section as a
function of the RTT and of the input rate X. This model is necessary as we need to find out for each

Profile Pursuit 9

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 100 200 300 400 500 600 700 800 900 1000

O
u

tp
u

t
(M

b
p

s)

Input (Mbps)

Goodput UDT 0ms
Goodput UDT 10ms

Goodput UDT 100ms
Goodput UDT 300ms

y=x
Throughtput UDT 0ms

Throughtput UDT 10ms
Throughtput UDT 100ms
Throughtput UDT 300ms

Figure 6: Goodput and throughput of UDT as a function of “input” rate under different latencies.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

O
u

tp
u

t
(M

b
p

s)

Input (Mbps)

Mean throughtput TCP 10ms
Mean throughtput TCP 100ms

Max throughtput TCP 10ms
Max throughtput TCP 100ms

Figure 7: Maximum and mean throughput as a function of input rate for TCP under different latencies.

10 R. Guillier, S. Soudan, P. Primet

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

O
u

tp
u

t
(M

b
p

s)

Input (Mbps)

Mean throughtput UDT 10ms
Mean throughtput UDT 100ms

Max throughtput UDT 10ms
Max throughtput UDT 100ms

Figure 8: Maximum and mean throughput as a function of input rate for UDT under different latencies.

protocol which input rate to provide so as to get a given throughput.
Since we observed a linear behavior of the throughput and of the goodput, we use a linear regres-

sion to fit the model:

goodput(X, RTT) = ag(RTT) ∗ X + bg(RTT) (1)

throughput(X, RTT) = at(RTT) ∗ X + bt(RTT) (2)

From that, we can write the input X as a function of throughput or goodput:

X =
throughput(X, RTT) − bt(RTT)

at(RTT)
(3)

X =
goodput(X,RTT) − bg(RTT)

ag(RTT)
(4)

Finally, we can express throughput (resp. goodput) as a function of goodput (resp. throughput):

throughput(X,RTT) =
at(RTT)

ag(RTT)
(goodput(X, RTT) − bg(RTT)) + bt(RTT) (5)

goodput(X,RTT) =
ag(RTT)

at(RTT)
(throughput(X, RTT) − bt(RTT)) + bg(RTT) (6)

It is this formula that will be used throughout of the rest of this research report to generate the
appropriate values for the profile.

Profile Pursuit 11

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0 50 100 150 200 250 300

A
 c

o
ef

fi
ci

en
t

RTT (ms)

at TCP
ag TCP
at UDT

ag UDT

Figure 9: ag and at for TCP and UDT as a function of RTT.

UDT 0 ms UDT 1 ms UDT 10 ms
Goodput 0.99496X + 1.73509 (0.99998) 0.98050X + 3.52491 (0.99996) 0.97804X + 2.60650 (0.99940)

Throughput 1.0490X + 2.7828 (0.99999) 1.0335X + 4.7096 (0.9993) 1.0379X + 3.1431 (.099907)

UDT 100 ms UDT 200 ms UDT 300 ms
Goodput 0.91669X + 3.92689 (0.99991) 0.81986X + 0.93781 (0.99998)

Throughput 1.0384X + 4.7263 (0.99990) 1.06752X + 0.53683 (0.9998)

Table 2: Goodput and Throughput as a function of the input X and correlation coefficient for UDT

The resulting coefficients are shown in Fig. 9 and 10. As these coefficients are still depending on
the RTT, we also need to model them as a function of RTT. As in Fig. 9, the relationship between the
coefficients and the RTT seems to be linear, we perform another linear regression.

The resulting final model is rather good for TCP as the correlation coefficients are above 0.99 for
the goodput and above 0.98 for the throughput. The modelling obtained for UDT is less accurate,
especially for the b coefficients, but as they are rather small, we can assume that the impact will be
limited for large target throughput values.

Tables 2 and 3 provide the actual values of the coefficient computed. Tables 4 and 5 yield the
value of these coefficients as a function of RTT.

5.3 Model validation on single rate profile

Finally, we check the validity of the model over a simple case scenario. A constant profile is defined
for different RTTs and target throughputs for a transfer that is expected to last about 60 s. The results
are averaged over 10 tries. Figures 11 and 12 show the lateness on these experiments where m lies
between 0 and 10% by steps of 0.5% for both TCP and UDT.

It seems to performs well for TCP as the results are never over the estimated completion time and
most of the time the difference is less than one second. Adding a margin doesn’t significantly improve

12 R. Guillier, S. Soudan, P. Primet

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50 100 150 200 250 300

B
 c

o
ef

fi
ci

en
t

(M
b

p
s)

RTT (ms)

bt TCP
bg TCP
bt UDT

bg UDT

Figure 10: bg and bt for TCP and UDT as a function of RTT.

TCP 0 ms TCP 1 ms TCP 10 ms
Goodput 0.93280X + 9.56543 (0.99974) 0.93203X + 9.56445 (0.99974) 0.91939X + 9.46380 (0.99974)

Throughput 0.99110X + 8.33749 (0.99988) 0.99111X + 8.33450 (0.99988) 0.99099X +8.45958 (0.99988)

TCP 100 ms TCP 200 ms TCP 300 ms
Goodput 0.87199X + 7.64142 (0.99982) 0.81791X + 6.20263 0.77160X + 5.08259 (0.99988)

Throughput 0.99163X + 7.69914 (0.9990) 0.99234X + 6.84330 (0.99985) 0.99365X + 6.58520 (0.99992)

Table 3: Goodput and Throughput as a function of the input X and correlation coefficient for TCP

UDT a(RTT) UDT b(RTT)
Goodput -5.599518e-4RTT + 0.984038 (-0.99353) -0.00517RTT + 2.971245 (-0.538542)

Throughput 8.904223e-5RTT + 1.037945 (0.837839) -0.009606RTT + 3.96935 (-0.71783)

Table 4: Linear regression coefficients as a function of RTT for UDT

TCP a(RTT) TCP b(RTT)
Goodput -5.36746e-4RTT + 0.928945 (-0.998147) -0.015479RTT + 9.496315 (-0.994341)

Throughput 8.155708e-6RTT + 0.990973 (0.982622) -0.006467RTT + 8.368437 (-0.98429)

Table 5: Linear regression coefficients as a function of RTT for TCP

Profile Pursuit 13

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

L
at

en
es

s
(s

)

Margin (%)

TCP 0ms RTT 500Mbps
TCP 10ms RTT 200Mbps
TCP 10ms RTT 500Mbps
TCP 10ms RTT 800Mbps

TCP 100ms RTT 200Mbps
TCP 100ms RTT 500Mbps
TCP 100ms RTT 800Mbps

Figure 11: Verification of the model using lateness on a simple constant profile for TCP.

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

L
at

en
es

s
(s

)

Margin (%)

UDT 0ms RTT 500Mbps
UDT 10ms RTT 200Mbps
UDT 10ms RTT 500Mbps
UDT 10ms RTT 800Mbps

UDT 100ms RTT 200Mbps
UDT 100ms RTT 500Mbps
UDT 100ms RTT 800Mbps

Figure 12: Verification of the model using lateness on a simple constant profile for UDT.

14 R. Guillier, S. Soudan, P. Primet

 0

 200

 400

 600

 800

 1000

 10 15 20 25 30 35 40 45 50

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Time (s)

Reference steps
TCP steps
UDT steps

Figure 13: TCP and UDT steps of throughput compared to reference profile.

the prediction for TCP.
The results are not as good for UDT, especially for the small values for the target throughput and

large latency (200Mbps and 100ms RTT). That is probably due to the constant coefficients the model
of which isn’t accurate enough. With a reasonable margin, however, it is possible to get close enough
to the estimated completion time.

This also shows that the roundings performed for the purpose of the generation of the profile don’t
affect the results much. Computations show that the rounding would cause a difference in completion
time of about 100 ms, which is significantly smaller than 60 s.

6 Model evaluation

In this section, we are studying the impact of sharing a bottleneck using steps profile as defined in
Sect. 3 and comparing predicted completion times using the model established in Sect. 5.

Figure 13 shows the typical behavior of the TCP and the UDT throughput when following a step
profile. For instance, we can see that there is a time-lag between the moment a change of rate is asked
and the moment it is really enforced.

6.1 Two profiles, margin & lateness

Figure 14 shows the lateness of the two transfers using the profile defined above for TCP and UDT
with a 12ms RTT. It can be noted that TCP performs very well as soon as the margin is high enough
to prevent losses. This threshold lies at 2.5 % of margin. Concerning UDT, we can observe that there
is no such threshold and that the lateness decreases smoothly until 25 %, where it reaches 1 s. This
is probably related to Fig. 7 and 8 where the maximum instant throughput is shown. UDT’s max
throughput was always well above the mean throughput.

In Fig. 15, a similar experiment is conducted except that the two competing flows are using a

Profile Pursuit 15

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25

L
at

en
es

s
(s

)

Margin (%)

TCP upper
TCP lower
UDT upper
UDT lower

Figure 14: Lateness (95% confidence interval) as a function of margin m for a 60s transfers using
TCP and UDT for 12ms RTT.

-20

-10

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25

L
at

en
es

s
(s

)

Margin (%)

TCP
UDT

Figure 15: Lateness (95% confidence interval) as a function of margin m for a 60s transfers using
TCP for one and UDT for the other for 12ms RTT.

16 R. Guillier, S. Soudan, P. Primet

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0.35 0.4 0.45 0.5 0.55 0.6 0.65

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Time (s)

Reference steps
TCP steps
UDT steps

Figure 16: TCP and UDT steps of throughput compared to reference profile (Close up) for a 10–
600Mbps step.

different protocol. Here we can observe that the TCP flow is deeply impacted as the lateness is never
under 10 s. Meanwhile, the UDT flow doesn’t experience any delay when the margin is more than
2.5 %.

6.2 Transitions

In order to explain the remaining lateness, we take a look at the step transitions.
To allow a better understanding of this phenomenon, a close up of the throughput during the

transition from 10 Mbps to 600 Mbps is shown in Fig. 16. The area between the TCP/UDT throughput
and the step shape corresponds to a volume of data that couldn’t be sent.

Figure 13 seems to point out that what we are losing on the increasing side is gained on the
decreasing side of the steps or even through the UDT bursts, but we are trying to provide a upper
bound for that.

Figures 17(b) and 17(c) present the cost in time of a transition from a low value (10 Mbps) to a
high value for different RTT values for TCP, resp. UDT. It is a part of the profile where we are very
likely to lose time due to the necessity to adapt to the new throughput value. We can see that the
cost doesn’t depend much on the RTT and that it can be bounded by a few tens of milliseconds. It
is significantly smaller than the overall duration of the transfer. This is all the more obvious when
compared to TCP Reno 17(a). In this case, we can see that the cost linearly increases with the height
of the transition, due to the AIMD congestion avoidance algorithm increases the congestion window
linearly. We can also see the impact of the RTT feedback loop, as the cost dramatically increases with
the RTT to be about 1 s per transition for a 100 ms RTT. Using TCP Reno to follow a bandwidth
profile seems inadequate as soon as the RTT is above local range (about 0.1 ms).

The main cause of the observed lateness is probably due to synchronization problems between the
two emitters: a look at the gridftp server log shows that there is in average about 200 ms difference
at the connection start-time, which might enough to upset the whole sharing of the bandwidth. In

Profile Pursuit 17

this case, applying a small margin is then the solution to guarantee a completion in time for all the
transfers.

7 Conclusion

In this research report, we have shown how UDT and TCP without congestion control+pacing can be
used to implement transfers on a profile of rate. The affine models proposed to predict the completion
time is a function of RTT and throughput of the profile. Model is accurate for TCP as soon as the mar-
gin is more than 2.5% of the capacity. However, the model is less accurate for UDT as its throughput
is more bursty. This causes the instant throughput to be significantly higher than the predicted mean
throughput. Still, the lateness is less than 1s on 60s transfers when margin is higher than 15%. We
also showed that the cost of transition is independent of RTT and steps’ height. This cost, expressed
in term of lateness, has been evaluated to be between 10ms and 20ms each.

This model and enforcement mechanisms can be used as a part of a scheduled transfer solutions.

8 Acknowledgments

This work has been funded by the French ministry of Education and Research, INRIA (RESO and
Gridnets-FJ teams), via ACI GRID’s Grid’5000 project, the IGTMD ANR grant, NEGST CNRS-JSP
project. A part of this research was supported by a grant from the Ministry of Education, Sports,
Culture, Science and Technology (MEXT) of Japan through the NAREGI (National Research Grid
Initiative) Project and the PAI SAKURA 100000SF with AIST-GTRC.

18 R. Guillier, S. Soudan, P. Primet

 0.01

 0.1

 1

 10

 0 200 400 600 800 1000

L
at

en
es

s
(s

)

Transition height (Mbps)

TCP reno 0ms RTT
TCP reno 12ms RTT

TCP Reno 100ms RTT

(a) TCP Reno

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 200 400 600 800 1000

L
at

en
es

s
(s

)

Transition height (Mbps)

TCP 0ms RTT
TCP 12ms RTT

TCP 100ms RTT

(b) TCP

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 200 400 600 800 1000

L
at

en
es

s
(s

)

Transition height (Mbps)

UDT 0ms RTT
UDT 12ms RTT

UDT 100ms RTT

(c) UDT

Figure 17: Cost of low to high transition in term of loss of time

Profile Pursuit 19

List of Figures

1 Grid’5000 topology . 4
2 Model . 5
3 Ideal profiles with link capacity C and margin m. 6
4 CPU utilization for TCP and UDT as a function of input rate under different latencies. 6
5 Goodput and throughput of TCP as a function of “input” rate under different latencies. 8
6 Goodput and throughput of UDT as a function of “input” rate under different latencies. 9
7 Maximum and mean throughput as a function of input rate for TCP under different

latencies. 9
8 Maximum and mean throughput as a function of input rate for UDT under different

latencies. 10
9 ag and at for TCP and UDT as a function of RTT. 11
10 bg and bt for TCP and UDT as a function of RTT. 12
11 Verification of the model using lateness on a simple constant profile for TCP. 13
12 Verification of the model using lateness on a simple constant profile for UDT. 13
13 TCP and UDT steps of throughput compared to reference profile. 14
14 Lateness (95% confidence interval) as a function of margin m for a 60s transfers using

TCP and UDT for 12ms RTT. 15
15 Lateness (95% confidence interval) as a function of margin m for a 60s transfers using

TCP for one and UDT for the other for 12ms RTT. 15
16 TCP and UDT steps of throughput compared to reference profile (Close up) for a

10–600Mbps step. 16
17 Cost of low to high transition in term of loss of time 18

List of Tables

1 Evolution of the average goodput in Mbps for different transport protocols and number
of parallel streams . 7

2 Goodput and Throughput as a function of the input X and correlation coefficient for
UDT . 11

3 Goodput and Throughput as a function of the input X and correlation coefficient for
TCP . 12

4 Linear regression coefficients as a function of RTT for UDT 12
5 Linear regression coefficients as a function of RTT for TCP 12

20 R. Guillier, S. Soudan, P. Primet

References

[BCC+06] Raphaël Bolze, Franck Cappello, Eddy Caron, Michel Daydé , Frederic Desprez, Em-
manuel Jeannot, Yvon Jégou, Stéphane Lanteri, Julien Leduc, Noredine Melab, Guil-
laume Mornet, Raymond Namyst, Pascale Vicat-Blanc Primet, Benjamin Quetier, Olivier
Richard, El-Ghazali Talbi, and Touché Irena. Grid’5000: a large scale and highly recon-
figurable experimental Grid testbed. International Journal of High Performance Comput-

ing Applications, 20(4):481–494, Nov. 2006.

[GG05] Yunhong Gu and Robert L. Grossman. Supporting Configurable Congestion Control in
Data Transport Services. In SuperComputing, November 2005.

[HDA05] Qi He, Constantinos Dovrolis, and Mostafa H. Ammar. Prediction of TCP throughput:
formula-based and history-based methods. In Sigmetrics. ACM, 2005.

[HLYD02] E. He, J. Leigh, O. Yu, and T.A. Defanti. Reliable blast udp : predictable high perfor-
mance bulk data transfer. Cluster Computing, 2002. Proceedings. 2002 IEEE Interna-

tional Conference on, pages 317–324, 2002.

[KKT+04] Y. Kodama, T. Kudoh, R. Takano, H. Sato, 0. Tatebe, and S. Sekiguchi. GNET-1: Gigabit
Ethernet Network Testbed. In International Conference on Cluster Computing. IEEE,
Sept. 2004.

[KXK04] R. Kempter, B. Xin, and S. K. Kasera. Towards a Composable Transport Protocol: TCP
without Congestion Control. In SIGCOMM. ACM, August 2004.

[MZV06] A.P. Mudambi, X. Zheng, and M. Veeraraghavan. A transport protocol for dedicated
end-to-end circuits. Communications, 2006. ICC ’06. IEEE International Conference on,
1:18–23, June 2006.

[RTY+05] R.Takano, T.Kudoh, Y.Kodama, M.Matsuda, H.Tezuka, and Y.Ishikawa. Design and
Evaluation of Precise Software Pacing Mechanisms for Fast Long-Distance Networks.
In PFLDnet, Feb. 2005.

	1 Introduction
	2 Profile pursuit
	2.1 Profile pursuit in gridftp
	2.2 Description of modified UDT xio driver
	2.3 Description of TCP without congestion control

	3 Methodology
	3.1 Testbed
	3.2 Stage 0 -- Preliminary experiments
	3.3 Stage 1 -- Model calibration
	3.3.1 Model
	3.3.2 Scenario for calibration

	3.4 Stage 2 -- Model evaluation

	4 Preliminary experiments
	4.1 CPU utilization
	4.2 Memory to Memory
	4.3 Disk to Disk

	5 Model calibration
	5.1 Results
	5.2 Model fitting
	5.3 Model validation on single rate profile

	6 Model evaluation
	6.1 Two profiles, margin & lateness
	6.2 Transitions

	7 Conclusion
	8 Acknowledgments

