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Heat Convection in a Vertical Channel: Plumes versus Turbulent Diffusion

M. Gibert,∗ H. Pabiou,† J.-C. Tisserand, B. Gertjerenken,‡ B. Castaing, and F. Chillà§

Université de Lyon, ENS Lyon, CNRS

46 Allée d’Italie, 69364 Lyon Cedex 7, France

(Dated: December 5, 2008)

Following a previous study (Phys. Rev. Letters 96, 084501, (2006)), convective heat transfer in
a vertical channel of moderate dimensions follows purely inertial laws. It would be therefore a good
model for convective flows of stars and ocean. Here we report new measurements on this system. We
use an intrinsic length in the definition of the characteristic Rayleigh and Reynolds numbers. We
explicit the relation between this intrinsic length and the thermal correlation length. Using PIV, we
show that the flow undergoes irregular reversals. We measure the average velocity profiles and the
Reynolds stress tensor components. The momentum flux toward the vertical walls seems negligible
compared to the shear turbulent stress. A mixing length theory seems adequate to describe the
horizontal turbulent heat and momentum fluxes, but fails for the vertical ones. We propose a naive
model for vertical heat transport inspired by the Knudsen regime in gases.

PACS numbers: 47.27

I. INTRODUCTION

The Rayleigh-Bénard flow, heat convection between
two horizontal plates at different temperatures Th and
Tc (Th − Tc = ∆T ), has long been the only paradigm for
laboratory studies of thermal convection [1–3]. Recent
controversies [2, 4–6] concerning the occurence of the so-
called Kraichnan regime [7] stressed the importance of
having a better knowledge of the bulk flow, far from the
plates [8, 9]. However, global quantities such as the Nus-
selt number (Nu):

Nu =
QH

λ∆T
(1)

are mainly controled by the neighborhood of the plates,
where the viscosity weakens the convection. The Nusselt
number compares the heat flux Q to the purely diffusive
one λ∆T/H , where λ is the fluid thermal conductivity,
and H the vertical distance between plates.

On the other hand, natural convection, such as oc-
curing in stars or planet’s atmospheres, is often free of
plates. Evaluating heat fluxes generated in such condi-
tions is of prime importance for elucidating the behavior
of these systems. In this respect, heat (or mass) con-
vection in a vertical channel [10–12] is closer to these
flows. Even if the width d of the channel introduces a
characteristic length, the heat flux is everywhere convec-
tive, if one exclude the poorly pertinent vertical bound-
ary layers, in contradistinction with the neighborhood of
Rayleigh-Bénard plates. Note that a vertical access pit
of an underground quarry [13] is another semi-natural
example of such a system.
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The characteristic non-dimensional numbers have here
a slightly different definition. Out of end effects, a con-
stant vertical temperature gradient β = −∂T/∂z is ex-
pected to drive the heat flux, which gives the Nusselt
number:

Nu =
Q

λβ
(2)

One of the control parameters is the Prandtl number
Pr = ν/κ, where ν is the kinematic viscosity, and κ
the heat diffusivity. The second control parameter is the
Rayleigh number:

Ra =
gαβL4

νκ
(3)

where g is the gravitational acceleration, and α the con-
stant pressure thermal expansion coefficient. The choice
of the characteristic length L has to be done. It could be
taken as d, the width of the channel, which a priori ap-
pears as the only available length. However, our previous
study [12] shows that results are clearer when a different
choice is made:

L = aLo with Lo =
θ

β
(4)

where θ is a root mean squared temperature fluctuation
which will be precised later. In the same study, a char-
acteristic time τo was evidenced in the spectrum of tem-
perature fluctuations. Two hypothesis were made for in-
terpreting the data. First, for considering θ as a tem-
perature, we had to assume that the correlation length
is relatively short. Second, we assumed that we could
choose the factor a in such a way that L/τo be the rms
velocity Vrms. We thus assumed:

Vrms =
aθ

βτo
(5)

We grossly estimated it from one single PIV experi-
ment. We shall see that the present experiments yield a
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different value for a, but confirm that it can be considered
as constant. With L/τo representing the rms velocity, we
can define a Reynolds number:

Re =
L2

ντo
(6)

The important point is that this Re is obtained only
through thermal measurements, within the same experi-
ments giving Nu.

The present paper has several purposes. After a de-
tailled presentation of the various experimental tech-
niques and set-ups, we examine the above hypothesis,
through a direct measurement of the correlation length.
Then we compare the previously [12] measured Nu and
Re with those obtained with a smaller cell, having a dif-
ferent aspect ratio. A statistical study of the velocity
field follows, which allows us to determine a characteris-
tic velocity profile, and the Reynolds stresses. From these
Reynolds stresses and their horizontal (x) dependences,
a horizontal temperature profile can be determined, as
well as the corresponding horizontal heat flux. Before
the conclusion, we examine these results from the point
of view of the Prandtl mixing length theory.

II. EXPERIMENTAL SET-UP AND

MEASUREMENTS

We used two different cells, both using water as the
fluid. The general set-up is as presented in figure 1. The
vertical channel, in which our measurements are made,
connects two chambers, a cold one at its top end and
a hot one at its bottom end. Hot plumes are formed
on the hot plate. They mix in the hot chamber before
to feed a rising, turbulent, irregular flow in the channel.
Symetrically, cold plumes are formed on the cold plate,
mix in the cold chamber, and feed a sinking flow in the
channel. As will be explained below, the walls (excluding
the plates), both of the chambers and of the channel, are
insulating: no heat flux is entering this way.

The first cell, already described in [12], is mainly con-
stituted of a traditional rectangular Rayleigh-Bénard cell
of height 40cm and section 40 × 10cm2. Thanks to a
honeycomb structure (made in PMMA [14]), figure 2a,
we avoid convection to appear in about 50% of the RB
cell. The other 50%, the convection zone, has in its cen-
tral part a channel with a 10 × 10cm2 cross section area
(d = 10cm) and a height of 20cm. This channel is our
zone of interest. The walls of the RB cell are 25mm thick
PMMA.

The second cell, figure 2b, has been specially designed
for this experiment. It consists of two axisymetric cham-
bers, of conical shape, connected through a square chan-
nel, 20 cm in length, of 5 × 5 cm2 inner area. The walls
of the channel are made of PMMA, 10 mm thick.

For both cells, the upper plate is temperature regulated
by a regulated water bath. The bottom plate is heated
by the Joule effect in 5 resistors, regularly spaced, for the
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FIG. 1: Schematic view of both cells, clarifying the notations.

first cell, and in a heating wire, forming an Archimede
spiral, for the second one. The total power input could
go from 3W to 300W to cover our range of Rayleigh num-
bers.

For thermal measurements, both cells are thermally
insulated. The thermal insulation allows us to limit and
control the heat losses in order to precisely measure the
heat flux through the cell. Heat losses can occur either
via a spurious contact with the hot plate, where the Joule
heating power is supplied, or through the vertical walls
(or the honeycomb structure in the first cell case). In-
deed, the effective heat conductivity of the channel is
several thousand times that of water or plastics form-
ing the walls. Heat would have to cross 6 plastic walls
for flowing though the honeycomb structure. Looking at
shadowgraphs of the first cell, we could verify that no
activity, characteristic of convection, occurs in the hon-
eycomb structure.

The second cell is hanged by the cold plate, whose
temperature is fixed by a regulating water bath. Then,
nothing except air is in contact with the hot plate. We
could not hang the first cell the same way. Its hot plate
fits into plastic supports. The first cell is further sur-
rounded by a copper screen. This screen is temperature
regulated at the average temperature between top and
bottom plates, which is maintained constant on a whole
set of measurements. In addition, both cells are wrapped
in isolating sheets to limit air convection.

As a final thermal characterisation of both cells, we
measured the total temperature difference ∆T between
the hot and cold plates, versus the supplied power. It
is worth noting that this total temperature difference
is the same as for a Rayleigh-Bénard cell having the
same plates, and the same distance between them (within



3

10%). The huge constraints imposed here to the bulk
flow have little influence on the global Nusselt number.
This confirms previous studies [15] showing the poor in-
fluence of the bulk flow on the Nusselt number in the
Rayleigh-Bénard geometry.

For vertical temperature gradient measurements, we
use a bridge made of four resistive thermometers from
the same batch [16] located at the corners of a rectangle
5cm (resp 2.5cm) wide and of height h =10cm (resp 5cm)
for the first (resp second) cell. To maintain this geome-
try without being too intrusive, we use an “I” structure
as shown on figure 2 (b). The resistors are connected as
a Wheatstone bridge, in such a way that the two upper
(resp. lower) ones are in opposite situation (no common
point). As the resistors have very close temperature de-
pendencies, the output of the bridge is poorly sensitive to
the average temperature, but highly sensitive to a tem-
perature difference between top and bottom branches of
the bridge. The input to the bridge is 30Hz, 0.1V volt-
age from a Agilent 33220A generator. The output is mea-
sured by a differential lock-in amplifier Stanford Research
SR830 DSP. The sensitivity of the bridge to temperature
differences is typically 2mV/K, and the order of magni-
tude of the output for zero temperature difference (the
offset of the bridge) is 10−4V.

Heat losses have been estimated in situ, looking at the
root mean squared amplitude of fluctuations of the bridge
output. We extrapolate this rms amplitude to a zero
value to establish the corresponding supplied power. In-
deed, if the supplied power is less than heat losses, the
fluid stratifies which suppresses the turbulent tempera-
ture fluctuations. Such an extrapolation also gave the
exact output of the bridge for zero temperature gradient
in the channel.

For temperature correlations, we used smaller resistive
thermometers [17]. Both thermometers are positioned on
the same vertical line, each at the bottom end of a “L”
structure, the vertical bars being made of two tubes, one
sliding inside the other (figure 2a). Both resistances r1

and r2 are measured through a 2-wire Agilent 34970A
multiplexer. Measurements have been taken by blocks
of 2×20000. A complete measurement for a given dis-
tance between thermometers lasted two days, for nearly
100 blocks. While converting the ri values in tempera-
ture is a priori possible through the calibration we made,
the small amplitude of temperature fluctuations makes it
useless for correlation studies. We directly consider the
correlation of resistance fluctuations (see section III).

Velocity fields are measured through a commercial Par-
ticule Imaging Velocimetry (PIV) system [18]. The flow
is seeded with hollow glass spheres, 10µm in diameter
[19]. Before every set of measurements, we make work
the experiment some hours. Spheres with the wrong av-
erage density have time to settle at the top or the bottom
of the cell. A vertical laser sheet, 2mm wide, is obtained
from a 1W continuous laser [20]. For the first cell, a
slot in one of the honeycomb structures allows the free
propagation of the sheet.

(a)

(b)

FIG. 2: (a) Picture of the first cell (without the insulation
and the thermal screen). The “L” structures used for tem-
perature correlation measurements are shown in the channel.
(b) Picture of the second cell (without the insulation). The
short version of the bridge (5 cm high × 2.5 cm wide) can be
seen in the channel.

We use a 30Hz camera [21], 1200×1600 pixels, 12 bits
grey resolution. The buffer is able to store 20 frames.
We thus register by blocks of 20 frames, 50ms between
frames, whose comparison gives 19 two dimensional, two
components velocity fields, with 3mm resolution. We sys-
tematically choose to register 80 such blocks, but with
different spacing between blocks. The total registration
time goes from 2 to 10 hours.
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III. CROSS-CORRELATION MEASUREMENTS

Our goal, in this study of the spatial and temporal
thermal correlations is twofold. First we want to check
if the correlation length 	 is smaller than the size of the
bridge, so that bridge output fluctuations can be inter-
preted as temperature fluctuations, a fundamental hy-
pothesis of [12]. We want also to check our second hy-
pothesis, namely that a (Eqs. 4,5) is constant and verify
its value.

We thus performed, in the first cell, the correlation
measurements for two different values of the Rayleigh
number, both at the same Prandtl number Pr = 5.2,
corresponding to an average temperature of the cell of
30oC:

• For the high power one, the power input in the
bottom plate is 235W. Nu = 1.37× 104, and Lo =
11.4cm.

• For the low power one, the power input in the bot-
tom plate is 23W. Nu = 4.0×103, and Lo = 9.2cm.

Defining δri(t) = ri(t) − 〈ri〉, for each distance δz be-
tween the thermometers, and each time lag τ , we cal-
culate the correlation by averaging δr1(t + τ)δr2(t) first
within each block, then between the blocks. We then
normalize this average by the product of the rms fluctu-
ations σi =

√
〈δr2

i 〉:

C(δz, τ) =
〈δr1(t + τ)δr2(t)〉

σ1σ2

(7)
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FIG. 3: The correlation function C(δz, τ ) for various δz in the
high power case (235W). The dots correspond to the position
of the highest peak and its symetric compared to τ = 0. The
squares mark the value of C(δz, 0) for the different δz, from
the darker to the lighter: 4mm, 10mm, 20mm, 30mm, 40mm,
50mm (twice), 60mm, 70mm, and 100mm. The blue (top)
curve corresponds to the autocorrelation of one sensor (i.e.
δz = 0).

Figure 3 presents the correlation function C(δz, τ) for
various δz ranging from 4mm to 10cm, in the high power
case. These functions can be seen as the sum of two com-
ponents, of different amplitudes, but symetrically shifted
from the origin. To stress this point, we systematically
signal the position of the most visible “peak”, and its
symetric. Several remarks must be made:

• Each curve presents two peaks. These peaks indi-
cate a delay between the two signals, the tempera-
ture perturbations traveling from one thermometer
to the other.

• The presence of two peaks, approximately at sy-
metric times ±τp, indicates that the flow undergoes
reversals. They will be discussed in section V.

• From the smallest distance curves, a correlation
time can be extracted. It is in very good agree-
ment with τo obtained from the spectrum (section
IV, figure 5) of the bridge output fluctuations [12].

We now turn to the correlation length 	. Strictly
speaking, its definition assumes an exponential decay for
C(δz, 0) versus δz (C(δz, 0) = exp−(δz/	)). Figure 4
shows these decays for both cases, the high and the low
power. Both decays seem smoother than exponential,
while an exponential approximation seems to be reason-
able.

δz [cm]

C
(δ

z,
0)

2 4 6 8

10

10

10

0

0

FIG. 4: The correlation function C(δz, 0) versus δz. The lines
are fits with an exponential decay.

The best fit gives 	 = 3.8cm for the high power case
(Lo = 11.4cm), and 	 = 3cm for the low power case
(Lo = 9.2cm). Thus, in any case, 	 is smaller than the
height of the bridge. This confirms our first hypothesis,
that the rms fluctuations of the bridge are temperature
rms fluctuations and not gradient ones. Obviously, a
full confirmation needs a more complete study, but the
evolution of 	 seems proportional to that of Lo.
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To verify our second hypothesis, that is a is constant
in Eqs. 4,5, we have to come back on the velocity. From
the time τp of occurence of the peaks, we can obtain
a velocity Vp = δz/τp. This velocity is independent of
δz within ±5%. For the high power Vp = 1.3cms−1,
while for the low power Vp = 0.6cms−1. These values
are much larger than Lo/2τo which was the estimation
of the velocity in [12]. As we shall see in section V, Vp

is however close to the rms velocity mesured using PIV
in the present work. We thus must admit an error in
[12], probably due to a bad calibration of distances in
our first PIV measurement. We note that taking a = 1,
then Vθ = L/τo = Lo/τo is very close to Vp and to the rms
velocity. Indeed, taking a = 1 gives for the high power
Vθ = 1.23cms−1, and for the low power Vθ = 0.62cms−1.

From now on, we shall thus take a = 1, and we define:

L = Lo =
θ

β
(8)

We can remark here that, contrary to our intuition,
	/τo is much smaller than the rms velocity, while Vp is
close to it. This suggest a peculiar organisation for the
coherent structures carrying the heat. Their travelling
velocity as a whole is much smaller than the velocities
occuring within the structure. This would be the case
for a vortex, for instance, which generate velocities much
larger than its own core velocity. However, the informa-
tions we have on this organisation are not sufficient to go
further.

To resume the results of this section, the vertical tem-
perature correlation length 	 is smaller than the height h
of our bridge. We thus confirm that the rms output of the
bridge θ must be interpreted as a temperature fluctua-
tion amplitude, and not a gradient fluctuation amplitude.
L = θ/β is then the intrinsic characteristic length we use
in the definition of Ra and Re. It is much larger than
the correlation length 	, suggesting a subtle organisation
of the flow.

IV. NUSSELT AND REYNOLDS NUMBERS

We shall systematically use the length L defined in
Eq.8 for the determination of Ra and Re, Eq.3 and 6.
Then, it is worth discussing the real meaning of θ. The
output of the Wheatstone bridge, through the sensitivity
factor of 2mV/K, measures:

1

2
((T3 + T4) − (T1 + T2)) = T34 − T12 (9)

where 1 and 2 refer to the resistances at the top of the
“I” structure (see figure 2b), 3 and 4 to those at the bot-
tom. We just saw in the previous section that (1,2) are
decorrelated from (3,4), their vertical distance h (10cm
for the first cell, 5cm for the second one) being larger
than the correlation length.

At this point, it is useful to briefly discuss the struc-
ture of the flow and the temperature field, which will

be detailled in section V. A large scale flow is present in
the channel, ascending on one side and descending on the
other, with occasional reversals, already mentioned. This
flow creates a temperature difference between both sides
of the “I” structure, at the same level, this difference,
of absolute value 2∆, changing its sign at each reversal.
Indeed, the rising flow, coming from the hot chamber, is
slightly warmer (+∆) than the sinking flow, coming from
the cold chamber (−∆). The time between these rever-
sals can be long, 10 minutes or more. As a result, T1 and
T2 are correlated, the fluctuations of T12 = (T1 + T2)/2
being poorly sensitive to the reversals dynamics. The
mean squared deviation of the bridge output then gives:

θ2 = 〈δT 2
34〉 + 〈δT 2

12〉
= 2〈δT 2

12〉 (10)

θ is thus different from the local rms temperature fluc-
tuations, due to the reversals. The frequency spectrum
of the bridge output is also different in shape from the
local temperature one, particularly in its low frequency
part, sensitive to the reversals dynamics.

f = ω/2π [Hz]
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FIG. 5: The spectra of the bridge output, for various Ra
values (second cell, Pr = 6). The lines correspond to the fit
used for extracting τo. The range for the fit is signaled in red
on the spectrum.

We recall that this spectrum gives us the time τo, from
which we obtain the Reynolds number through Eq. 6.
Figure 5 shows a series of such spectra, corresponding to
various Rayleigh numbers.

In order to improve the precision on τo we used a fit
of these spectra S(ω). Indeed, considering ωS(ω) gives a
maximum in the neighborhood of ωo = 1/τo. We thus fit
ωS(ω) with the function:

So
ωτγ

1 + (ωτγ)γ
(11)

where So, τγ , and γ are adjustable parameters. In fact,
the optimum γ has very little variations, close to 1.8 for
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the first cell, and 2 for the second one. For each cell,
we thus used the same γ for all spectra. We define the
characteristic time τo as:

τo = (γ − 1)1/γτγ (12)

In this way, two fits having their maximum at the same
frequency give the same value for τo, whatever γ is.

In reference [12], we checked the vertical homogeneity
of the gradient β in the channel for the first cell. We
made the same test in the second cell, measuring the
gradient at various heights. Figure 6 gives the results,
for a driving power of 80W, and a mean temperature of
25oC.

z [cm]

β
K

m
−

1

0
0 5−5

10

10−10 15−15 20−20

2
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6

8

12

14

16

FIG. 6: Temperature gradient versus the height in the cell,
for the second cell. Only full symbols correspond to real mea-
surements. Open symbols are simply symetric to the full ones
compared to the middle of the cell. The two vertical bars sig-
nal the ends of the channel. The thick horizontal line stands
for the average of β(z) in the center of the channel. The lower
and upper horizontal lines correspond to ±5% of this mean
value.

Positions between −10cm and 10cm correspond to the
center of the bridge being in the channel. Between
−20cm and −10cm it is in the hot chamber, and in the
cold one between 10cm and 20cm. Compared to the first
cell [12], the conical shape of the chambers seems to re-
sult in a significant vertical gradient in these chambers.
Correlatively, the channel end effect is strongly reduced,
and the gradient can be considered as constant on a large
range around the middle of the cell. Note also the large
value of the gradient here (β = 13.5Km−1). For the same
power (80W) and the same temperature (25oC), the gra-
dient is β = 1.9Km−1 in the first cell. This measurement
confirms that in the central part of the channel, the tem-
perature gradient β is constant within less than ±5%.

We now come to the presentation of our results, for Nu
and RePr versus RaPr. The various symbols on figure
7 correspond to different mean temperatures, and thus
different Prandtl numbers Pr: 20oC, Pr = 6.6; 30oC,

Pr = 5.3; 40oC, Pr = 4.1. The lower RaPr (diamonds)
correspond to the second cell and a mean temperature
of 25oC (Pr = 6). The error bars on Nu are based
on an estimated uncertainty of 0.5W on the heat leaks,
and 2 10−3 oC uncertainty on the temperature difference
measured by the bridge. The latter uncertainty also gives
that of β which, together with 2% on θ yield the error
bars on L and Ra (see figure 8).

10
6

10
7

10
8

10
3

10
4

RaPr
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,
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FIG. 7: Evolution of Nu (full symbols) and RePr (open sym-
bols) versus RaPr. First cell: ◦, Pr = 6.6; �, Pr = 5.3; �,
Pr = 4.1. Second cell: �, Pr = 6. Full line, proposed average
law for Nu results: Nu = 1.6

√
RaPr. Dotted line, proposed

average law for RePr results: RePr = 1.3
√

RaPr

We note the good agreement for the Re results between
the two cells, and for both cells, with a law:

RePr � 1.3
√

RaPr (13)

We remark that this agreement does not depend on
the choosen value for L, due to our definition of Re, Eq.
6. The above law indicates that the velocity does not
depend on the diffusivity κ, but depends on the viscosity
ν through the dependence of L versus Re (see below,
figure 8).

As for the heat transport, despite the large differences
noted above for temperature gradients between the two
cells, they agree when normalized as Nu. A common law
could be:

Nu � 1.6
√

RaPr (14)

Note however that the tendency within each cell, is to
a steeper logarithmic slope, but the difference with 1/2
is close to the error bar. Here, the agreement between
cells strongly depends on the choice of L. We used the
same rule, Eq. 8, for its determination in the second cell.
It gives a roughly constant value, close to d. Figure 8
resumes the variations of L/d for both cells versus Re,
showing the agreement between them. It also confirms
the existence of the threshold Re∗ � 600. For Re < Re∗,
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FIG. 8: Dependence of L/d versus Re for both cells. Same
symbols as in figure 7. The line correspond to a fit of our data
with the formula: (L/d) = 0.075 ln(1+(Re/Re∗)4)+0.8, with
Re∗ = 600.

L/d is constant, For Re > Re∗, L/d increases with Re,
approximately linear in lnRe.

Can we compare with the results of the numerical
simulation of reference [10]? The difficulty is in the
choice of the characteristic length. In reference [10], pe-
riodic boundary conditions are used, and the character-
istic length is the period of the system. In our case,
we shall see in section VI that a half sine period can fit
the vertical velocity x-profile, the period being 18cm, i.e.

approximately 2d. For a valuable comparison, their Ra
values should be divided by 24 = 16 and their Re values
by 2. Then, the laws they propose, Nu � 0.7

√
Ra and

Re � 1.1
√

Ra (Pr = 1) must be read:

Nu � 2.8
√

Ra ; Re � 2.2
√

Ra (15)

Considering the uncertainty on this conversion factor,
the agreement is not bad. In particular, the ratio Re/Nu
agrees well. There remains a difference of almost a factor
2 on both Nu and Re. Is it due to their absence of
confinement in x which favors velocity fluctuations, or
to the periodicity in z which prevents the free formation
of plumes? The answer matters if we have to correctly
model free convection in stars or atmospheres, but it will
need further studies.

We can also compare with the results of reference [11].
They look at the transient free convection in a vertical
tube connecting two chambers with different salt concen-
trations. Thus, they have a flux of salt instead of a flux of
heat, and the salt diffusion coefficient (resp. the Schmidt
number Sc) takes the place of κ (resp. Pr). They obtain:

Nu � 0.88
√

RaSc ; ReSc �
√

RaSc (16)

The agreement with our results is good if we consider
that they take d as the characteristic length scale, which
is slightly larger than our L (their Reynolds number is

small, lower than the threshold Re∗). Moreover, they
do not measure directly the density gradient in the tube,
but estimate it from the difference in salt concentration
between the chambers.

To resume the results of this section, the Nu and Re
dependences versus Ra and Pr are coherent with a purely
inertial behaviour, if L = θ/β is the characteristic length
entering the definition of Ra and Re. It means that the
heat flux and the fluid velocity do not depend on the heat
molecular diffusivity, and that their dependence on the
kinematic viscosity is entirely contained in the Re depen-
dence of L. This dependence changes at some threshold
Re∗ � 600. For Re < Re∗, L is constant and close to d.
Previous equivalent studies [10, 11] fit into this regime
and we reasonably agree with them. For Re > Re∗, L
grows, approximately linear in lnRe. Can we extrapo-
late this dependence up to the largest Re, or do some
saturation occurs? We presently do not know.

V. DESCRIPTION OF THE VELOCITY FIELD

In this section, we describe the velocity field as ob-
tained through our PIV system [18]. As visualising the
cell prevents us to use the thermal screen, the average
fluid temperature is choosen to be that of the room
(30oC), and only the bottom plate is thermally coated.
Most of the measurements have been made with the first
cell. The second one has been used for checking some of
the conclusions.

As seen in [12], the channel ends effects influence the
flow a few cm from these ends. It is why we limit our
study in the first cell to the range −5cm< z < 5cm. As
we shall see later, even in this restricted range, ends have
a visible, but negligible, effect.

Two different input powers have been explored, 180W
(Ra = 1.51 × 107) and 93W (Ra = 7.9 × 106). The
discussion below will mainly concern the lowest. Figure 9
shows typical instantaneous maps of the two components,
vx and vz.

In most of the pictures, for this first cell, the flow is
globally ascending in the left hand part, and descending
in the right one (as in figure 9, top), or the opposite
(figure 9, bottom). These flows, we call Φ-flows. Some of
the pictures show a flow globally ascending in both parts
(remember that we record only a sheet of the flow), or
descending. We call this kind of flow Ξ-flows. Φ-flows
have a typical mixing layer structure. In order to discuss
them, we have first to extract the average profile of the
velocity field.

With this in mind, we first define εl, which is 1 if the
average of the vertical velocity in the left part is positive,
and εl = −1 if it is negative. We also define εr which is
−1 if the average of the vertical velocity in the right part
is positive, and εr = 1 if this latter average is negative.
For Φ-flows, εl = εr. Reciprocally, for Ξ-flows, εl = −εr.
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FIG. 9: Two typical instantaneous maps of the two velocity
components algebraic values. Note that the color code is not
the same for vx and vz. Top: ε = +1; Bottom: ε = −1 (see
text).

We then define:

ε =
1

2
(εl + εr) (17)

which is zero for Ξ-flows, and ±1 for Φ-flows.

0 30 60 90 120

−1

0

1

time (minutes)

ε(t)

FIG. 10: Schematic dynamics of the reversals.

Figure 10 shows ε(t) for a 2 hours period record at
93W. As explained in section II, these records consist of
80 blocks of 19 instantaneous velocity maps, the duration
of a block being 1s. The interval between blocks is thus
89s. Clearly, this record shows no characteristic time.
The dynamics of these reversals will be studied in another
paper.

Figure 11 shows the average fields 〈εvx〉 and 〈εvz〉
where 〈〉 stands for time average divided by the time av-
erage of ε2, to take into account only the Φ flows. 〈εvz〉
presents a reasonable invariance versus z, as expected
for the central part of the channel. In contrast 〈εvx〉
shows unexpected non-zero average at top and bottom
parts, as if a roll was superimposed to the expected par-
allel flow. Note however that the amplitude of this roll
is much weaker than the parallel component. Moreover,
a comparison with the velocity field in the second cell
shows that these finite average horizontal velocity spots

follow the channel ends when the relative distance be-
tween them increases. We can thus consider them as a
trace of end effects.
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FIG. 11: Time averages of εvx and εvz.

Due to the observed translational invariance, it is rea-
sonable to define the z-average:

Uz(x) = 〈εvz〉
z

(18)

as the profile of the vertical velocity. Here 〈.〉z
stands for

a time average, itself averaged along z.
As for the x component, let us define:

Ux(x) =

√
(〈εvx〉)2z

(19)

which will be useful when looking at fluctuations, in the
next section. Moreover, comparing them on the same
graph, figure 12 allows to estimate the relative impor-
tance of this artefact.

To resume the results of this section, apart from er-
ratic reversals, the mean flow organizes in two collumns,
of rising hot fluid and sinking cold fluid. The non zero
horizontal velocity averages clearly identify as end effects.

VI. VELOCITY AND TEMPERATURE FIELDS:

LOCAL BUDGETS

The study of the velocity field we have made allows
more than determining an average profile. It allows to
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look at the Reynolds stresses induced by the fluctuations,
which, in turn, give indirect information about the hori-
zontal temperature profile:

Θ(x) = 〈εT 〉z (20)

Indeed, the momentum budget along the vertical di-
rection is, within the Boussinesq approximation:

∂tvz + ∂j(vzvj +
p

ρ
δz,j − ν∂jvz) = gαT (21)

where repeated index j means summation on j = x, y, z,
and δz,j is the Kronecker symbol. To be specific, p is the
effective pressure, including the potential term ρgz. ρ is
the fluid density under this pressure and a temperature
equal to the time averaged and horizontally averaged one
at z = 0. Multiplying Eq. 21 by ε, and averaging over t
and z gives:

∂x(〈εvxvz〉
z − ν∂xUz) = gαΘ (22)

Indeed, to obtain Eq. 22 we also average over y, the
third dimension. In the experimental PIV study, we had
only access to a sheet, and we assumed the statistical
invariance along y. From now on, we shall consider that
the subscript ∗ systematically implies an average on y.

Eq. 22 alone shows the importance of τxz = 〈εvxvz〉
z

which represents the momentum flux along x when the
viscosity can be neglected. Figure 13 shows the x vari-
ations of τxz, together with the two other significant

Reynolds stresses: τzz = 〈(εvz − 〈εvz〉)2〉
z

and τxx =

〈(εvx − 〈εvx〉)2〉z. Indeed, the last two play little role
as stresses, but give a good estimate of the amplitude of
the fluctuations.

Several remarks can be made. First, τxz is much larger
than the viscous stress |ν∂xUz| (2.5 10−3cm2s−2 in the
center), except very close to the walls (where anyway the
precision of our PIV is doubtful). It means that most of
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FIG. 13: The Reynolds stresses τxx (◦), τzz (�), and τxz

(�), versus x, for the lowest power (93W). The full symbols
correspond to the range of the fit (x− = 7mm, x+ = 94mm).
The lines show the proposed fit.

the momentum created by the buoyancy forces directly
exchange from one side of the channel to the other, with
almost nothing going to the walls. We can practically
neglect the friction on the walls.

Second, τxx and τzz are almost constant across the
channel, suggesting a kind of homogeneity in the “tur-
bulent fluid” which we study. However, τzz > τxx. This
“turbulent fluid” is anisotropic. Finally, note that τzz is
of the order of U2

z . The vertical velocity fluctuations are
large.

We can also write the enthalpy budget in the channel:

Cp∂tT + ∂j(qj + vjCpT ) = 0 (23)

where Cp is the constant pressure heat capacity per unit
volume, and �q is the diffusive heat flux. Writing:

�Q = �q + CpT�v (24)

the total heat flux, diffusive plus convective, we note that
Qx changes its sign at each reversal, on average, while Qz

does not. Then, multiplying Eq. 23 by ε, and averaging
on t and z gives:

CpβUz = ∂x〈εQx〉z (25)

giving indirect access to the horizontal heat flux 〈εQx〉z.
To obtain this result, it is convenient to define �v′ and T ′

such that:

ε(T + βz) = Θ(x) + T ′

εvx = v′x
εvz = Uz(x) + v′z (26)

�v′ and T ′ have zero average, and their statistics and
correlation are independent of z.
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The relative constancy of τxx and τzz suggests, as
discussed in the next section, to define effective trans-
port coefficients for this quasi-homogeneous “turbulent
fluid”. For instance, we can define a “turbulent viscos-
ity” through the relation:

〈εvxvz〉z = −νturb dUz

dx
(27)

Having access, both, to the temperature profiles and to
the heat fluxes in the vertical and horizontal directions,
effective heat conductivities can be defined as follows:

Qz
x

= Q =
Cp

d

∫ d

0

Uz(x)Θ(x) dx + kturb
z β (28)

〈εQx〉z = −kturb
x

dΘ

dx
(29)

However, with the small statistics we have, and the
corresponding noise on averaged quantities we cannot
directly use Eqs. 27 to 29. It is why we smooth the
obtained profiles through a simplified model.

We model the major central part of the flow, letting
aside two regions x < x− and x+ < x as “boundary lay-
ers” close to the vertical walls. Considering that the mo-
mentum flux toward the walls is very small, a stress-free
boundary flow well fits the profile of the vertical velocity:

Uz(x) = U cos(π
x − x−

x+ − x−

) (30)

We can then determine νturb, using Eq. 27, and ap-
proximating τxz(x) with a sine function:

〈εvxvz〉z = τxz,o sin(π
x − x−

x+ − x−

) (31)

with:

τxz,o = νturb πU

(x+ − x−)
(32)

Having νturb, we can return to Eq. 22, and determine:

Θ(x) = (νturb + ν)
π2U

gα(x+ − x−)2
cos(π

x − x−

x+ − x−

)

= Θo cos(π
x − x−

x+ − x−

) (33)

Finally, using Eqs. 25, 29, we can determine kturb
x :

kturb
x = Cpβ

(x+ − x−)4

π4

gα

νturb + ν
(34)

The relative values of these effective transport coeffi-
cients, and their physical interpretation, will be discussed
in the next section. Let us here briefly discuss the preci-
sion we can expect on them. We shall first consider the
bounds of the fits, x+ and x−, as given, and discuss later
the influence of their choice.

The averages are obtained from 80 blocks of 20 frames.
The simple fact that the sign of ε is clear on each block
shows that the error bar on each quadratic quantity ob-
tained from a single block is smaller than its mean value.
We estimate this error bar to be half the mean value. Av-
eraging on 80 blocks thus yield to 6% on each quadratic
quantity, and 3% on their square root. The precision on
β is estimated at 2%. All these estimates obviously hold
for reasonably high input power, where heat leaks are
negligible.

The precision on νturb is limited by the precision on
U and that on τxz . Following the above discussion it
should be 7%. The precision on Θo is simply limited by
the precision on τxz , that is 6%. The precision on kturb

x

depends on β and νturb. We thus estimate it as 7%.

As νturb is much larger than ν, and considering its
precision, ν will always be negligible compared to νturb.
Another quantity of interest will be the turbulent Prandtl
number:

Prturb =
Cpν

turb

kturb
x

(35)

The above discussion yield to 10% precision on Prturb.

Let us now discuss on the influence of x+ and x−.
Indeed, we remarked that their choice have very little in-
fluence on the calculated value of νturb. This was to be
expected, as νturb is obtained from the comparison of two

really measured quantities, Uz(x) and τxz(x) = 〈εvxvz〉z.
The values proposed for νturb should thus be reliable,
within their estimated uncertainty. The consequence,
however, is that kturb

x behaves as (x+ − x−)4 (see Eq.
34).

We thus proceed as follows. We define symetrized ver-
sions of the data, namely:

Usym(x) = (Uz(x) − Uz(d − x))/2 (36)

and

τsym(x) = (τxz(x) + τxz(d − x))/2 (37)

and we call dU and dτ the root mean squared dif-
ferences between these symetrized data and the sine
approximations. We then search for the minimum of
(dτ/τxz,o)

2 + 4(dU/U)2 versus (x+ − x−). This mini-
mum, mainly dominated by dτ , is sufficiently peaked as
to consider (x+−x−) as determined within less than 2%.

In this section, we showed that the mean flow is coher-
ent with the most simple model, implying constant ef-
fective diffusivities and stress free boundary conditions.
Measuring the Reynolds stresses give us access to the
horizontal temperature profile and to the horizontal cor-
responding heat flux. Concrete values, and an interpre-
tation of the measured turbulent diffusivities, are given
in the next section
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VII. MIXING LENGTHS AND PLUMES

In this section, we examine the pertinence of effective
transport coefficients to describe our “turbulent fluid”.
Having in mind a comparison with the kinetic theory
of gases, a transport coefficient like νturb can be seen as
the product of the characteristic velocity of fluid particles
(the momentum carriers) with a characteristic length, the
Prandtl’s “mixing length”. As the corresponding trans-
port is along the x axis, we can take

√
τxx as the charac-

teristic velocity, and write:

νturb = Lν
√

τxx (38)

Such a description makes sense only if Lν is smaller
than the characteristic length of the mean flow, of order
d. In the same spirit, we can write:

kturb
x = CpLkx

√
τxx (39)

and:

kturb
z = CpLQ

√
τzz (40)

The following table compares two experiments at the
average temperature of 30oC, with the total applied
power of 93W and 180W, in the first cell. ∆X/Xm refers
to the difference between the considered quantity values
in both cases, divided by their mean value. Vθ = L/τo.

Quantity X 93W 180W ∆X/Xm

Pr = ν/κ 5.22 5.12 -2%
β [K.m−1] 1.82 2.39 27%
L [cm] 10.1 11.1 9%
Vθ [m.s−1] 8.9 × 10−3 1.18 × 10−2 9%

Nu 8300 12200 38%
Ra 5.4 × 106 1.03 × 107 63%
Re 1170 1730 39%

x− [mm] 7.1 5.4 -27%
x+ [mm] 93.4 94.9 2%
U [m.s−1] 6.2 × 10−3 7.6 × 10−3 20%
τzz [m2.s−2] 2.8 × 10−5 4 × 10−5 35%
τxx [m2.s−2] 1.5 × 10−5 2.1 × 10−5 33%
τxz,o [m2.s−2] 0.68 × 10−5 1.0 × 10−5 39%

Θo [K] 0.079 0.112 35%
νturb [m2.s−1] 3.00 × 10−5 3.77 × 10−5 23%
kturb

x /Cp [m2.s−1] 1.1 × 10−4 1.3 × 10−4 18%
Prturb 0.28 0.29 4%
kturb

z /Cp [m2.s−1] 0.93 × 10−3 1.38 × 10−3 39%

Lν [cm] 0.78 0.83 6%
Lkx [cm] 2.8 2.9 2%
LQ [cm] 17.6 21.8 21%

Table I: Summary of the various quantities directly mea-

sured, or derived from the measurements for two experiments

at the average temperature of 30oC, in the first cell. The

last column allows to distinguish between the approximately

constant quantities and the varying ones.

Let us comment first on the values of x+ and x−. They
are close to the walls, the closer when the Reynolds num-
ber is higher. The relative size of the “boundary layer”
is smaller when Re is larger as one could have expected.
Thus the process we followed to determine x+ and x−

gives reasonable values.
Looking at the last column, we see that some quanti-

ties exhibit changes larger than the error bar, other not.
Specifically, we note that Prturb is the same in both cases.
Qualitatively, a value close to 1 had to be expected, as
the carriers of both momentum and energy are the fluid
particles themselves. The value obtained, 0.28±0.03 dif-
fers sufficiently from 1 to be non trivial. For example,
the Prandtl number of a monoatomic gas as Helium is
Pr = 0.7.

The “mixing lengths” show contrasting behaviors. Lν

and Lkx are short, much smaller than d, and can be con-
sidered as constant. They correspond to the expected
properties of such quantities. It means that their values
can be used for predicting the effective transport coeffi-
cients νturb and kturb

x , and that these effective coefficients
can yield to meaningful predictions, concerning the aver-
age flow.

Conversely, the values of LQ are not compatible with a
mixing length approach. If we refer again to the kinetic
theory of gases, these values suggest a “Knudsen” regime,
where the mean free path of the carriers is larger than
the size of the experiment. It is then more convenient
to focus on the behavior of “individual carriers”. This is
such a model that we develop below.

In a very schematic point of view, let us then consider
that heat is carried by intermittent coherent flows, which
we call plumes. The velocity intensity of such a plume
will be called υ and the temperature intensity ϑ, in such
a way that the instantaneous heat flux carried by the
plume is:

Q = Cpυϑ/2 (41)

Now, let us call � the probability to be in a plume at
a given point and time in the channel. The total heat
flux will be:

Q = �Q (42)

while the amplitude of the average flow U , and of the
horizontal temperature profile Θo will be:

U = �υ ; Θo = �ϑ (43)

We can thus estimate �, through:

� =
CpUΘo

2Q
(44)

Both experiments presented in the above table give es-
timates of � in the neighborhood of 14%. This ratio can
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also be seen as the part of the heat carried by the mean
flow. In this respect, we can say that most of the heat
is carried by plumes and not by the mean flow. Recent
studies in Rayleigh-Bénard cells [8, 9] yield to the same
conclusion.

VIII. CONCLUSION

In this paper, we have extended our previous measure-
ments to another cell, of different size and aspect ratio,
and found good agreement between the results of both
cells. We also have studied the structure of the flow, both
the mean flow and the fluctuations.

The temperature fluctuations, and their correlations,
confirmed the hypothesis of short correlation length we
made previouly. However, it also showed that the ra-
tio between the correlation length 	 and the correlation
time τo is much smaller than the rms velocity. Certainly,
further studies are necessary in order to confirm the im-
pression we have that both have parallel behaviors versus

Ra and Pr. In any case, this only result shows that the
organization of the coherent structures carrying the heat
is very peculiar and has to be elucidated.

The mean flow appeared to be rather simple, if we
disregard the reversals which will be the object of an-
other work. The flow appears to be governed by effective
horizontal transport coefficients νturb and kturb

x , the cor-
responding “mixing lengths” being much smaller than
the size of the channel. The effective “turbulent fluid”
appears as homogeneous on roughly the whole width of
the channel. It seems to be a scholar example for such
concepts.

Conversely, the vertical heat transport cannot be mod-
eled through an effective vertical heat conductivity. The
good picture is more a transport by individual plumes.
Again, further studies are needed to fully characterize
these plumes.

Acknowledgments

We gratefully acknowledge for stimulating discussions
with F. Toschi, D. Lohse, J.P. Hulin, F. Perrier, and P.
Le Gal. We thank F. Dumas, M. Moulin and F. Vittoz
for technical assistance. This work has been partly sup-
ported by the Agence Nationale pour la Recherche under
the contract GIMIC BLAN07-3 184455.

[1] E. Siggia,“High Rayleigh number convection”, Annu.
Rev. Fluid Mech., 26, 137, (1994).

[2] X. Chavanne, F. Chillà, B. Chabaud, B. Castaing,
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