
HAL Id: ensl-00376968
https://ens-lyon.hal.science/ensl-00376968v1

Preprint submitted on 20 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing the Latency of Streaming Applications
under Throughput and Reliability Constraints

Anne Benoit, Mourad Hakem, Yves Robert

To cite this version:
Anne Benoit, Mourad Hakem, Yves Robert. Optimizing the Latency of Streaming Applications under
Throughput and Reliability Constraints. 2009. �ensl-00376968�

https://ens-lyon.hal.science/ensl-00376968v1
https://hal.archives-ouvertes.fr

Optimizing the Latency of Streaming Applications
under Throughput and Reliability Constraints

Anne Benoit1, Mourad Hakem2 and Yves Robert1

1 LIP laboratory, ENS Lyon – CNRS – INRIA – UCBL, Lyon, France
2 LIFC Laboratory, Université de Franche-Comté, Belfort, France

{Anne.Benoit,Mourad.Hakem,Yves.Robert}@ens-lyon.fr

April 20, 2009

LIP Research Report RR-2009-13

Abstract

In this paper, we deal with the problem of scheduling streaming applications on unreliable heterogeneous plat-
forms. We use the realistic one-port model with full computation/communication overlap. We deal with three op-
timization objectives. The first two, latency and throughput, are performance-related while the third, tolerating a
given number of processor failures, is reliability-oriented. The major contribution of this paper is the design of a new
scheduling algorithm to minimize latency under both throughput and reliability constraints. We provide a compre-
hensive set of experimental results, that fully demonstrate the usefulness of the proposed algorithm.

1

1 Introduction

Pipelined workflows are a popular programming paradigm for streaming applications like video and audio encoding
and decoding, DSP applications, etc [11, 5]. Streaming applications are becoming increasingly prevalent, and many
languages are being continually designed to support these applications. In these languages, the programmer expresses
programs by creating aworkflow graph, and the system maps this workflow graph on a target machine. Aworkflow
graph contains severaltasks, and these tasks are connected to each other using first-in-first-outchannels. Data sets
are input into the graph using input channel(s) and the outputs are produced on the output channel(s). Since data
continually flows through these streaming applications, the goal of a scheduler is often to decrease thelatencyand/or
increase thethroughput. Here the latency, or response time, is defined as the time fora single data item to traverse the
graph, that is, to execute all the tasks of the application. Latency is typically important for the end-user who is waiting
for the results. The throughput is the aggregate rate at which the input data stream is processed. The inverse of the
throughput is the period, defined as the time-interval between two consecutive data sets entering the system. Achieving
a high throughput is a typical requirement for real-time applications and usually leads to an efficient utilization of
hardware resources.

Latency and throughput are the main performance-related scheduling objectives, and they are conflicting criteria.
Indeed, in the absence of throughput constraints, the latency is the longest path in the execution graph: then an
optimal strategy for latency minimization is to map the whole graph onto the fastest processor, thereby eliminating all
communications and reducing the computing cost as much as possible. But then the period is equal to the latency, and
the throughput may well become dramatically low. Real-lifeproblems often call for bi-criteria optimization problems,
such as minimizing the latency while enforcing a minimum throughput. With the advent of large-scale heterogeneous
platforms, another important objective is to achieve a reliable execution. This objective is not related to performance,
contrarily to latency/throughput optimization. Instead,the goal is tolerate a given number of processor failures. Our
approach is based on an active replication scheme, capable of supportingε arbitrary fail-silent (a faulty processor does
not produce any output) and fail-stop (no processor recovery) processor failures.

Here is an example to illustrate several execution scenarios, and to outline the differences between task and data
parallelism for an application graph, and pipelined execution of successive instances of the same graph. The workflow
is shown in Fig. 1(a). All task computation times are equal to15, and all edges have a communication volume equal to
2. We have four processorsP1 to P4 whose speeds ares1 = s3 = 1.5 ands2 = s4 = 1. All links have unit bandwidth.
The fault tolerance degree isε = 1, so that each task is replicated once:t

(1)
i represents the first copy of taskti, while

t
(2)
i is the second copy, which is always executed but turns out useful only if a failure occurs.

i) Task parallelism– To minimize the makespan of the DAG graph, we use classical list scheduling techniques [9],
leading to the assignment of Fig. 1(b). In streaming mode, repeating the execution for incoming data sets, we obtain a
latencyL = 39 and a throughputT = 1/39.
ii) Data parallelism– All tasks in the DAG are mapped to a single processor, we make four replicas, and consecutive
instances of the input stream are distributed to the processors in round-robin fashion (Fig. 1(c)). In the absence of
failures, the maximum throughput isT = 2/40 = 1/20. However, this technique requires that the processing of one
data item is independent of the results obtained for the previous data item, a drastic assumption that we do not make.
iii) Pipelined execution–Fig. 1(d) shows a mapping withS = 2 synchronous stages(t1, t3) and(t2, t4) which are
executed in parallel once the pipeline is filled. The throughput is T = 1/30 and the latency isL = 2S−1

T = 90
(see Section 4 for an explanation of this value). The advantage of this technique is that it can be applied to either
dependent or independent data items. It is the one used in theliterature for streaming applications (see the related
work in Section 3), and we use it in the following too.

After some definitions and notations in Section 2, we presentin Section 3 a brief survey of heuristics proposed
in the literature to optimize latency under throughput constraints. These heuristics target homogeneous platforms and
assume unlimited network capacity. Instead, we suggest to use a realistic communication model, the bi-directional
one-port model with full computation/communication overlap. In addition, we introduce a third, reliability-oriented,
objective, that of tolerating a given numberε of processor failures. The major contribution of this paperis the design
of a new scheduling algorithm to minimize latency under boththroughput and reliability constraints (Section 4). We
provide in Section 5 a comprehensive set of experimental results, that fully demonstrate the usefulness of the proposed
algorithm. Finally we give concluding remarks in Section 6.

2

(a) - Workflow graph

(b) - Task parallelism

(c) - Data parallelism

(d) - Pipelined execution

Figure 1: Different Mappings.

3

2 Framework

The application graph is a weighted Directed Acyclic Graph (DAG) G = (V, E), whereV is the set of nodes, or tasks,
andE is the set of edges corresponding to precedence relations between tasks;v = |V | is the number of nodes, and
e = |E| is the number of edges. In a DAG, a node without any predecessor is called anentry node, while a node
without any successor is anexit node. For a taskt in G, E(ti) is its execution time,Γ−(t) is the set of its immediate
predecessors andΓ+(t) the set of its immediate successors. A task is calledreadyif it is unscheduled and all of its
predecessors are scheduled. We target a heterogeneous platform with m processorsP = {P1, P2, . . . , Pm}, fully
interconnected. The speed ofPi is si. The link between processorsPk andPh is denoted bylkh and has bandwidth
dkh. Note that we do not need physical links between processor pairs, we may have a switch, or even a path composed
of several physical links to interconnectPk andPh; in the latter case we would retain the bandwidth of the slowest link
in the path for the bandwidth oflkh. We use the bi-directional one-port architectural model [2], where each processor
can communicate (send and/or receive) with at most one otherprocessor at a given time-step. In other words, a given
processor can simultaneously send a message, receive another message, and perform some (independent) computation.

For a given graphG and processor setP , g(G,P) is thegranularity, i.e., the ratio of the sum of slowest computa-
tion times of each task, to the sum of slowest communication times along each edge.H(ℓ) is the head function which
returns the first replica/task from a sorted listℓ, where the list is sorted according to replicas/tasks priorities (ties are
broken randomly). The number of tasks that can be simultaneously ready at each step in the scheduling process is
bounded by the widthω of the task graph (the maximum number of tasks that are independent inG). This implies
that |ℓ| ≤ ω. The mapping matrixX is av ×m binary matrix representing the mapping of thev tasks ofG to them
processors. ElementXiu is equal to1 if a copy of taskti has been mapped to processorPu, and0 otherwise.

Task priorities are determined bytℓ(t) + bℓ(t), wheretℓ(t) andbℓ(t) are respectively thetop leveland thebottom
levelof taskt. The top level is the length of the longest path from an entry (top) node tot (excluding the execution
time of t) in the current partially clustered DAG. The top level of an entry node is zero. The bottom level is the length
of the longest path starting at taskt to an exit node in the graph. The bottom level of an exit node isequal to its
execution time. Path lengths are defined as the average sum ofedge weights and node weights [9].

The scheduling algorithms are designed to tolerate an arbitrary, but given, numberε of processor failures. Our
approach is based on an active replication scheme, where each task is replicatedε times, and executedε+1 times. We
enforce the rule that valid results will be provided even ifε processors fail, which calls for replicating communications
as well as tasks. But communicating between any task replicapair is often useless, and minimizing communication
overhead while guaranteeing valid results is a key objective of the mapping procedures described in Section 4.

3 Related work

As stated above, the following heuristics from the literature all target homogeneous platforms. This greatly simplifies
all estimations of computing times and path lengths. In addition, they do not limit the number of simultaneous com-
munications that a processor can be involved in, which also simplifies the mapping process. Still, these heuristics are
insightful for our framework, namely heterogeneous platforms under the realistic one-port model.

The algorithm in [4] aims at satisfying a prescribed throughput requirement by minimizing inter-processor com-
munications when assigning tasks to processors. It is basedon the pre-clustering method similar to that in [7]. Com-
munication edges are sorted by data volume and dealt with greedily. At each step, the algorithm attempts to match
the processor executing the edge source and the processor executing the edge sink. Remaining unassigned tasks are
assigned to clusters on a first-fit basis. The pre-clusteringphase is followed by two refinement phases to reduce
communication overhead.

The EXPERT algorithm [3] considers all paths in the application graph, and sorts them by execution time. Paths
are then processed greedily. At each step, the algorithm searches for sub-paths whose tasks fit within one period,
and groups these tasks into stages. Clusters are then built,first intra-stages, and then across stages, with the goal of
load-balancing computations along the paths.

The TDA algorithm [11] is designed to tackle both resource and throughput optimization. A schedule is constructed
to achieve the desired throughput with the minimum number ofprocessors. A combination of two heuristics is used
to solve this problem. First, the ETF (Earliest Task First) heuristic [6] is used to assign tasks to processors. Then,

4

a top-down approach is used to partition tasks into stages, where as before a stage is defined as a subset of tasks
whose combined execution does not exceed the period. Several refinement steps are performed to improve processor
utilization.

The STDP Algorithm [8] starts with one top-down and one bottom-up graph traversals to compute earliest and
latest execution times for each task. Task clusters are thenbuilt with the goal of minimizing communication overhead.
If some resources are still available at that point, critical tasks are then duplicated in order to decrease the latency.
Finally, stages are generated through a third traversal of the graph.

The WMSH Algorithm [10] uses a clustering procedure as its first step, under the assumption that there is an un-
limited number of fully interconnected processors. Then clusters are merged and scheduled on the available physical
resources. In the first phase of the process, a schedule that meets the throughput requirement is obtained, assuming
an unbounded number of processors. The second phase uses a processor-reduction heuristic. The third phase refines
the mapping to optimize the latency, by minimizing the communication overhead along the critical path of the work-
flow. WSMH performs explicit task duplication to increase the throughput, while aiming at keeping communication
overhead reasonably low.

The algorithm in [5] performs a binary search to find the minimal period, given the number of available processors.
The search repetitively calls a mapping routine that determines how many processors are needed to execute the task
graph, given the current period. This routine performs a top-down traversal, partitioning the graph into stages.

4 Scheduling Algorithms

We need a few definitions. Theprocessor utilizationUP ≤ 1 is defined as the fraction of time each processor is

active. Formally,UPu
=

T
P

1≤i≤v

XiuE(ti)

su

for 1 ≤ u ≤ m (whereT is the throughput). Thelink utilization Ul is

defined similarly. We denote byB(t) the set ofε + 1 replicas of a taskt. Also, we denote byt(N) those replicas,
for 1 ≤ N ≤ ε + 1. Thus,B(t) = {t(1), ..., t(ε+1)}. P (t(N)) is the processor on which replicat(N) is scheduled.

For a current taskt, a processorP is calledsingletonif it has only one instance/replicat(N)
i , 1 ≤ i ≤ |Γ−(t)|,

1 ≤ N ≤ ε + 1; P is saidlockedeither if it is already involved in a communication with a replica of t, or it processes

itself one of these replicas. During the mapping steps,X ⊆
⋃|Γ−(t)|

j=1

{

P
(

B(tj)
)}

is the subset of singleton processors
andP ⊆ P the subset of locked processors.

Informally, with ε + 1 replicas of each task, we could need up to(ε + 1)2 communications for each edge inE,
hence a total of(ε + 1)2e communications. To reduce this number, we use a strategy similar to [1]: while there are
enough singleton processors with replicas of predecessor tasks, we use the one-to-one mapping procedure described

in Algorithm 4.2. This name stems from the fact that each replica in
⋃|Γ−(t)|

i=1 B(ti) should communicate to exactly
one replica inB(t). The number of timesθ that the one-to-one-mapping procedure is called for scheduling theε + 1
replicas of the current task is given asθ ← min

i
(λi), whereB(ti) is the subset of replicas of each predecessorti

scheduled inX andλi its cardinality
(

λi = |B(ti)|
)

.
The inverse of the throughput is the iteration period∆, which corresponds to the time-interval between the

processing of two consecutive data items. Formally, the cycle-time of processorPu, 1 ≤ u ≤ m, is defined as

∆u = max
(

Σu, C
I/O
u

)

whereΣu is the computing load ofPu andCI/O
u is the input/output communication cycle

time of processorPu, 1 ≤ u ≤ m. The throughput achieved under the mappingX is T = 1
max

1≤u≤m

∆u
.

To compute the latency, we borrow the notion of pipelinestagesto [4]. Intuitively, stages record processor changes
along dependence paths in the application graph. The pipeline stageS(N) of task/replicat(N), 1 ≤ N ≤ ε + 1

depends on stage of those predecessorst
(N)
∗ , t∗ ∈ Γ−(t), involved in a communication witht(N). Entry tasks/replicas

are mapped in the first stage. The stage of the other tasks/replicas is computed asS(N) = max{S
(N)
∗ + η}, where

η = 0 if P
(

t
(N)
∗

)

= P
(

t(N)
)

andη = 1 otherwise. Then the latencyL depends on the total number of stagesS and

the desired throughputT . It is given [4] byL = 2S−1
T .

In the following, we present two heuristics. The first one, LTF, aims at reducing the communication overhead
while the second one, Reverse LTF, also aims at keeping the total number of stages as low as possible.

5

4.1 The LTF Algorithm

The LTF (Latency, Throughput, Failures) algorithm is essentially an extended version of the Iso-Level CAFT algorithm
of [1], which tackles the combination of communication overhead reduction and fault tolerance requirements. It
differs from the initial version in the way that it takes the throughput requirement into account. Tasks are assigned
to processors not only to achieve fault tolerance and latency requirements, but also to satisfy the desired throughput
performance of the application. Tasks are scheduled and partitioned into pipeline stages greedily. Algorithm 4.1
outlines the pseudocode of the LTF heuristic. The input of the algorithm is a task graphG, the fault tolerance degree
ε and a desired throughputT .

At each step of the mapping process, LTF selects a subsetβ of ready tasks with highest priority, and simulates the
mapping of each task in the subset on all processors. Workingwith a subset rather than with a single task (as classical
list-scheduling algorithms) allows for a better load balance [1]. For each taskt ∈ β, we search for unlocked processors
which can executet without exceeding the desired iteration period. Formally:

(T ·Σu ≤ 1) ∧
(

T · CI
u ≤ 1

)

∧
(

T · CO
h ≤ 1

)

∧
(

Pu /∈ P
k
)

1 ≤ u, h ≤ m, P (t) = u, P (t∗) = h, u 6= h, t∗ ∈ Γ−(t)
(1)

If there are several such processors, we select the one with minimum finish timeF . If there are none, we use other
processors, at the risk of increasing the communication overhead. The algorithm fails if no processor can accommodate
the task because of the throughput constraint. The time complexity of LTF Algorithm is given below:

Theorem 1 The time complexity of LTF isO
(

em(ε + 1)2 log(ε + 1) + v log ω
)

.

The proof is similar to that given in [1] for Iso-Level CAFT. Note thatε < m, and that the widthω does not exceed
v, so we derive the upper boundO

(

em3 log m + v log v
)

.

4.2 Reverse LTF Algorithm

As stated above, we have to reduce the number of stagesS as much as possible to optimize the pipeline latencyL.
This is the goal of the R-LTF algorithm (R for Reverse) that weintroduce now. It consists of a sequence of refinement
steps, where each step creates a new pipeline stage or grows an existing one. Unlike LTF, the R-LTF uses a bottom-up
topological traversal of the application graph, starting from sink nodes. R-LTF mapping decisions are guided by two
main rules, which are invoked in the order below:

• Rule 1: The pipeline stage number

(

max
t∗∈Γ+(t)

S

)

of the current task/replicat does not increase when scheduling it.

• Rule 2: The number of communications induced by the replication mechanism should be reduced as much as
possible. Ift is the current task to be scheduled andt′ one of its successors, we check whether

(

|Γ+(t)| = 1
)

∧
(

∀t∗ ∈ Γ−(t′), |Γ+(t∗)| = 1, t∗ ∈ α
)

If this condition holds, we assign all replicas oft with the one-to-one mapping procedure.
Note that by applying the latter rule in the absence of throughput constraints, we can reduce the number of com-

munications down toe(ε + 1) for any series-parallel graph (the proof is similar to that given in [1]). Finally, note that
the complexity of R-LTF is the same as that of LTF.

4.3 Example

In this section we work out an example to illustrate the difference between LTF and R-LTF, using the workflow graph
G of Fig. 2(a). Task execution times areE(t1) = E(t7) = 15, E(t3) = 20, E(t2) = E(t6) = 6 andE(t4) = E(t5) = 5.
For simplicity, we assume that all edges have a cost of2 time units to transfer a data item. We also assume a fully
homogeneous network withm = 8 processors of speeds = 1. We letε = 1 andT = 0.05, so that the maximum
allowed period is20.

(i) LTF scheduling steps:At step 1,t1 is the only ready task inα = {t541 }, thus the chunk listβ = {t541 } (the
superscript of a task inα or β denotes its priority value).t1 is selected and scheduled on processorsP1 andP5 (the

6

Algorithm 4.1 The LTF Algorithm

1: P = {P1, P2, . . . Pm}; (*Set of processors*)
2: ∆← 1

T iteration period;
3: Σu ← CI

u ← C
O
u ← 0, ∀ 1 ≤ u ≤ m ;

4: ε← maximum number of supported failures;
5: Computebℓ(t) for each taskt in G and settℓ(t) = 0 for each entry taskt;
6: S = ∅ ; U = V ; (*Mark all tasks as unscheduled*)
7: α = ∅ ; (*List of ready tasks*)
8: Put entry tasks inα;
9: S ← 0; B ← m;

10: while U 6= ∅ do
11: k = 0; β ← ∅;
12: while k ≤ B and α 6= ∅ do
13: β ← β ∪H(α) ; (*Select critical tasks *)
14: P

k = ∅ ; (*List of locked processors oftk*)
15: k = k + 1;
16: end while
17: for k = 0; k ≤ |β|; k + + do
18: ∀ 1 ≤ i ≤ |Γ−(t)|, computeλi;
19: θk ← min

i
(λi);

20: Zk = 0;
21: end for
22: for N = 0; N ≤ ε; N + + do
23: for each tasktk ∈ β do
24: if Zk < θk then
25: One-To-One-Mapping(tk, Pk);
26: Zk = Zk + 1;
27: else
28: F ←∞;
29: for each processorPu ∈ P do
30: if condition (1) is verifiedthen
31: ComputeFu(tk);
32: if (Fu(tk) ≤ F) then
33: F ← Fu(tk);
34: P (tk)← u;
35: end if
36: end if
37: end for
38: UpdateS andP

k;
39: ΣP (tk) ← ΣP (tk) + E(tk)

su

;
40: UpdateCI

P (tk);

41: UpdateCO
P (t∗), t∗ ∈ Γ−(tk), P (t∗) 6= P (tk);

42: end if
43: end for
44: end for
45: for each taskt ∈ β do
46: Putt in S and update priority values of its successors;
47: Put ready successors oft in α;
48: U ← U\ t;
49: end for
50: end while

7

Algorithm 4.2 One-To-One-Mapping(t, P)
1: for u = 0; u ≤ m; u + + do
2: if condition 1 is verifiedthen
3: ∀ 1 ≤ i ≤ |Γ−(t)|, sort the setB(ti) by non-decreasing order of their communication finish timesF(c, l)

on the links;

4: T ←
⋃

1≤i≤|Γ−(t)|H
(

B(ti)
)

;

5: Simulate the mapping oft on processorPu as well as the communications induced by the replicas of the set
T to the links;

6: end if
7: end for
8: Select the (task, processor) pair that allows for the earliest finish time oft;
9: Schedulet onto the corresponding processor (call itP ∗) and the incoming communications to the corresponding

links;
10: UpdateS;
11: ΣP∗ ← ΣP∗ + E(t)

su

;
12: UpdateCI

P (tk);

13: UpdateCO
P (t∗), t∗ ∈ Γ−(tk), P (t∗) 6= P (tk);

14: Update the setP

P← P
S

P
∗
S

(

S|Γ−(t)|
i=1 P

H

“

B(ti)
”

!)

15: Update each sorted listB(t);

∀ 1 ≤ i ≤ |Γ−(t)|, B(ti)← B(ti) \ H
(

B(ti)
)

task is replicated once to resist to one failure). At step 2,α = {t543 , t532 }, β = {t543 , t532 }. t2 andt3 are scheduled in the
order of their replicast(1)3 , t

(1)
2 , t

(2)
3 , t

(2)
2 on P2, P6, P3 andP7 according to condition (1) and their minimum finish

times. At step 2,α = {t534 , t535 }, β = {t534 , t535 }. Similarly the replicas of the two tasks are scheduled in theorder on

P3, P4, P7 andP8. At step 6,α = {t536 }, β = {t536 }. The two replicast(1)6 andt
(2)
6 of the task are scheduled onP4

andP8 respectively since these processors do not exceed the iteration period and allow for the minimum finish time of
the task. After that step, we haveΣ1 = Σ2 = 15, Σ2 = Σ6 = 20, Σ3 = Σ7 = 10, Σ4 = Σ8 = 10. So the remaining
taskt7 cannot be scheduled without violating the desired throughput, and LTF fails to schedule the workflow. In fact,
it needs two additional processors to succeed, as shown in figure 2(b): four pipeline stages are generated with10
processors, and the latency isL = 140.

(ii) R-LTF scheduling steps: At step 1, t7 is selected and scheduled onP1 and P5. Thenα = {t543 , t536 },
β = {t543 , t536 } andS = 1. At step 2, Rule 1 is not satisfied since none of the tasks can bemerged witht7. Therefore,
according to Rule 2, all replicas are mapped on different processorsP2, P3, P6 andP7 so that each replica will be
assigned to a separatesingletonprocessor (one-to-one mapping procedure). At steps 3 and 4,according to Rule 1,
both{t4, t5} and{t2} are mapped witht6: the pipeline stage numberS = 2 does not increase. Finally,t1 is selected
and scheduled onP4 andP8. Three pipeline stages are generated. This results in a latencyL = 100 with 8 processors.

5 Experimental Results

To evaluate the performance of our algorithms, several series of simulations have been conducted. We use randomly
generated graphs, whose parameters are consistent with those used in the literature [1, 4, 11, 8]. The number of tasks is
chosen uniformly from the range [50, 150]. The granularity of the task graph is varied from0.2 to 2.0, with increments
of 0.2. The number of processors is set to 20, the desired throughput is set to 1

10(ε+1) and we letε = {1, 3}. To account
for communication heterogeneity in the system, the unit message delay of the links and the message volume between

8

(a) - Workflow graph G

(b) - R-LTF schedule with m = 8

(c) - LTF schedule with m = 8 (LTF fails to schedule G)

(d) - LTF schedule with m = 10

Figure 2: LTF & R-LTF schedules

9

two tasks are chosen uniformly from the ranges [0.5, 1] and [50, 150] respectively. Each point in the figures represents
the mean of executions on60 random graphs.

The metrics which characterize the performance of the algorithms are the latency and the overhead due to the
active replication scheme. Each algorithm is evaluated in terms of achieved latency and fault tolerance overhead.
We run algorithms LTFc and R-LTFc where the superscriptc means that the resulting latency is the one achieved
during an execution wherec failures occur. Whenc = 0, we obtain LTF0 and R-LTF0: this corresponds to an
execution where no failure has occurred, but with an algorithm designed to tolerate up toε failures. We compare
our algorithms to a reference schedule, thefault freeschedule, defined as the schedule generated by R-LTF without
replication, assuming that the system is completely safe, settingε = 0. The overhead of each algorithm is computed
as Overheadalgo =

Lalgo−LFF

LFF
, whereLalgo is the latency achieved by the algorithm, andLFF the latency of the fault free

schedule.
Comparing the results of LTF and R-LTF, we observe in Figs. 3 and 4 that R-LTF gives the best performance.

It always improves the latency significantly while meeting the throughput constraint. As stated above, R-LTF incre-
mentally tries to decrease the pipeline stage number and communication overhead. This leads to minimize the final
pipeline latency. The reason of the poorer performance of LTF can be explained by its processor selection policy:
processors are selected so that the finish time of the tasks isminimized. Doing so, tasks are not mapped on those
processors which would allow not to increase the pipeline stage number. We have also compared the behavior of each
algorithm when processors crash down, by computing the realexecution time for a given schedule rather than just
bounds. Processors that fail during the schedule process are chosen uniformly from the range [1, 20]. We can see on
Figures 3(b) and 4(b) that R-LTFc behaves better than LTFc. As expected, LTF has a bigger latency.

From Figures 3(b), it is interesting to note that when the fault tolerance degree is low(ε = 1), the latency is similar
to that obtained with0 crash (the lower bound). This is explained by the fact that the increase in the schedule length is
already absorbed by the replication done previously, in order to resist to eventual failures. However, when the number
of failures gets larger (for instance withε = 3 andc = 2 failures, see Figure 4(b)), we clearly see the difference in
terms of latency increase and overhead. We readily observe from Figures 3 and 4 that we deal with two conflicting
objectives. Indeed, the fault tolerance overhead increases together with the number of supported failures.

As a summary of the experiments, we observe that R-LTF is considerably superior to LTF in all the cases tested
(0.2 ≤ g(G) ≤ 2, ε = {1, 3}). We also state that the pipeline stage number has a significant impact on the latency
achieved by LTF. This experimental study assesses the usefulness of R-LTF, and shows that reducing the pipeline stage
number should be given priority to minimizing communication overhead.

6 Conclusion

In this paper, we have addressed the problem of multi-criteria scheduling for workflow applications. This a very natural
and important problem, as several conflicting objectives must be considered simultaneously to fulfill the requirements
of the user. We have selected three out of the most prominent criteria, two performance-related (throughput and la-
tency), and one reliability-oriented (resisting to several processor failures). To the best of our knowledge, the proposed
algorithms are the first to address such a challenging tri-criteria optimization problem, using realistic platform models.

Our approach should be extended to situations “symmetric” to that of this paper, namely maximizing the through-
put for a given latency and failure number, and maximizing the number of supported failures for a given latency and
throughput. Further work will also be devoted to designing algorithms involving other important objectives, such
as energy consumption (e.g., minimize the dissipated powerfor a prescribed performance) and platform cost (e.g.,
minimize the ‘rental” cost of the platform while enforcing the other criteria).

10

 220

 240

 260

 280

 300

 320

 340

 360

 380

 400

 420

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

R-LTF With 0 Crash
R-LTF UpperBound

LTF With 0 Crash
LTF UpperBound

(a) - Latency bounds(ε = 1)

 220

 240

 260

 280

 300

 320

 340

 360

 380

 400

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

R-LTF With 0 Crash
R-LTF With 1 Crash

LTF With 0 Crash
LTF With 1 Crash

(b) - Latency with crash(ε = 1)

 50

 100

 150

 200

 250

 300

 350

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 O
ve

rh
ea

d
(%

)

Granularity

R-LTF With 0 Crash
R-LTF With 1 Crash

LTF With 0 Crash
LTF With 1 Crash

(c) - Fault tolerance overhead with crash(ε = 1)

Figure 3: Average normalized latency comparison between LTF and R-LTF (Bound and Crash cases,ε = 1)
11

 500

 550

 600

 650

 700

 750

 800

 850

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

R-LTF With 0 Crash
R-LTF UpperBound

LTF With 0 Crash
LTF UpperBound

(a) - Latency bounds(ε = 3)

 500

 550

 600

 650

 700

 750

 800

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

R-LTF With 0 Crash
R-LTF With 2 Crash

LTF With 0 Crash
LTF With 2 Crash

(b) - Latency with crash(ε = 3)

 200

 250

 300

 350

 400

 450

 500

 550

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 O
ve

rh
ea

d
(%

)

Granularity

R-LTF With 0 Crash
R-LTF With 2 Crash

LTF With 0 Crash
LTF With 2 Crash

(c) - Fault tolerance overhead with crash(ε = 3)

Figure 4: Average normalized latency comparison between LTF and R-LTF (Bound and Crash cases,ε = 3)
12

References

[1] A. Benoit, M. Hakem, and Y. Robert. Contention awarenessand fault tolerant scheduling for precedence con-
strained tasks on heterogeneous systems.Parallel Computing, 35(2):83–108, 2009.

[2] P. Bhat, C. Raghavendra, and V. Prasanna. Efficient collective communication in distributed heterogeneous
systems.Journal of Parallel and Distributed Computing, 63:251–263, 2003.

[3] F. Guirado, A. Ripoll, C. Roig, and E. Luque. Optimizing latency under throughput requirements for streaming
applications on cluster execution. InCluster Computing, pages 1–10. IEEE Computer Society Press, 2005.

[4] S. L. Hary and F. Ozguner. Precedence-constrained task allocation onto point-to-point networks for pipelined
execution.IEEE Trans; Parallel and Distributed Systems, 10(8):838–851, 1999.

[5] P. D. Hoang and J. M. Rabaey. Scheduling of dsp programs onto multiprocessors for maximum throughput.
IEEE Trans. Signal Processing, 41(6):2225–2235, 1993.

[6] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee. Scheduling precedence graphs in systems with interpro-
cessor communication times.SIAM Journal on Computing, 18(2):244–257, 1989.

[7] K. Ramamritham. Allocation and scheduling of precedence-related periodic tasks.IEEE Trans. Parallel and
Distributed Systems, 6(4):412–420, 1995.

[8] S. Ranaweera and D. P. Agrawal. Scheduling of periodic time critical applications for pipelined execution on
heterogeneous systems. InInt. Conf. Parallel Processing ICPP’01, pages 131–140. IEEE Computer Society
Press, 2001.

[9] H. Topcuoglu, S. Hariri, and M. Y. Wu. Performance-effective and low-complexity task scheduling for hetero-
geneous computing.IEEE Trans. Parallel Distributed Systems, 13(3):260–274, 2002.

[10] N. Vydyanathan, U. Catalyurek, T. Kurc, P. Saddayappan, and J. Saltz. Toward optimizing latency under through-
put constraints for application workflows on clusters. InEuro-Par’07: Parallel Processing, LNCS 4641, pages
173–183. Springer Verlag, 2007.

[11] M.-T. Yang, R. Kasturi, and A. Sivasubramaniam. A pipeline-based approach for scheduling video processing
algorithms on now.IEEE Trans. Parallel and Distributed Systems, 4(2):119–130, 2003.

13

