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Abstract—We present a design and implementation of a
radix-4 complex division unit with prescaling of the operands.
Specifically, we extend the treatment of the residual bound and
errors due to the use of truncated redundant representation. The
requirements for prescaling tables are simplified and a detailed
specification of the table design is given. All principal components
used in the design are described and the proposed optimizations
are explained. The target platform for implementation was an
Altera Stratix II FPGA [15] for which we report timing and area
requirements. For a precision of 36 bits, the implementation uses
1185 ALUTs, achieving a latency of 157 ns. The maximum clock
frequency is 173.49 MHz.

I. INTRODUCTION

Complex division is used in applications such as signal
processing (e.g., the complex SVD), multiantenna systems
(MIMO-type) [1], GPS [2], astronomy [3], and non-linear RF
measurement [4]. Unlike for complex multipliers [10], [12],
its implementation has been commonly provided in software.
To improve its performance, a hardware implementation is
considered. With that objective, a hardware-oriented algorithm
and the corresponding theory for general radix-r complex
valued division based on a digit-recurrence algorithm has
been introduced in [6]. A high-level design of a complex
divider is discussed in [7] without implementation details. In
this paper we focus on the design and implementation of a
radix-4 complex-valued division unit with the quotient-digit
set {−3, . . . , 3}. The operands and the result are in fractional
fixed-point form. We also refine some of the derivation results
from [6] to improve the implementation.

Specifically, with the dividend z = zR + izI and divisor
d = dR + idI , i =

√−1, the design discussed computes
q = z/d. A high-level description of the algorithm is

Initialization: j = 0
w[0] = z (1)

Recurrence iterations: j = 1, . . . , n

qj+1 = Sel(4w[j], y) (2)
w[j + 1] = 4w[j]− qj+1y (3)

Result:

q =
z

d
= 0.qR1 q

R
2 q

R
3 . . . q

R
n + i0.qI1q

I
2q
I
3 . . . q

I
n (4)

The recurrence for complex division corresponds to the con-
ventional real-valued division discussed in [5] and similar
conditions such as the containment and continuity as well
as bounded residuals apply. The complex residual is w[j] =
wR[j] + iwI [j]. The quotient digits are qj+1 = qRj+1 +
iqIj+1, with the real and imaginary components qRj+1 and
qIj+1 ∈ {−3, . . . , 3}. These signed-digits can be converted
during the iterations using on-the-fly conversion [5] to obtain
conventional representation of the result. The complex residual
recurrence decomposes into two separate recurrences for the
real and imaginary part which can be computed in parallel:

wR[j + 1] = 4wR[j]− qRj+1d
R + qIj+1d

I (5)

wI [j + 1] = 4wI [j]− qRj+1d
I − qIj+1d

R (6)

where wR[0] = zR and wI [0] = zI . The quotient-digit
selection in the complex domain is a two-dimensional problem
because both qRj+1 and qIj+1 must be selected in such a
way that the real and imaginary residuals (wR[j], wI [j])
remain bounded. This is much more difficult than single-digit
selection used in the real case. We solve this problem by
scaling the operands by factor K such that Kz/Kd = x/y
where y = Kd ≈ 1. Consequently, yR ≈ 1 and yI ≈ 0,
and the selection of qRj+1 and qIj+1 can be performed on
the real and the imaginary shifted residuals separately in a
manner similar to real-valued division selection. To determine
the prescaling factor K, we assume that

‖Kd− 1‖∞ < εs (7)

where ‖α‖∞ = max(|αR|, |αI |).
After prescaling step the recurrences are

wR[j + 1] = 4wR[j]− qRj+1y
R + qIj+1y

I (8)

wI [j + 1] = 4wI [j]− qRj+1y
I − qIj+1y

R (9)

where wR[0] = xR and wI [0] = xI . Because the scaling
makes yI ≈ 0 and yR ≈ 1 − εs the selection of the real part
of the quotient can be performed by rounding the shifted real
residual and taking its integer part. Similarly for the selection
of the imaginary part of the quotient digit. Moreover, we
can use estimates with σ fractional positions of the shifted
residuals 4wR[j] and 4wI [j] in the selection. Consequently,



the residuals can be computed in redundant form to keep the
cycle time short. The selection functions are

qRj+1 = Sel(est(4wR[j], σ)) (10)

= sign(4wR[j])× b|est(4wR[j], σ)|+ 1
2
c

qIj+1 = Sel(est(4wI [j], σ)) (11)

= sign(4wI [j])× b|est(4wI [j], σ)|+ 1
2
c

The selection function Sel satisfies

|Sel(est(x, σ))− x| < 1
2

+ 2−σ (12)

The est(x, σ) is x truncated to σ fractional positions with
an error bound

estERR(x, σ) = |x− est(x, σ)| < 2−σ

If x is in carry-save form x = xC + xS then truncating the
carry and sum vector to σ + 1 fractional bits results in the
same maximum error committed, i.e. , estERR(x, σ) < 2−σ

and estERR(xC , σ + 1) + estERR(xS , σ + 1) < 2−σ .
Using (10), (11) and (12), a bound on the residual is deduced

which ensures that the digit (qRj+1, qIj+1) selected by rounding
is in the digit set {−3, . . . , 3}. Namely,

‖w[j] ‖∞ ≤ 1
4

(
3 +

1
2

+ 2−σ
)

(13)

As shown in [6], assuming that the scaling error is εs and
a = 3, the residual is bounded by

‖w[j]‖∞ < 2× 3× εs +
1
2

+ 2−σ (14)

Consequently,

6εs +
1
2

+ 2−σ ≤ 1
4

(
3 +

1
2

+ 2−σ
)

(15)

Satisfying this condition guarantees convergence of the digit-
recurrence algorithm and allows the choice of εs and σ to
optimize the implementation characteristics.

II. DESIGN

The design of the complex division unit consists of several
components: the prescaling module, the recurrence modules
for the real and imaginary parts, the on-the-fly converters to
obtain conventional representations, and a simple controller.
A high level block diagram of the design is shown in Fig. 1
with the timing shown in Fig. 2. The prescaling module in
Fig. 1 performs a ROM look-up using a short estimate of
the value of the divisor d as an address, in which the ROM
stores K = 1/d. It then computes the complex product Kz,
which is used to initialize w[0] in the recurrence modules. The
prescaling module computes Kd in parallel to the initialization
of the recurrence modules, which is then used to perform the
iterations of the recurrence. The initial delay of the module
to perform prescaling can be amortized by overlapping the
prescaling of the next operation with digit-recurrence iterations

z d

Prescale

Imag. Rec.Real Rec.

OFC OFC

qR q I

qR
j qI

j

Fig. 1. High-level block diagram of the complex division unit.
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Fig. 2. Timing relationships between modules.

of the current operation–this however has not been performed
in the current implementation. Detailed design of the prescal-
ing is discussed in Section II-A.

The two recurrence modules (one for the real recurrence
and one for the imaginary) perform nearly identical operations
which can be mapped to the same hardware. Detailed design
of the recurrence module is discussed in Section II-C.

A. Prescaling

Prescaling consists of several steps: obtaining the factor K
from a table based on an short-precision estimate of d, and
computing Kz and Kd.

We define a function rnd(a, b) which returns a rounded
value of a to b fractional places, s.t. |a− rnd(a, b)| ≤ 1

22−b.
The factor K can be determined by using a short estimate of
d to q fractional positions, i.e., rnd(dR, q), rnd(dI , q) as an
address to a ROM which stores the corresponding values of
K with precision of t fractional positions,

KR = rnd(1/rnd(dR, q), t)

KI = rnd(1/rnd(dI , q), t)

Error analysis for the choices of parameters q and t is per-
formed in [13]. These effect εs used in (15) to guarantee con-
vergence of the algorithm. Radix 4, with digit set {−3, . . . , 3}
offers the most favorable choice of parameters by minimizing
the number of bits required for the ROM among radices 4, 8,



and 16, except radix 2 which has lowest memory requirements.
Over-redundant digit sets are another design choice but we
decided to restrict our design to maximally redundant digit
set which allows faithful rounding [6].

r a σ q t KBits (approx.)
2 1 4 5 5 7.5
4 2 5 7 7 146
4 3 4 6 6 33
Radix: 8, 16 see [13] ≥ 146

TABLE I
MEMORY (ROM) REQUIREMENTS OF DIFFERENT RADIX (r), DIGIT SET
{−a, . . . , a}, PRECISION OF RESIDUAL ESTIMATE FOR SELECTION (σ),

PRECISION OF d USED TO PERFORM TABLE LOOK-UP (q) AND PRECISION
OF TABLE ENTRIES (t).

The value of the divisor is in the usual range
1
2
≤ ‖d‖∞ < 1 (16)

noting that larger values can be scaled to this range. Its
estimate rnd(d, q) can be represented as 2 two’s complement
numbers for the real and imaginary parts

rnd(d, q) = rnd(dR, q) + i rnd(dI , q) (17)

rnd(dR, q) = κR0 .κ
R
1 κ

R
2 κ

R
3 . . . κ

R
q−1κ

R
q (18)

rnd(dI , q) = κI0.κ
I
1κ
I
2κ
I
3 . . . κ

I
q−1κ

I
q (19)

An additional bit κ−1 is required (to represent +1) as
‖rnd(d, q)‖∞ ≤ 1, which will be handled as a special case.
To reduce the number of address bits, the table can store
corresponding values for |rnd(dR, q)| and |rnd(dI , q)|,

|rnd(dR, q)| = 0.αR1 α
R
2 α

R
3 . . . α

R
q (20)

|rnd(dI , q)| = 0.αI1α
I
2α

I
3 . . . α

I
q (21)

which eliminates the need for bits κR0 and κI0 (the sign) to
be used when forming an address. Likewise, since ‖d‖∞ ≥ 1

2
we know that either αR1 = 1 or αI1 = 1 [6] (or both). Had an
address been formed using

αR1 α
R
2 α

R
3 . . . α

R
q α

I
1α

I
2α

I
3 . . . α

I
q

then the address would require 2q bits. Given that

γ(dR, dI) =
1

dR + idI
=

dR − idI
(dR)2 + (dI)2

(22)

γ(dI , dR) = −γ(dR, dI) (23)

we could check if αR1 = 1, if so then the address is formed
via

αR2 α
R
3 . . . α

R
q α

I
1α

I
2α

I
3 . . . α

I
q

otherwise, it must be true that αI1 = 1 so the address is formed
as

αI2α
I
3 . . . α

I
qα

R
1 α

R
2 α

R
3 . . . α

R
q

and the results obtained from the table look-up are negated
based on (23). This reduces the number of address bits to
2q− 1 (halving the memory required) while introducing little
additional overhead.

Extra care must be taken with the aforementioned ap-
proach; although it is true that dividend is assumed to be
bounded by −1 < ‖d‖∞ < 1, it is certainly not true that
−1 < rnd(dR, q) < 1, in fact −1 ≤ rnd(dR, q) ≤ 1 (same
holds for rnd(dI , q)). The two’s complement representation
of the rounded divisor shown in equations (18) and (19)
has range [−1, 1). Negating -1 in two’s complement with
the given representation is a special case; recalling that +1
is also a special case, the input is divided into two cases:
‖rnd(d, q)‖∞ < 1 and ‖rnd(d, q)‖∞ = ±1.

Another special case occurs when negating the results
obtained from the table look-up due to the swapping discussed
earlier. For positive values of dR and dI the real part of
1/d is positive and the imaginary part negative. The real
part of 1/d is positive for positive values of dR and the
imaginary part of 1/d is negative for positive values of
dI . Since 1/2 ≤ ‖rnd(d, q)‖∞ ≤ 1 and the table only stores
values for positive dR and dI values, then 0 ≤ KR ≤ 2 and
−2 ≤ KI ≤ 0. Therefore the table should only contain the
magnitude of the value, which can be represented in 2 + t
bits–this will present no anomalies if 3 integer bits are used
for the negated values, i.e., the ROM will store 2 + t bits, but
the negated value will be 3 + t bits

Here we describe the operation of the table incorporating
the special cases,

rnd(dR, q) = κR−1κ
R
0 .κ

R
1 κ

R
2 κ

R
3 . . . κ

R
q

rnd(dI , q) = κI−1κ
I
0.κ

I
1κ
I
2κ
I
3 . . . κ

I
q

AR = |rnd(dR, q)| = αR0 .α
R
1 α

R
2 α

R
3 . . . α

R
q

AI = |rnd(dI , q)| = αI0.α
I
1α

I
2d
I
3 . . . α

I
q

A =

{
αR

2 α
R
3 ...α

R
q α

I
1α

I
2α

I
3...α

I
q if αR

1 =1,

αI
2α

I
3...α

I
qα

R
1 α

R
2 α

R
3 ...α

R
q otherwise

As =

{
αI

1α
I
2α

I
3...α

I
q if AR=±1,

αR
1 α

R
2 α

R
3 ...α

R
q otherwise

(UR, U I) =



(1/2,−1/2) if AR=1,AI=1,

(1/2,1/2) if AR=1,AI=−1,

(−1/2,−1/2) if AR=−1,AI=1,

(−1/2,1/2) if AR=−1,AI=−1,

ROMs[As] if AR=±1 and AI 6=±1

or AI=±1 and AR 6=±1

ROM [A] otherwise

negR =

{
1 if real and imaginary swapped,

0 otherwise

negI =

{
1 if real and imaginary not swapped,

0 otherwise

KR = (−1)neg
R

UR

KI = (−1)neg
I

U I

From Table I, we have q = 6 and t = 6 for radix r = 4 and
a = 3.
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Fig. 3. Prescaling ROM. The ABS block computes the absolute value of a
two’s complement number. Blocks rnd(., 6) round their argument to the sixth
fractional position. NEG blocks negate their argument, a two’s complement
number.

• ROM : This ROM has 11 address bits and is 16 bits
wide, which can be mapped to 8 Altera Stratix II M4K
RAM blocks, constituting less than one percent of the
total block memory bits in an EP2S60F672C3 device.

• ROMS : This ROM has 6 address bits and is 16 bits
wide, which was mapped to logic and registers.

A schematic corresponding to the described look-up scheme
is shown in Fig. 3.

The other two parts of the prescaling step involve computing
Kz and Kd which will be used to initialize and carry out the
digit recurrence algorithm. Once K is determined x and y can

be computed via,

x = (KR + iKI)(zR + izI)

= (KRzR −KIzI) + i(KIzR +KRzI)

y = (KR + iKI)(dR + idI)

= (KRdR −KIdI) + i(KIdR +KRdI)

Since multipliers are costly in hardware, the complex valued
products will be computed one at a time. Coincidentally,
y = Kd is not required until after the residuals have been
initialized with x = Kz, which can be computed in the
previous cycles. Figure 4 shows the block diagram for the
scaling module. The module uses several signals to control the
data path: eninputs, enpres, ensc, and selmul. Control signals
enx are clock enable signals to registers to control when data
is latched. Clock enables on registers are used to facilitate
multi-cycle paths which are necessary due to the larger delay
of the prescaling logic.

In Fig. 4 eninputs controls when the inputs to the complex
division unit are latched such that the values can be retained
throughout the course of the operation–this is not necessarily
unique and depends on the how the module is interfaced
to other logic. For example, if the external logic feeds the
arguments to the complex division unit in two cycles: sending
(zR, zI) in the first and (dR, dI) in the second, then only 2
register banks are required for the inputs as opposed to 4. The
current design reflects the assumption that the module receives
its arguments in the same cycle, i.e., as (zR, zI , dR, dI).

Signal enpres controls storing of the results of the prescaling
ROM look-up, retained throughout the course of the operation.
Signals selmul and ensc are used to share the multipliers
so that prescaling of the dividend and the divisor occurs
in separate prescaling cycles. Although the prescaled value
x = Kz is also fed through the registers controlled by ensc,
its value is not retained but over-written in the next cycle by
y = Kd. The same enable signal (ensc) is used once more to
assure that the value of y is retained in these registers which
feed the recurrence modules discussed in Section II-C.

B. Bounds of Values

It is important to characterize the bounds of the inputs to
the complex division module in addition to the bounds of the
prescaled values which predetermine the width of inputs to
the recurrence modules.

The input d is in the range 1/2 ≤ ‖d‖∞ < 1,
and through our convergence analysis further constrained
‖Kd− 1‖∞ < εs. This implies that the prescaled value y
satisfies

max(|yR − 1|, |yI |) < εs

⇒ |yR − 1| < εs

|yI | < εs

Since |yR| < 1 + εs, its representation in two’s complement
would require 2 integer bits and n fractional bits.
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Fig. 4. Prescaling module. The Prescaling ROM block above is the module
shown in Fig. 3.

Likewise, the constraint (14) determines the maximum value
that the residual could possibly take. For our design point
σ = 4 which means that the residual is bounded by,

‖w[j]‖∞ ≤ 1
4

(
3 +

1
2

+ 2−4

)
= 57/64

⇒ |wR[0]| = |xR| ≤ 57/64

|wI [0]| = |xI | ≤ 57/64

Therefore, the prescaled value (xR, xI) requires only a single
integer bit, and n fractional bits. We are interested in deter-
mining a bound on z which we can derive from the bound on
w,

‖w[0]‖∞ = ‖Kz‖∞ ≤ 2‖K‖∞‖z‖∞ ≤ 57/64 (24)

since ‖K‖∞ ≤ 2 then

‖z‖∞ ≤ 57/256 (25)

requiring only n − 1 fractional bits, with most significant bit
having weight 2−2.

C. Digit-Recurrence Iterations

The digit-recurrence iterations compute the residuals (5) (6)
and perform quotient-digit selection based on a short non-
redundant estimate of the residuals as shown in Eq. (10) and
(11).

The recurrences in (5) and (6) are structurally the same.
Namely,

w[j + 1] = 4w[j] + σ1y
R + σ2y

I (26)

The residuals are computed in redundant form in order to
reduce the cycle time by eliminating the need for long carry

Real OFC

a b c d

MG MG

c0
in

c1
in

c2
in

c3
in

m0

m1
m2

m3

m0

m1

m2

m3

[6:2] Adder

D D
ws wc

CPA

Sel

QR

enres

e f

QI

×4 ×4

-qR

qR

NEGATE

(To Imaginary Recurrence)
qR

qI (From Imaginary

    Recurrence)

10 10

QR 0

initresinitres

Fig. 6. Real recurrence module. Blocks ×4 shift their argument right by
2 binary places. Blocks MG compute σ times their argument using the σi

k
decomposition discussed. The CPA module is a carry propagate adder which
computes a short non-redundant estimate of the residual. The Sel module
takes as argument this estimate and outputs the next quotient digit.

chains. In our implementation we used a carry-save form. The
operation is expressed as

(wC [j + 1], wS [j + 1]) =

ADD[6:2](4wC [j], 4wS [j], σ1
1y
R, 2σ2

1y
R, σ1

2y
I , 2σ2

2y
I) (27)

where ADD[6:2](a, b, c, d, e, f) is a [6 : 2] carry-save adder
taking 6 inputs and producing a carry vector and sum vector,
shown in Fig. 5. The digits σ1 and σ2 are in the digit set
{−3, . . . , 3} so we implement this digit multiplication by
decomposing σk = 2σ2

k + σ1
k where σik ∈ {−1, 0, 1}. Multi-

plying by negative one is achieved by inverting the input and
adding a carry-in to the reduction module. A block diagram
of the structure used to compute the real recurrence is shown
in Fig. 6.

Digit selection is performed by taking a short precision
estimate of the residual and rounding it to the nearest in-
teger via a small CPA and table. In the discussion that
follows we generally say residual without referring specif-
ically to the real or imaginary part–the analysis holds for
both residuals wR and wI . In Section II-B we determined
that the residual has a single integer bit and n fractional
bits, i.e., it is of the form w = w0.w1w2 . . . wn with
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Fig. 5. [6 : 2] Adder module. The adder consists of three different slices: the least significant slice, which sums 6 arguments and takes 4 carry-ins, the repeat
slice which sums 6 arguments and takes 4 lateral carries and produces 4 lateral carries to the subsequent slice, and the most significant slice.

value
∑n
i=0 wi2

−i. In redundant form w = wc + ws where
(wc, ws) = (C0.C1C2C3 . . . Cn, S0.S1S2S3 . . . Sn). Recall-
ing that selection is performed via,

qj+1 = Sel(est(4w[j], σ))

where σ = 4 as determined in section II-A, we know that

est(4w[j], 4) = w0w1w2.w3w4w5w6 =
n∑
i=0

wi2−i+2

estERR(4w[j], 4) < 2−4

now since w is in redundant form,

est(4wc[j], 5) = C0C1C2.C3C4C5C6C7

est(4ws[j], 5) = S0S1S2.S3S4S5S6S7

g = est(4wc[j], 5) + est(4ws[j], 5) (28)

estERR(4wc[j], 5) + estERR(4ws[j], 5) < 2−4

which gives us the short precision estimate of the residual g.
It is important to realize that g 6= est(4w[j], 4) in general
but that they commit the same maximum error 2−4 in their
approximation of w[j]. The addition in equation (28) requires
the CPA that we have been referring to during this discussion.

g−2g−1g0.g1 . . . g5 =
CPA(C0C1C2.C3 . . . C7, S0S1S2.S3 . . . S7) (29)

To round g and take the integer part one can use a small
table as in table II by introducing an additional variable gz =
g2 + g3 + g4 + g5 (i.e. the logical or of bits g2 through g5).
This table is a function of 5 bits and produces three bits of
output (for the encoding of qj+1) and will efficiently map to
LUTs.

g−2 g−1 g0 g1 gz qj+1

0 0 0 0 - 0
0 0 0 1 - 1
0 0 1 0 - 1
0 0 1 1 - 2
0 1 0 0 - 2
0 1 0 1 - 3
0 1 1 0 - 3
1 0 0 1 1 -3
1 0 0 1 1 -3
1 0 1 0 - -3
1 0 1 1 0 -3
1 0 1 1 1 -2
1 1 0 0 - -2
1 1 0 1 1 -1
1 1 1 0 - -1
1 1 1 1 1 0

TABLE II
ROUNDING TO INTEGER PART.

D. Optimizing the Recurrence Implementation

A straightforward implementation of the recurrence is
shown in Fig. 7. There are several opportunities for its
optimization:
• Since the residual is in the range (−57/64, 57/64), there

is only one integer bit required to store the value of the
residual. Based on this observation there is no need to
find the sum of bits with weight greater than 20 = 1.

• The recurrence implementation can be optimized in the
most significant bits by using the non-redundant value
computed for selection in the adder instead of the re-
dundant form stored in the registers. Although addition
of a short CPA delay to the most significant bits seems
counter-intuitive to optimization, it turns out that for all
fitting attempts to the Stratix II architecture this path was
not the critical path–paths with routing delays dominated
the critical path (short carry chains don’t exhibit routing
delays as there are dedicated carry paths in Adaptive
Logic Modules [15]). Since using the non-redundant
portion didn’t introduce a new critical path and reduced
the input bits it served as a pragmatic optimization
technique. The non-redundant approximation g computed
for selection can be used in the addition as opposed to
using the [6 : 2] adders. This simplifies the [6 : 2] adder



c-2 c-1 c0 c1 c2 c3 c4 c5
...

d-2 d-1 d0 d1 d2 d3 d4 d5
...

e-2 e-1 e0 e1 e2 e3 e4 e5
...

f-2 f-1 f0 f1 f2 f3 f4 f5
...

CPA

g-2 g-1 g0 g1 g2 g3 g4

sj+1
0 sj+1

1 sj+1
2 sj+1

3 sj+1
4 sj+1

5
...

cj+1
0 cj+1

1 cj+1
2 cj+1

3 cj+1
4 cj+1

5
...

[6:2] Adder

sj+1
0 sj+1

1 sj+1
2 sj+1

3 sj+1
4 sj+1

5

cj+1
0 cj+1

1 cj+1
2 cj+1

3 cj+1
4 cj+1

5

sj+1
6

cj+1
6

S
el

ec
tio

n

sj+1
-2 sj+1

-1 sj+1
0 sj+1

1 sj+1
2 sj+1

3 sj+1
4 sj+1

5
...

cj+1
-2 cj+1

-1 cj+1
0 cj+1

1 cj+1
2 cj+1

3 cj+1
4 cj+1

5
...cj+1

-3

sj+1
0 sj+1

1 sj+1
2 sj+1

3 sj+1
4 sj+1

5
...

cj+1
0 cj+1

1 cj+1
2 cj+1

3 cj+1
4 cj+1

5
...

Registers

sj
0 sj

1 sj
2 sj

3 sj
4 sj

5

cj
0 cj

1 cj
2 cj

3 cj
4 cj

5C
ar

ry
-S

av
e 

R
es

id
ua

l

...

...

sj+1
7

cj+1
7

sj+1
6

cj+1
6

sj+1
7

cj+1
7

g5

Fig. 7. First implementation of recurrence reduction. Each rectangular box
represents some functional block where the bits inside show the inputs to
that block and the bits beneath show the corresponding outputs. There are 5
bits produced by the [6 : 2] adder in this figure which have a shaded square
background to signify that these output bits don’t drive any logic and are left
“open”.

to a [5 : 2] adder requiring 4 lateral carries (as opposed
to a conventional [5 : 2] adder which only requires 3
lateral carries) which we denoted as [5 : 2]4–the lateral
carries come from the previous [6 : 2] adder. The interface
between the [6 : 2] adder, the [5 : 2]4 adder and the XOR
slice is shown in Fig. 9.

• The [5 : 2]4 adder produces both sj+1
1 and cj+1

0 , it is
unnecessary to produce sj+1

0 with the same module since
we will discard cj+1

−1 . Bit sj+1
0 is just the sum modulus 2

of all bits of weight 1 plus the lateral carries, which can
be computed via exclusive-ors (XOR).

Applying all mentioned optimizations we get an improved
design shown in Fig. 8.

III. DESIGN METHODOLOGY AND RESULTS

A. Methodology

The proposed designs were written at the RTL level us-
ing VHDL and simulated for functional correctness with
Modelsim-Altera Edition 8.1. They were mapped to an Altera
Stratix II architecture using Quartus II 8.1 flow tools. The
Quartus Classic Timing Analyzer was used to determine the
timing characteristics of the circuit in addition to placing
constraints on ROM look-up and prescaling registers to inform
the tool of multi-cycle paths.

The multiplies performed in the prescaling module map
to the Altera DSP blocks for precisions up to 36 bits–these
modules support up to 36 × 36 multiplication. It does not
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Fig. 8. Optimized implementation of recurrence reduction. The effective
reduction is visualized–the shaded circles signify input bits that were removed
as they were deemed unnecessary.

really make sense to go beyond this precision as the current
design choice is targeted for an architecture which supports
fast multipliers. For larger precisions it seems more sensible
to design an efficient custom rectangular multiplier.

B. Implementation Area and Delay Characteristics

The results show the number of ALUTs (Adaptive LUTs
[15]), of which there are two in every ALM (Adaptive Logic
Module) : the basic building blocks for logic in Altera Stratix
II devices. The DSP blocks on Stratix II architectures support
either eight 9×9 multiplies, four 18×18 multiplies or one 36×
36 multiply. The proposed design is limited to the availability
of multiplication units and therefore we have only reported
results for two design points, one utilizing a single DSP block
with four 18 × 18 multipliers and the other using four DSP
blocks each performing 36×36 multiplies. The results include
on-the-fly conversion costs.

The most common scenario we foresee a designer will face
when determining the usefulness of a complex division unit
is when comparing performance to a software based solution.
One such software solution presented in [14] is based on the
following,

a+ jb

c+ jd
=

{
a+b(d/c)
c+d(d/c) + j b−a(d/c)c+d(d/c) if |c| ≥ |d|
b+a(c/d)
d+c(c/d) + j a−b(c/d)d+c(c/d) if |d| ≥ |c| (30)

which requires significantly more arithmetic operations, 4
conventional divisions ad 3 multiplications. A complex divider
has been described in [16] implementing Smith’s formula
with a pipelined multiplier, divider, and adder for an 8-bit
precision (+4 guard bits). The scheme uses small number
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Fig. 9. Interface of the [6 : 2] adder, [5 : 2]4 adder and the XOR slice.

Precision [bits] 16 36
ALUTs 566 1185
DSP Block (9-bit elements) 8 36
Registers (FFs) 318 598
M4K RAM blocks 8 8
Critical path (ns) 5.685 5.764
Max. frequency (MHz) 175.90 173.49
Prescaling look-up (Cycles) 3 3
Prescaling (Cycles) 2*4 2*4
Total prescaling (Cycles) 11 11
Iterations (cycles) 8 16
Total time (latency) (ns) 108 156

TABLE III
RESULTS FOR PRECISION 16 AND 36 COMPLEX DIVISION UNITS

IMPLEMENTED ON AN ALTERA STRATIX II FPGA.

of Xilinx Virtex-II slices and operates at 100 MHz. Another
design for a complex divider is proposed in [17]. It uses an
algorithm similar to the SRT division. It also has an efficient
implementation and a latency for 15-bit precision of about
600ns, and a throughput of 1.6MHz. These two approaches
are not comparable to our higher-radix approach in terms of
speed. They have an advantage that there is no prescaling
and no tables for prescaling factors. Radix-2 complex online
arithmetic developed in [9] is not directly comparable to our
implementation.

IV. CONCLUSIONS AND FUTURE WORK

We presented the design and implementation of a radix-
4 complex division unit with a single prescaling table. The
implementation on an Altera Stratix II FPGA device requires
1185 ALUTs, with a critical path of 5.764 ns, and a maximum
frequency of 173.49 MHz. The prescaling table requires 2K
words of 16 bits. To our knowledge no comparable imple-
mentation exists at the time and our results initiate a point
of reference for other hardware based designs. In future work
we plan on exploring the use of multipartite tables to reduce
the table requirements in addition to developing specialized
rectangular multipliers to enable higher radix designs.
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