
HAL Id: ensl-00379154
https://ens-lyon.hal.science/ensl-00379154v1

Preprint submitted on 27 Apr 2009 (v1), last revised 28 Apr 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generating high-performance custom floating-point
pipelines

Florent de Dinechin, Cristian Klein, Bogdan Pasca

To cite this version:
Florent de Dinechin, Cristian Klein, Bogdan Pasca. Generating high-performance custom floating-
point pipelines. 2009. �ensl-00379154v1�

https://ens-lyon.hal.science/ensl-00379154v1
https://hal.archives-ouvertes.fr


GENERATING HIGH-PERFORMANCE CUSTOM FLOATING-POINT PIPELINES

Florent de Dinechin, Cristian Klein and Bogdan Pasca

LIP (CNRS/INRIA/ENS-Lyon/UCBL), Université de Lyon

École Normale Supérieure de Lyon

46 allée d’Italie, 69364 Lyon cedex

email: {Florent.de.Dinechin, Cristian.Klein, Bogdan.Pasca}@ens-lyon.fr

ABSTRACT

Custom operators, working at custom precisions, are a key

ingredient to fully exploit the FPGA flexibility advantage

for high-performance computing. Unfortunately, such op-

erators are costly to design, and application designers tend

to rely on less efficient off-the-shelf operators. To address

this issue, an open-source architecture generator framework

is introduced. Its salient features are an easy learning

curve from VHDL, the ability to embedd arbitrary synthe-

sisable VHDL code, portability to mainstream FPGA targets

from Xilinx and Altera, automatic management of complex

pipelines with support for frequency-directed pipeline, au-

tomatic test-bench generation. This generator is presented

around the simple example of a collision detector, which it

significantly improves in accuracy, DSP count, logic usage,

frequency and latency with respect to an implementation us-

ing standard floating-point operators.

1. INTRODUCTION

1.1. Flexible operators for FPGAs

FPGA-based coprocessors are available from a variety of

vendors and may be used for accelerating intensive compu-

tations, including floating-point (FP) ones. On matrix multi-

plication, their floating-point performance barely surpasses

that of a contemporary processor [1], using tens of operators

on the FPGA to compensate their much slower frequency.

Besides, FPGAs are in competitions with GPUs here. There

is much more acceleration potential in operations for which

processors or GPU have no dedicated hardware, for instance

double-precision elementary functions [2] or special func-

tions used in the generation of floating-point random num-

bers [3]. Besides, operators can also be specialized in FP-

GAs. For example, a squarer requires less logic than a mul-

tiplier; A floating-point multiplication by the constant 2.0

This work was partly supported by the XtremeData university pro-

gramme, the ANR EVAFlo project and the Egide Brâncuşi programme

14914RL.

boils down to adding one to the exponent (a 12-bit addi-

tion for double-precision), and need not use a full-blown FP

multiplier as it does in a processor. Indeed it is possible to

build an optimized architecture for any multiplication by a

constant [4]. Finally, and building upon the previous op-

timizations, operators can be fused on an FPGA [5]. The

running example illustrating this article is such a fused op-

erator, a collision detection predicate, testing if the norm of

a 3D vector is larger than some threshold.

The recipe for implementing such operators is to respect

their floating-point interface, but perform most internal com-

putations in fixed point for which FPGAs are highly opti-

mized. This recipe is also used in block-floating floating-

point approaches [6] and in recent experimental C-to-FPGA

datapath synthesis tools [5].

There are many more opportunities for floating-point

on FPGAs [7]. The goal of the FloPoCo project1 is

to study and develop such FPGA-specific Floating-Point

Cores. FloPoCo is both a software framework and a gen-

erator of arithmetic cores using this framework. It currently

offers about 20 operators, from simple ones such as shifters

or integer adders to very complex ones such as floating-point

exp and log. Some of the original operators have been de-

scribed elsewhere [8, 2, 4, 9], and this article presents the

framework itself. FloPoCo is distributed under the LGPL,

and interested readers are welcome to try it, use it and im-

prove it.

1.2. The arithmetic context

Our definition of an arithmetic operator is much broader

than the usual +, −, × and /. In this work, an arithmetic

operator is the implementation of any useful mathematical

function, be it ln(− ln(x)) [3] or x√
x2+y2+z2

.

Although very general, this mathematical definition has

many important consequences when designing an operator.

To start with, being the implementation of a function, an op-

1www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/



erator usually involves no feedback loop or state machine2.

This restriction enables a simple framework for quickly de-

veloping high-performance pipelined operators out of com-

binatorial ones. This is a major contribution of this work

and will be exposed in Section 3.2.

When an operator is defined as the implementation of a

mathematical function, the error analysis and design-space

exploration may be much more accurate than when it is the

implementation of a C program [5]. Finally, the mathemat-

ical function also defines a reference for testing, as will be

detailed in Section 4.

1.3. From libraries to generators

Although early FP operators were proposed as VHDL or

Verilog libraries, the current trend is to shift to generators of

operators (see [10] and references therein). A generator is a

program that inputs user specifications, performs any rele-

vant architectural exploration and construction (sometimes

down to pre-placement), and outputs the architecture in a

synthesizable format. Most FPGA designers are familiar

with the Xilinx core generator tool, which to our knowledge3

pioneered this approach, or its Altera MegaWizard counter-

part. A generator may simply wrap a library – and for the

simplest operators there is no need for more – but it can also

be much more powerful.

Firstly, the size of a library including multipliers by all

the possible constants would be infinite, but the generation

of an architecture for such a multiplier may be automated as

a program that inputs the constant [4]. The same holds for

arbitrary function generators [8].

Secondly, generators allow for greater parameterization

and flexibility. Whether the best operator is a slow and small

one or a faster but larger one depends on the context. FPGAs

also allow flexibility in precision: arithmetic cores should

be parameterized by the bit-widths of their inputs and out-

puts. We are also concerned about optimizing for different

hardware targets, with different LUT structure, memory and

DSP features, etc. The more flexible a generator, the more

future-proof.

Lastly, generators may perform arbitrarily complex

design-space exploration, automated error analysis, and op-

timization [8, 2].

1.4. Design choices for FloPoCo

A generator could in principle be written in VHDL or Ver-

ilog, but these languages are not ideally suited for that. In

particular, complex programs turn out to be inefficient and

difficult to debug using the simulation/synthesis paradigm of

2The only current exception is an accumulator [9] which is indeed de-

signed with a minimal, well isolated feedback loop.
3We would welcome any feedback on early architecture generators

hardware description languages. Still, an architecture gen-

erator needs a back-end to actually implement the resulting

circuit. The most elegant solution is to write a generator

as an overlay on a software-based HDL such as SystemC,

JBits, HandelC or JHDL (among many others). The advan-

tages are a preexisting abstraction of a circuit, and simple

integration with a one-step compilation process. The incon-

venience is that most of these languages are still relatively

confidential and restricted in the FPGAs they support. Even

SystemC synthesizers are far from being commonplace yet.

Basing our generator on a vendor generator would be an op-

tion, but would mean restricting it to one FPGA family.

The proposed generator took a less elegant, but more

universal route. The generator is written in a mainstream

programming language (we chose C++, mostly for compati-

bility with other previous work), and it outputs operators in a

mainstream HDL (we chose standard synthesisable VHDL).

We thus get a portable generator, and the generated oper-

ators can be integrated into most projects, simulated using

mainstream simulators, and synthesized for any FPGA us-

ing the vendor back-end tools. Section 3.3 will discuss how

they can nevertheless be optimized to a given FPGA target.

2. A SIMPLE MOTIVATING EXAMPLE

This framework has been used to write and pipeline very

large components, such as the floating-point logarithm de-

scribed in [2]. We choose to discuss here a simpler, but

still representative example: the implementation of a col-

lision detection predicate, testing if the norm of a 3D vector

is larger than some threshold. Let x, y, z and r2 be four

floating-point inputs, and let us design an operator testing

wether x2 + y2 + z2 < r2.

A first option is to assemble three FP multipliers and

two FP adders. The final comparison can be performed by

an integer subtraction on the concatenation of the exponent

and the mantissa – a well-known property of IEEE-754 FP

formats is that positive FP numbers are ordered in the lexi-

cographic order of their binary representation.

Let us now design a specific operator for this compu-

tation. There are many optimization opportunities with re-

spect to the previous solution.

• As already mentionned, the squarers should be sim-

pler than multipliers. They will in particular use less

DSP blocks.

• We only add positive numbers. In an off-the-shelf

floating-point adder, roughly half the logic is dedi-

cated to effective subtraction, and can be saved here.

An optimizing synthesizer would probably perform

this optimization4, but it will not, for instance, reduce

the pipeline depth accordingly.

4A generator of pre-placed/pre-routed cores may miss it.



1 + wF 1 + wF 1 + wF

2 + wF + g2 + wF + g

2 + wF + g2 + wF + g

2 + wF + g

4 + wF + g

wE + wF + g

2 + wF + g

EA

EC

EB
MB2 MC2

P

R2 X Y Z

MXEZEYEX MY MZ

MA2
shifter

sort

sort
squarer squarer squarer

shifter

add

comparison

normalize/pack

unpack

Fig. 1. Overview of the custom floating-point collision op-

erator.

• The significands of x2, y2 and z2 are aligned be-

fore addition. This may be done in parallel, reduc-

ing pipeline depth and register usage with respect to

an implementation using two floating-point adders in

sequence.

• A lot of logic is dedicated to rounding intermediate re-

sults, and can be saved by considering the compound

operator as an atomic one [5]. We obtain an operator

that is not only simpler, but also more accurate.

Actually, it is common for a fused operator to be more

accurate than the combination of FP ones. Here, the idea is

to evaluate x2+y2+z2 with 1-ulp (unit in the last place) ac-

curacy before the comparison, where a combination of stan-

dard operators leads to a worst-case error larger than two

ulps. More subtly, with an operator built by assembling two

FP adders, there are some rare cases when the value of the

predicate will change when one exchanges x and z. This is

due to the two consecutive roundings. We will be able to

design an operator which doesn’t have such asymmetries. It

is even possible to design an exact predicate, that doesn’t

perform any rounding before the comparison – it probably

doesn’t make much sense unless x, y and z are computed

exactly themselves.

The chosen architecture is depicted on Figure 1. For

more details the interested reader is invited to have a look at

the Collision operator in the FloPoCo distribution. This

architecture computes the three squares, truncates them to

wF + g bits, then aligns them to the largest one and adds

them. Worst-case error analysis shows that there are 5 trun-

cation errors in this computation (the three products, and bits

discarded by the two shifters). The number of guard bits g

Fig. 2. FloPoCo class hierarchy (very simplified overview)

is therefore set to g = ⌈log2(5)⌉ = 3 so that the accumu-

lated error is always smaller than the unit in the last place

of r2. Comparison is performed as integer subtraction as

previously, except that r2 is extended to wF + g bits.

Table 1 shows quantitatively the savings brought by this

approach. All the metrics are significantly improved (from

25 to 89 %) by operator specialization and fusion. The

(8,23) FP version implemented using LogiCore illustrates

that FloPoCo provides FP operators of comparable quality.

Another meaningful result is design time. Assembling

FP operators took two hours, for a pipeline that is fully pa-

rameterized by wE , wF and target frequency. Assembling

the Logicore version took even less time, but one doesn’t

obtain a parameterized design. The optimized version took

two days to write, including the testbench. It may seem a lot

of design time, but most of the work concerns the sum-of-

square operator, which will also be used for future coarser-

grain operators such as
√

x2 + y2 + z2 or x√
x2+y2+z2

. And

again, this design is fully parameterized, pipelined, and au-

tomatically optimized for a given frequency.

Let us now present in more details the framework used

to obtain these results.

3. THE FRAMEWORK

In the following, we assume basic knowledge of object-

oriented concepts with the C++ terminology5. Figure 2 pro-

vides a very simplified overview of the FloPoCo class hier-

archy.

3.1. Operators

The core class is Operator. From the circuit point of view,

an Operator corresponds to a VHDL entity, but again, with

restrictions and extensions specific to the arithmetic context.

All the operators extend this class, including Collision,

but also some of its sub-components (shifters, squarers and

adders) seen on Figure 1.

5For an introduction, see http://en.wikipedia.org/wiki/

C++ and references therein.



Slow version Fast version

Precision (wE , wF ) area perf area perf

(8,23) LogiCore FP 1282 slices, 20 DSP 43 cycles @ 353 MHz

(8,23) FP 940 slices, 12 DSP 20 cycles @ 210 MHz 1188 slices, 12 DSP 29 cycles @ 289 MHz

(8,23) custom 456 slices, 9 DSP 10 cycles @ 319 MHz 453 slices, 9 DSP 11 cycles @ 368 MHz

(9, 32) FP 1268 slices, 12 DSP 20 cycles @ 171 MHz 1874 slices, 12 DSP 37 cycles @ 302 MHz

(9, 32) custom 629 slices, 9 DSP 10 cycles @ 368 MHz 640 slices, 9 DSP 13 cycles @ 368 MHz

(11, 52) FP 2868 slices, 27 DSP 20 cycles @ 106 MHz 4480 slices, 27 DSP 46 cycles @ 276 MHz

(11, 52) custom 1532 slices, 18 DSP 10 cycles @ 237 MHz 1845 slices, 18 DSP 16 cycles @ 362 MHz

Table 1. Some post-synthesis results for the Collision operator (on Virtex-4 xc4vlx15-12-sf363 using ISE 10.1 or 9.1,

whichever gave the best results). Note that the custom version is also the most accurate. The FloPoCo command-line used to

obtain these results is flopoco -frequency= f Collision wE wF o where f is 200 for the slow version and 400 for

the fast version, and o is 0 for the FP version and 1 for the optimized version.

The main method of of Operator is outputVHDL(),

which prints out the VHDL code of an operator. To imple-

ment this virtual method for an operator, one may simply

embed some existing VHDL code in the C++.

However, the standard way of using the framework is to

rely on the default implementation of outputVHDL() pro-

vided by the Operator class. This default method takes

the VHDL code of the operator architecture from the vhdl

stream, an attribute of Operator. Thus, one designs the

architecture by having the constructor outputting arbitrary

VHDL code to vhdl. In addition, signals may be wrapped

in methods from Operator. A first method is declare(),

that handles signal declaration. Consider the following code

that computes the difference of two exponents of size wE ,

in order to determine in XltY which is smaller.

vhdl << declare("DEXY", wE+1)

<< " <= (’0’ & EX) - (’0’ & EY);" << endl;

vhdl << declare("XltY")

<< " <= DEXY("<< wE<<");" << endl;

Here the declare() method adds the signal to the sig-

nalList of the operator (so that outputVHDL() will declare

it in the VHDL), then simply returns its first argument. Thus,

called with wE = 8, the code above simply puts in the vhdl

stream the string:

DEXY <= (’0’ & EX) - (’0’ & EY);

XltY <= DEXY(8);

So far we have mostly obfuscated the VHDL with C++

constructs. Let us see how this enables easy pipelining.

3.2. Automatic pipeline management

We now consider the end of the normalise/pack box of Fig-

ure 1, which reassembles the result from the exponent dat-

apath and the fraction datapath into a single bit vector. The

exponent datapath is in general shorter (computed in less

cycles), so there is a need for synchronisation. The cycle

difference depends on the pipeline depths of the shifter and

add components, which in turn depends on operand sizes,

target hardware, and target frequency. Building a working

pipeline for a given set of parameters is conceptually sim-

ple: simply insert registers to delay the result of the shortest

datapath, so as to synchronise it with the result of the longest

one. FloPoCo allows to express exactly that in a generic

way. Consider the following code excerpt:

(...)

// at some cycle

vhdl << declare("finalExp", wE+1) << " <= " ...

(...)

// at some other cycle

vhdl << declare("finalFraction", wF+g) << " <= " ...

(...)

// enter next cycle

nextCycle();

vhdl << declare("finalSoP", wE+wF+g) << " <= "

<< use("finalExp") << "(wE-1 downto 0)"

<< " & " << use("finalFraction") << "; ";

During the construction of the VHDL in the vhdl stream,

an Operator maintains a currentCycle attribute, initially

equal to zero. The main function of nextCycle() is to

increment currentCycle.

Every signal declared through addInput or declare

has a cycle attribute, which represents the cycle at which

this signal is computed. It is 0 for the inputs. For signals

declared through declare(), it is set to currentCycle at the

time declare() is invoked.

Every signal also possesses an attribute lifeSpan which

indicates how many cycles it will need to be delayed. This

attribute is initialized to 0, then possibly increased by use()

as we will see below. When the lifeSpan of a signal X is

greater than zero, outputVHDL() will create lifeSpan new

signals, named X d1, X d2 and so on, and insert registers

between them. In other words, X d2 will hold the value of X

delayed by 2 cycles.

Wrapping a signal in use() has the following effect.

First, use("X") will compare currentCycle and the cycle



declared for X, which we note X.cycle.

• If they are equal, use("X") will simply return the

string "X".

• If currentCycle < X.cycle, use("X") will emit an er-

ror message reporting that X is being used before the

cycle at which it was defined.

• If currentCycle > X.cycle, use("X") will delay sig-

nal X by n = currentCycle − X.cycle cycles. Tech-

nically, if n = 5 for instance, use("X") just returns

"X d5". It also updates X.lifeSpan to be at least equal

to 5.

Operator defines several other functions to

manage currentCycle, such as setCycle(int n),

setCycleFromSignal(string s) which sets the

currentCycle to the cycle of the signal whose name

is given as an argument (going back if needed), and

syncCycleFromSignal(string s) which may only

advance currentCycle. The latter allows to synchronise

several signals by setting currentCycle to the max of their

cycle.

It should be noted that this scheme still allows for arbi-

trary synthesizable VHDL – only the signal names have to

be wrapped by use(), declare(), etc. Also, this scheme

gracefully degrades to a combinatorial operator – in this

mode declare() always declares one single signal and

use() always returns its argument unmodified.

Code written under this scheme will automatically adapt

to random insertions and suppressions of synchronization

barriers. Typically, if one is unhappy with the performance,

one may decide to break the critical path by inserting a syn-

chronisation barrier in it. This may be as simple as inserting

a single nextCycle() in the code. FloPoCo takes care of

the rest.

Finally, it is also possible to wrap in conditional state-

ments some of the nextCycle() calls, so that the pipeline

adapts to the frequency, the operator generic parameters,

etc. For instance, the IntAdder or Shifters classes of

FloPoCo produce operators whose pipeline depth depends

on the target frequency. By using these pre-existing sub-

components, our Collision operator behaves the same, as

Table 1 shows.

Space limitation prevents presenting in details how sub-

components are managed in FloPoCo. In short, one has

to create an object instance for the subcomponent, then

there is a inPortMap() method that is conceptually simi-

lar to use(), an outPortMap() method conceptually simi-

lar to declare(), and an instance() method that returns

the VHDL of the instance, and performs the bookkeeping

required for outputVHDL() to declare the corresponding

component. We invite the interested reader to have a look at

Collision.cpp.

3.3. Targets

The Target class abstracts the features of actual FPGA

chips. Classes representing real FPGA chips extend this

class (we currently have classes for two very different FP-

GAs, Xilinx Virtex4 and Altera StratixII). The idea is

to declare abstract methods in Target, which are imple-

mented in its subclasses, so that the same generator code fits

all the targets. Of course, it is also possible to have a con-

ditional statement that runs completely different code de-

pending on the target – this will be the case for instance for

the IntMultiplier class that builds large multipliers, be-

cause DSP capabilities are too variable from one target to

the other. A Target is given as argument to the constructor

of any operator.

The methods provided by the Target class can be se-

mantically split into two categories:

• Architecture-related methods provide information

about the architecture of the FPGA and are used in ar-

chitectural exploration. For instance, lutInputs()

returns the number of inputs of the FPGA’s LUTs.

• Delay-related methods provide approximative in-

formations about computation time. For example,

adderDelay(int n) returns the delay of an n-bit

addition. These methods are used for frequency-

directed pipelining (here for IntAdder). Some

of these methods have an architecture-related dual,

for example suggestAdderSize(double delay)

that returns the size of an adder that will have the re-

quired delay.

The difficulty here is to find the right abstraction level

for Target. On one hand, we do not hope to provide an

exhaustive and detailed description of all the existing – and

future – FPGAs. On the other hand, we do not need to: Ven-

dor tools are very good at fitting a design to a given target,

and we should rely on them. The complexity of exploiting

the details of the target should be left to the back-end tools.

Target is still expected to evolve a lot. Other methods

will be added when needed, for instance to model the inter-

nal memory resources. Also, area estimation methods will

assist the design-space exploration of future operators. And

of course, the question of target abstraction will remain an

open one forever, as new FPGA features keep appearing and

new operators present new problems.

4. TESTBENCH GENERATION

The undelying mathematical nature of an arithmetic opera-

tor can be usefully exploited to make testbench generation

easy. For instance, the output from a floating-point opera-

tor may be defined as a mathematical function of the inputs

(addition or exponential) composed with one of the rounding



functions defined in the well established IEEE-754 standard

[11]. Defining expected outputs this way is not only simpler

than mimicking the architecture, it also minimizes the pos-

sibility of making the same mistake in both the operator and

its test bench. In FloPoCo, one has to overload the Opera-

tor virtual method emulate(). Thanks to the bit-accurate

MPFR library [12], this typically takes about ten lines.

Overloading emulate() is enough for FloPoCo to be

able to create a generic test bench using random inputs.

However, function analysis also allows for better, more

operator-specific test-case generation. Let us just take two

examples.

• A double-precision exponential returns +∞ for all

inputs larger than 710 and returns 0 for all inputs

smaller than −746. In other terms, the most inter-

esting test domain for this function is when the input

exponent is between −10 and 10, a fraction of the full

double-precision exponent domain (−1024 to 1023).

Generating random 64-bit integers and using them as

floating-point inputs would mean testing mostly the

overflow/underflow logic, which is a tiny part of the

operator.

• In a floating-point adder, if the difference between the

exponents of the two operands is large, the adder will

simply return the biggest of the two, and again this is

the most probable situation when taking two random

operands. Here it is better to generate random cases

where the two operands have close exponents.

Such cases are managed by overloading the Oper-

ator method buildRandomTestCases(). Finally,

buildStandardTestCases() allows to test corner cases

which random testing has little chance to find.

5. CONCLUSION

This article introduced an open-source software framework

for generating high-quality, highly parameterized, pipelined

and flexible operators for FPGAs. This framework evolved

(and still evolves) in a deliberately bottom-up and practical

way focussed on the needs of arithmetic cores. It is based

on embedding VHDL code in a simple C++ framework.

Thus it provides the full power of the VHDL language. It

adds to it facilities for automatic pipeline construction and

synchronization, target-based and frequency-based optimi-

sation, and test bench generation.

In its current state, this generator is already an invaluable

booster for the core focus of our research, which is to de-

velop new arithmetic operators. In the future, a wider range

of design objectives may be added: optimizing for power,

for a given pipeline depth, for memory, etc. In addition, we

will refine and extend the FPGA model as new needs appear,

for instance to model the internal memory resources.

We have also shown how the automatic pipeline frame-

work can be used to build larger computation pipelines

composed of many operators, which automatically adapt

to changes in precision or target frequency. What is now

needed is a more user-friendly interface.

6. REFERENCES

[1] D. Strenski, J. Simkins, R. Walke, and R. Wittig, “Revaluat-

ing FPGAs for 64-bit floating-point calculations,” HPC wire,

May 2008.

[2] J. Detrey, F. de Dinechin, and X. Pujol, “Return of the hard-

ware floating-point elementary function,” in 18th Symposium

on Computer Arithmetic. IEEE, 2007, pp. 161–168.

[3] N. Woods and T. VanCourt, “FPGA acceleration of quasi-

Monte Carlo in finance,” in Field Programmable Logic and

Applications, 2008, pp. 335–340.

[4] N. Brisebarre, F. de Dinechin, and J.-M. Muller, “Inte-

ger and floating-point constant multipliers for FPGAs,” in

Application-specific Systems, Architectures and Processors.

IEEE, 2008, pp. 239–244.

[5] M. Langhammer, “Floating point datapath synthesis for fp-

gas,” in Field Programmable Logic and Applications, 2008,

pp. 355–360.

[6] R. Andraka, “Hybrid floating point technique yields 1.2 gi-

gasample per second 32 to 2048 point floating point FFT in

a single FPGA,” in High Performance Embedded Computing

Workshop, 2006.

[7] F. de Dinechin, J. Detrey, I. Trestian, O. Creţ, and R. Tudo-

ran, “When FPGAs are better at floating-point than micro-

processors,” École Normale Supérieure de Lyon, Tech. Rep.

ensl-00174627, 2007.

[8] J. Detrey and F. de Dinechin, “Table-based polynomials for

fast hardware function evaluation,” in Application-specific

Systems, Architectures and Processors. IEEE, 2005, pp.

328–333.

[9] F. de Dinechin, B. Pasca, O. Creţ, and R. Tudoran,

“An FPGA-specific approach to floating-point accumulation

and sum-of-products,” in Field-Programmable Technologies.

IEEE, 2008, pp. 33–40.

[10] D. Bakalis, K. Adaos, D. Lymperopoulos, M. Bellos, H. Ver-

gos, G. Alexiou, and D. Nikolos, “A core generator for arith-

metic cores and testing structures with a network interface,”

Journal of Systems Architecture, vol. 52, no. 1, pp. 1 – 12,

2006.

[11] ANSI/IEEE, Standard 754-1985 for Binary Floating-Point

Arithmetic (also IEC 60559), 1985.

[12] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmer-

mann, “MPFR: A multiple-precision binary floating-point li-

brary with correct rounding,” ACM Transactions on Mathe-

matical Software, vol. 33, no. 2, pp. 13:1–13:15, June 2007.


