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Abstract—We present a design and implementation of a
radix-4 complex division unit with prescaling of the operands.
Specifically, we extend the treatment of the residual bound and
errors due to the use of truncated redundant representation. The
requirements for prescaling tables are simplified and a detailed
specification of the table design is given. All principal components
used in the design are described and the proposed optimizations
are explained. The target platform for implementation was an
Altera Stratix II FPGA [15] for which we report timing and area
requirements. For a precision of 36 bits, the implementation uses
1093 ALUTs, achieving a latency of 97ns. The maximum clock
frequency is 268.53 MHz.

I. INTRODUCTION

Complex division is used in applications such as such

as signal processing (e.g., the complex SVD), multiantenna

systems (MIMO-type) [1], GPS [2], astronomy [3], and non-

linear RF measurement equipments [4]. Unlike for complex

multipliers [10], [12], its implementation has been commonly

provided in software. To improve its performance, a hardware

implementation is considered. With that objective, a hardware-

oriented algorithm and the corresponding theory for general

radix-r complex valued division based on a digit-recurrence

algorithm has been introduced in [6]. A high-level design of

a complex divider is discussed in [7] without implementation

details. In this paper we focus on the design and implementa-

tion of a radix-4 complex-valued division unit with the digit

set {−3, . . . , 3}. The operands and the result are in fractional

fixed-point form. We also refine some of the derivation results

from [6] to improve the implementation.

Specifically, with the dividend z = zR + izI and divisor

d = dR + idI , i =
√
−1, the design discussed computes

q = z/d. A high-level description of the algorithm is

Initialization: j = 0
w[0] = z (1)

Recurrence iterations: j = 1, . . . , n

qj+1 = Sel(4w[j], y) (2)

w[j + 1] = 4w[j] − qj+1y (3)

Result:

q =
z

d
= 0.qR

1 qR
2 qR

3 . . . qR
n + i0.qI

1qI
2qI

3 . . . qI
n (4)

The recurrence for complex division corresponds to the con-

ventional real-valued division discussed in [5] and similar

conditions such as the containment and continuity as well

as bounded residuals apply. The complex residual is w[j] =
wR[j] + iwI [j]. The quotient digits are qj+1 = qR

j+1 +
iqI

j+1, with the real and imaginary components qR
j+1 and

qI
j+1 ∈ {−3, . . . , 3}. These signed-digits can be converted

during the iterations using on-the-fly conversion [5] to obtain

conventional representation of the result. The complex residual

recurrence decomposes into two separate recurrences for the

real and imaginary part which can be computed in parallel:

wR[j + 1] = 4wR[j] − qR
j+1d

R + qI
j+1d

I (5)

wI [j + 1] = 4wI [j] − qR
j+1d

I − qI
j+1d

R (6)

where wR[0] = zR and wI [0] = zI . The quotient-digit

selection in the complex domain is a two-dimensional problem

because both qR
j+1 and qI

j+1 must be selected in such a

way that the real and imaginary residuals (wR[j], wI [j])
remain bounded. This is much more difficult than single-digit

selection used in the real case. We solve this problem by

scaling the operands by factor K such that Kz/Kd = x/y
where y = Kd ≈ 1. Consequently, yR ≈ 1 and yI ≈ 0,

and the selection of qR
j+1 and qI

j+1 can be performed on

the real and the imaginary shifted residuals separately in a

manner similar to real-valued division selection. To determine

the prescaling factor K, we assume that

‖Kd − 1‖∞ < ǫs (7)

where ‖α‖∞ = max(|αR|, |αI |).
After prescaling step, the recurrences are

wR[j + 1] = 4wR[j] − qR
j+1y

R + qI
j+1y

I (8)

wI [j + 1] = 4wI [j] − qR
j+1y

I − qI
j+1y

R (9)

where wR[0] = xR and wI [0] = xI . Because the scaling

makes yI ≈ 0 and yR ≈ 1 − ǫs the selection of the real

part of the quotient can be performed by rounding the shifted

real residual and taking the integer part. Similarly for the

selection of the imaginary part of the quotient digit. Moreover,

we can use estimates of σ fractional positions of the shifted

residuals 4wR[j] and 4wI [j] in the selection. Consequently,



the residuals can be computed in redundant form to keep the

cycle time short. The selection functions are

qR
j+1 = Sel(est(4wR[j], σ)) (10)

= sign(4wR[j]) × ⌊|est(4wR[j], σ)| + 1

2
⌋

qI
j+1 = Sel(est(4wI [j], σ)) (11)

= sign(4wI [j]) × ⌊|est(4wI [j], σ)| + 1

2
⌋

The selection function Sel satisfies

|Sel(est(x, σ)) − x| <
1

2
+ 2−σ (12)

The est(x, σ) is x truncated to σ fractional positions with

an error bound

estERR(x, σ) = |x − est(x, σ)| < 2−σ

If x is in carry-save form x = xC + xS then truncating the

carry and sum vector to σ + 1 fractional bits results in the

same maximum error committed, i.e. , estERR(x, σ) < 2−σ

and estERR(xC , σ + 1) + estERR(xS , σ + 1) < 2−σ .

Using (10), (11) and (12), a bound on the residual is deduced

which ensures that the digit (qR
j+1, qI

j+1) selected by rounding

is in the digit set {−3, . . . , 3}. Namely,

‖w[j] ‖∞ ≤ 1

4

(

3 +
1

2
+ 2−σ

)

(13)

As shown in [6], assuming that the scaling error is ǫs and

a = 3, the residual is bounded by

‖w[j]‖∞ < 2 × 3 × ǫs +
1

2
+ 2−σ (14)

Consequently,

6ǫs +
1

2
+ 2−σ ≤ 1

4

(

3 +
1

2
+ 2−σ

)

(15)

Satisfying this condition guarantees convergence of the digit-

recurrence algorithm and allows the choice of ǫs and σ to

optimize the implementation characteristics.

II. DESIGN

The design of the complex division unit consists of several

components: the prescaling module, the recurrence modules

for the real and imaginary parts, the on-the-fly converters to

obtain conventional representations, in addition to a simple

controller. A high level block diagram of the design is shown

in Fig. 1 with the timing shown in Fig. 2. The prescaling

module in Fig. 1 performs a ROM look-up using a short

estimate of the value of the divisor d as an address, in which

the ROM stores K = 1/d. It then computes the complex

product Kz, which is used to initialize w[0] in the recurrence

modules. The prescaling module computes Kd in parallel to

the initialization of the recurrence modules, which is then

used to perform the iterations of the recurrence. The initial

delay of the module to perform prescaling can be amortized

z d

Prescale

Imag. Rec.

qR
j+1

qR
j

qI
j+1

qI
j

D D

Real Rec.

OFC OFC

qR q I

Fig. 1. High-level block diagram of the complex division unit.
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Fig. 2. Timing relationships between modules.

by overlapping the prescaling of the next operation with digit-

recurrence iterations of the current operation–this however has

not been performed in the current implementation. Detailed

design of the prescaling is discussed in Section II-A.

The two recurrence modules (one for the real recurrence

and one for the imaginary) perform nearly identical operations

which can be mapped to the same hardware. Detailed design

of the recurrence module is discussed in Section II-C.

A. Prescaling

Prescaling consists of several steps: obtaining the factor K
from a table based on an short-precision estimate of d, and

computing Kz and Kd.

We define a function rnd(a, b) which returns a rounded

value of a to b fractional places, s.t. |a − rnd(a, b)| ≤ 1
22−b.

The factor K can be determined by using a short estimate of

d to q fractional positions, i.e., rnd(dR, q), rnd(dI , q) as an

address to a ROM which stores the corresponding values of

K with precision of t fractional positions,

KR = rnd(1/rnd(dR, q), t)

KI = rnd(1/rnd(dI , q), t)



Error analysis for the choices of parameters q and t is per-

formed in [13]. These effect ǫs used in (15) to guarantee con-

vergence of the algorithm. Radix 4, with digit set {−3, . . . , 3}
offers the most favorable choice of parameters by minimizing

the number of bits required for the ROM among radices 4, 8,

and 16, except radix 2 which has lowest memory requirements.

Over-redundant digit sets are another design choice but we

decided to restrict our design to maximally redundant digit

set which allows faithful rounding [6].

r a σ q t KBits (approx.)

2 1 4 5 12 16
4 2 5 7 14 256
4 3 4 6 13 64
Radix: 8, 16 see [13] ≥ 256

TABLE I
TODO: UPDATE TO NEW RESULTS DESIGN SPACE FOR MEMORY

REQUIREMENTS OF DIFFERENT RADIX (r), DIGIT SET ({−a, . . . , a}),
PRECISION OF RESIDUAL ESTIMATE FOR SELECTION (σ), PRECISION OF d

USED TO PERFORM TABLE LOOK-UP (q) AND PRECISION OF TABLE

ENTRIES (t).

The value of the divisor is in the usual range

1

2
≤ ‖d‖∞ < 1 (16)

Its estimate rnd(d, q) can be represented as 2 two’s comple-

ment numbers for the real and imaginary parts

rnd(d, q) = rnd(dR, q) + i rnd(dI , q) (17)

rnd(dR, q) = κR
0 .κR

1 κR
2 κR

3 . . . κR
q−1κ

R
q (18)

rnd(dI , q) = κI
0.κ

I
1κ

I
2κ

I
3 . . . κI

q−1κ
I
q (19)

An additional bit κ−1 is required (to represent +1) as

‖rnd(d, q)‖∞ ≤ 1, which will be handled as a special case.

To reduce the number of address bits, the table can store

corresponding values for |rnd(dR, q)| and |rnd(dI , q)|,
|rnd(dR, q)| = 0.αR

1 αR
2 αR

3 . . . αR
q (20)

|rnd(dI , q)| = 0.αI
1α

I
2α

I
3 . . . αI

q (21)

which eliminates the need for bits κR
0 and κI

0 (the sign) to

be used when forming an address. Likewise, since ‖d‖∞ ≥ 1
2

we know that either αR
1 = 1 or αI

1 = 1 [6] (or both). Had an

address been formed using

αR
1 αR

2 αR
3 . . . αR

q αI
1α

I
2α

I
3 . . . αI

q

then the address would require 2q bits. Given that

γ(dR, dI) =
1

dR + idI
=

dR − idI

(dR)2 + (dI)2
(22)

γ(dI , dR) = −γ(dR, dI) (23)

we could check if αR
1 = 1, if so then the address is formed

via

αR
2 αR

3 . . . αR
q αI

1α
I
2α

I
3 . . . αI

q

otherwise, it must be true that αI
1 = 1 so the address is formed

as

αI
2α

I
3 . . . αI

qα
R
1 αR

2 αR
3 . . . αR

q

and the results obtained from the table look-up are negated

based on (23). This reduces the number of address bits to

2q − 1 (halving the memory required) while introducing little

additional overhead.

Extra care must be taken with the aforementioned ap-

proach; although it is true that dividend is assumed to be

bounded by −1 < ‖d‖∞ < 1, it is certainly not true that

−1 < rnd(dR, q) < 1, in fact −1 ≤ rnd(dR, q) ≤ 1 (same

holds for rnd(dI , q)). The two’s complement representation

of the rounded divisor shown in equations (18) and (19)

has range [−1, 1). Negating -1 in two’s complement with

the given representation is a special case; recalling that +1

is also a special case, the input is divided into two cases:

‖rnd(d, q)‖∞ < 1 and ‖rnd(d, q)‖∞ = ±1.

Another special case occurs when negating the results

obtained from the table look-up due to the swapping dis-

cussed earlier. For positive values of dR and dI the real

part of 1/d is positive and the imagary part negative. The

real part of 1/d is positive for positive values of dR and

the imaginary part of 1/d is negative for positive values of

dI . Since 1/2 ≤ ‖rnd(d, q)‖∞ ≤ 1 and the table only stores

values for positive dR and dI values, then 0 ≤ KR ≤ 2 and

−2 ≤ KI ≤ 0. Therefore the table should only contain the

magnitude of the value, which can be represented in 2 + t
bits–this will present no anomalies if 3 integer bits are used

for the negated values, i.e., the ROM will store 2 + t bits, but

the negated value will be 3 + t bits

Here we describe the operation of the table incorporating



the special cases,

rnd(dR, q) = κR
−1κ

R
0 .κR

1 κR
2 κR

3 . . . κR
q

rnd(dI , q) = κI
−1κ

I
0.κ

I
1κ

I
2κ

I
3 . . . κI

q

A
R = |rnd(dR, q)| = αR

0 .αR
1 αR

2 αR
3 . . . αR

q

A
I = |rnd(dI , q)| = αI

0.α
I
1α

I
2d

I
3 . . . αI

q

A =

{

αR
2

αR
3

...αR
q αI

1
αI

2
αI

3
...αI

q if αR
1

=1,

αI
2
αI

3
...αI

qαR
1

αR
2

αR
3

...αR
q otherwise

As =

{

αI
1
αI

2
αI

3
...αI

q if A
R=±1,

αR
1

αR
2

αR
3

...αR
q otherwise

(UR, U I) =















































(1/2,−1/2) if A
R=1, AI=1,

(1/2,1/2) if A
R=1, AI=−1,

(−1/2,−1/2) if A
R=−1, AI=1,

(−1/2,1/2) if A
R=−1, AI=−1,

ROMs[As] if A
R=±1 and A

I 6=±1

or A
I=±1 and A

R 6=±1

ROM [A] otherwise

negR =

{

1 if real and imaginary swapped,

0 otherwise

negI =

{

1 if real and imaginary not swapped,

0 otherwise

KR = (−1)negR

UR

KI = (−1)negI

U I

TODO: Update to new results. From Table I, we have q = 6
and t = 13 for radix r = 4 and a = 3.

• ROM : This ROM has 11 address bits and is 30 bits wide,

which can be mapped to 15 Altera Stratix II M4K RAM

blocks. Give a percentage

• ROMS : This ROM has 6 address bits and is 30 bits

wide, which can be mapped to a single Altera Stratix II

M4K RAM block. Give a percentage

A schematic corresponding to the described look-up scheme

is shown in Fig. 3.

The other two parts of the prescaling step involve computing

Kz and Kd which will be used to initialize and carry out the

digit recurrence algorithm. Once K is determined x and y can

be computed via,

x = (KR + iKI)(zR + izI)

= (KRzR − KIzI) + i(KIzR + KRzI)

y = (KR + iKI)(dR + idI)

= (KRdR − KIdI) + i(KIdR + KRdI)

Since multipliers are costly in hardware, the complex valued

products will be computed one at a time. Coincidentally,

y = Kd is not required until after the residuals have been

initialized with x = Kz, which can be computed in the

previous cycles. Figure 4 shows the block diagram for the

scaling module. The module uses several signals to control the

dR dI

rnd( . ,6) rnd( . ,6)

8 8

ABS ABS

6 6αR
1 . . . αR

6 αI
1 . . . αI

6

5 5

αR
1 1 0

ROM

1 0

ROMs

11 11 6 6

6

30 30

15 15 15 15

1/
2

-1
/2

-1
/2

1/
2

1 0

NEG

1 0

NEG

KR KI

UR U I

negR negI

16 16

16 16 16 16

A
R = ±1

κR
−1 . . . κR

q κI
−1 . . . κI

q

Fig. 3. TODO: update the figure. Prescaling ROM. The ABS block computes
the absolute value of a two’s complement number. Blocks rnd(., 6) round
their argument to the sixth fractional position. NEG blocks negate their
argument, a two’s complement number.

data path: eninputs, enpres, ensc, and selmul. Control signals

enx are clock enable signals to registers to control when data

is latched. Clock enables on registers are used to facilitate

multi-cycle paths which are necessary due to the larger delay

of the prescaling logic.

In Fig. 4 eninputs controls when the inputs to the complex

division unit are latched such that the values can be retained

throughout the course of the operation–this is not necessarily

unique and depends on the how the module is interfaced

to other logic. For example, if the external logic feeds the

arguments to the complex division unit in two cycles: sending

(zR, zI) in the first and (dR, dI) in the second, then only 2

register banks are required for the inputs as opposed to 4. The

current design reflects the assumption that the module receives

its arguments in the same cycle, i.e., as (zR, zI , dR, dI).



KR

KI

AR AI

KI

KR

AR AI

D D

Prescaling
ROM

D D D D

divisordividend

AR
AI

zR zI dR dI
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KIKR

ensc
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D D

QR QI

Fig. 4. Prescaling module. The Prescaling ROM block above is the module
shown in Fig. 3.

Signal enpres controls storing of the results of the prescaling

ROM look-up, retained throughout the course of the operation.

Signals selmul and ensc are used to share the multipliers

so that prescaling of the dividend and the divisor occurs

in separate prescaling cycles. Although the prescaled value

x = Kz is also fed through the registers controlled by ensc,

its value is not retained but over-written in the next cycle by

y = Kd. The same enable signal (ensc) is used once more to

assure that the value of y is retained in these registers which

feed the recurrence modules discussed in Section II-C.

B. Bounds of Values

It is important to characterize the bounds of the inputs to

the complex division module in addition to the bounds of the

prescaled values which predetermine the width of inputs to

the recurrence modules.

The input d is in the range 1/2 ≤ ‖d‖∞ < 1,

and through our convergence analysis further constrained

‖Kd − 1‖∞ < ǫs. This implies that the prescaled value y
satisfies

max(|yR − 1|, |yI |) < ǫs

⇒ |yR − 1| < ǫs

|yI | < ǫs

Since |yR| < 1 + ǫs, its representation in two’s complement

would require 2 integer bits and n fractional bits.

Likewise, the constraint (14) determines the maximum value

that the residual could possibly take. For our design point

σ = 4 which means that the residual is bounded by,

‖w[j]‖∞ ≤ 1

4

(

3 +
1

2
+ 2−4

)

= 57/64

⇒ |wR[0]| = |ℜ(Kz)| = |xR| ≤ 57/64

|wI [0]| = |ℑ(Kz)| = |xI | ≤ 57/64

Therefore, the prescaled value (xR, xI) requires only a single

integer bit, and n fractional bits. We are interested in deter-

mining a bound on z which we can derive from the bound on

w,

‖w[0]‖∞ = ‖Kz‖∞ ≤ 2‖K‖∞‖z‖∞ ≤ 57/64 (24)

since ‖K‖∞ ≤ 2 then

‖z‖∞ ≤ 57/256 (25)

requiring only n− 1 fractional bits, with most siginificant bit

having weight 2−2.

C. Digit-Recurrence Iterations

The digit-recurrence iterations compute the residuals (5) (6)

and perform quotient-digit selection based on a short non-

redundant estimate of the residuals as shown in Eq. (10) and

(11).

The recurrences in (5) and (6) are structurally the same.

Namely,

w[j + 1] = 4w[j] + σ1y
R + σ2y

I (26)

The residuals are computed in redundant form in order to

reduce the cycle time by eliminating the need for long carry

chains. In our implementation we used a carry-save form. The

operation is expressed as

(wC [j + 1], wS [j + 1]) =

ADD[6:2](4wC [j], 4wS [j], σ1
1yR, 2σ2

1yR, σ1
2yI , 2σ2

2yI) (27)

where ADD[6:2](a, b, c, d, e, f) is a [6 : 2] carry-save adder

taking 6 inputs and producing a carry vector and sum vector,

shown in Fig. 5. The digits σ1 and σ2 are in the digit set

{−3, . . . , 3} so we implement this digit multiplication by

decomposing σk = 2σ2
k + σ1

k where σi
k ∈ {−1, 0, 1}. Multi-

plying by negative one is achieved by inverting the input and

adding a carry-in to the reduction module.

Digit selection is performed by finding a short precision

estimate of the residual and rounding to the nearest integer

via a small CPA and table. In the discussion that follows

we generally say residual without referring specifically to the

real or imaginary part–the analysis holds for both residuals

wR and wI . In Section II-B we determined that the residual

has a single integer bit and n fractional bits, i.e., it is of

the form w = w0.w1w2 . . . wn with value
∑n

i=0 wi2
−i.

In redundant form w = wc + ws where (wc, ws) =
(C0.C1C2C3 . . . Cn, S0.S1S2S3 . . . Sn). Recalling that selec-

tion is performed via,

qj+1 = Sel(est(4w[j], σ))
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Fig. 5. [6 : 2] Adder module. The adder consists of three different slices: the least significant slice, which sums 6 arguments and takes 4 carry-ins, the repeat
slice which sums 6 arguments and takes 4 lateral carries and produces 4 lateral carries to the subsequent slice, and the most significant slice.
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Fig. 6. Real recurrence module. Blocks ×4 shift their argument right by
2 binary places. Blocks MG compute σ times their argument using the σi

k
decomposition discussed. The CPA module is a carry propagate adder which
computes a short non-redundant estimate of the residual. The Sel module
takes as argument this estimate and outputs the next quotient digit.

where σ = 4 as determined in section II-A, we know that

est(4w[j], 4) = w0w1w2.w3w4w5w6 =
n

∑

i=0

wi2
−i+2

estERR(4w[j], 4) < 2−4

now since w is in redundant form,

est(4wc[j], 5) = C0C1C2.C3C4C5C6C7

est(4ws[j], 5) = S0S1S2.S3S4S5S6S7

g = est(4wc[j], 5) + est(4ws[j], 5) (28)

estERR(4wc[j], 5) + estERR(4ws[j], 5) < 2−4

which gives us the short precision estimate of the residual g.

It is important to realize that g 6= est(4w[j], 4) in general

but that they commit the same maximum error 2−4 in their

approximation of w[j]. The addition in equation (28) requires

the CPA that we have been referring to during this discussion.

g−2g−1g0.g1 . . . g5 =

CPA(C0C1C2.C3 . . . C7, S0S1S2.S3 . . . S7) (29)

In order to round g and take the integer part one can use a

small table as in table II by introducing an additional variable

gz = g2 + g3 + g4 + g5 (i.e. the logical or of bits g2 through

g5). This table is a function of 5 bits and produces three bits

of output (for the encoding of qj+1) and will efficiently map

to LUTs.
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Fig. 7. First implementation of recurrence reduction. Each rectangular box
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g
−2 g

−1 g0 g1 gz qj+1

0 0 0 0 - 0
0 0 0 1 - 1
0 0 1 0 - 1
0 0 1 1 - 2
0 1 0 0 - 2
0 1 0 1 - 3
0 1 1 0 - 3
1 0 0 1 1 -3
1 0 0 1 1 -3
1 0 1 0 - -3
1 0 1 1 0 -3
1 0 1 1 1 -2
1 1 0 0 - -2
1 1 0 1 1 -1
1 1 1 0 - -1
1 1 1 1 1 0

TABLE II
ROUNDING TO INTEGER PART.

D. Optimizing the Recurrence Implementation

A straightforward implementation of the recurrence is

shown in Fig. 7. There are several opportunities for optimiza-

tion in Fig. 7,

• Since the residual is bounded in range (−57/64, 57/64),

there is only one integer bit required to store the value of

the residual. Based on this observation there is no need

to find the sum of bits with weight greater than 20 = 1.

• The recurrence implementation can be optimized in the

most significant bits by using the non-redundant value

computed for selection in the adder as opposed to the

redundant form stored in the registers. Although addition

of a short CPA delay to the most significant bits seems

counter-intuitive to optimization, it turns out that for all

fitting attempts to the Stratix II architecture this path was

not the critical path–paths with routing delays dominated

the critical path (short carry chains don’t exhibit routing

delays as there are dedicated carry paths in Adaptive

Logic Modules [15]). Since using the non-redundant

portion didn’t introduce a new critical path and reduced

the input bits it served as a pragmatic optimization

technique. The non-redundant approximation g computed

for selection can be used in the addition as opposed to

using the [6 : 2] adders. This simplifies the [6 : 2] adder

to a [5 : 2] adder requiring 4 lateral carries (as opposed

to a conventional [5 : 2] adder which only requires 3

lateral carries) which we denoted as [5 : 2]4–the lateral

carries come from the previous [6 : 2] adder. The interface

between the [6 : 2] adder, the [5 : 2]4 adder and the XOR

slice is shown in Fig. 9.

• The [5 : 2]4 adder produces both sj+1
1 and cj+1

0 , it is

unnecessary to produce sj+1
0 with the same module since

we will discard cj+1
−1 . Bit sj+1

0 is just the sum modulus 2

of all bits of weight 1 plus the lateral carries, which can

be computed via exclusive-ors (XOR).

Applying all mentioned optimizations we get an improved

design shown in Fig. 8.

III. DESIGN METHODOLOGY AND RESULTS

A. Methodology

The proposed designs were written at the RTL level us-

ing VHDL and simulated for functional correctness with

Modelsim-Altera Edition 8.1. They were mapped to an Altera

Stratix II architecture using Quartus II 8.1 flow tools. The

Quartus Classic Timing Analyzer was used to determine the

timing characteristics of the circuit in addition to placing

constraints on ROM look-up and prescaling registers to inform

the tool of multi-cycle paths.

The multiplies performed in the prescaling module map

to the Altera DSP blocks for precisions up to 36 bits–these

modules support up to 36 × 36 multiplication. It does not

really make sense to go beyond this precision as the current

design choice is targeted for an architecture which supports

fast multipliers. For larger precisions it seems more sensible

to design an efficient custom rectangular multiplier.

B. Implementation Area and Delay Characteristics

The results show the number of ALUTs (Adaptive LUTs

[15]), of which there are two in every ALM (Adaptive Logic

Module) : the basic building blocks for logic in Altera Stratix

II devices. The DSP blocks on Stratix II architectures support
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either eight 9 × 9 multiplies, four 18 × 18 multiplies or

one 36 × 36 multiply. The proposed design is limited to the

availability of multiplication units and therefore we have only

reported results for two design points, one utilizing a single

DSP block with four 18 × 18 multipliers and the other using

four DSP blocks each performing 36 × 36 multiplies. The

on-the-fly conversion module was actually not implemented

for this particular design and results were kept in signed-digit

form. Each OFC block contains two multiplexers and register

Precision [bits] 18 36

ALUTs 612 1093
DSP Block (9-bit elements) 8 32
Registers 214 394
M4K RAM blocks 15 15
Critical path (ns) 3.606 3.724
Max. frequency (MHz) 277.32 268.53
Prescaling look-up (Cycles) 2 2
Prescaling (Cycles) 2*2 2*3
Total prescaling (Cycles) 6 8
Iterations (cycles) 9 18
Total time (latency) (ns) 54 97

TABLE III
TODO: UPDATE TO NEW RESULTS. RESULTS FOR PRECISION 18 AND 36

COMPLEX DIVISION UNITS IMPLEMENTED ON AN ALTERA STRATIX II
FPGA.

banks n bits wide, with a small amount of control logic. For

the 18 bit design, this would amount to approximately 72 (2×
OFC units) ×(2× Register banks per OFC unit) ×(18 bits

per register bank) additional registers–since each ALM holds

two registers, it can be fairly extrapolated that 36 additional

ALMs: 72 ALUTs and registers would suffice to form the

conventional output format for the 18-bit complex division

unit (and 72 ALMs: 144 ALUTs and registers for the 36-bit

design).

The most common scenario we forsee a designer will face

when determining the usefulness of a complex division unit

is when comparing performance to a software based solution.

One such software solution presented in [14] is based on the

following,

a + jb

c + jd
=

{

a+b(d/c)
c+d(d/c) + j b−a(d/c)

c+d(d/c) if |c| ≥ |d|
b+a(c/d)
d+c(c/d) + j a−b(c/d)

d+c(c/d) if |d| ≥ |c|
(30)

which requires significantly more arithmetic operations, 4

conventional divisions ad 3 multiplications. A complex divider

have been described in [16] implementing Smith’s formula

with a pipelined multiplier, divider, and adder for an 8-bit

precision (+4 guard bits). The scheme uses small number

of Xilinx Virtex-II slices and operates at 100 MHz. Another

design for a complex divider is proposed in [17]. It uses an

algorithm similar to the SRT division. It also has an efficient



implementation and a latency for 15-bit precision of about

600ns, and a throughput of 1.6MHz. These two approaches

are not comparable to our higher-radix approach in terms of

speed. They have an advantage that there is no prescaling

and no tables for prescaling factors. Radix-2 complex online

arithmetic developed in [9] is not directly comparable to our

implementation.

IV. CONCLUSIONS AND FUTURE WORK

We presented the design and implementation of a radix-

4 complex division unit with a single prescaling table. The

implementation requires 1093 ALUTs, with a critical path

of 3.724 ns, and a maximum frequency of 268.53 MHz.

The prescaling table requires 2K words of 30 bits. To our

knowledge no comparable implementation exists at the time

and our results initiate a point of reference for other hardware

based designs. In future work we plan on exploring the use of

multipartite tables to reduce the table requirements in addition

to developing specialized rectangular multipliers to enable

higher radix designs.
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