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CNRS UMR 5672, Lyon, France

(submitted to Journal of Applied Physics on May 7, 2009)

Abstract

Measurements of the deflection induced by the thermal noise have been performed on a rectangular

atomic force microscope cantilever in air. The detection method, based on polarization interferometry, can

achieve a resolution of 10−14 m/
√

Hz in the frequency range 1 kHz − 800 kHz. The focused beam from

the interferometer probes the cantilever at different position along its length and the spatial modes shapes

are determined up to the 4th resonance, without external excitation. Results are in good agreement with

theoretically expected behavior. From the thermal noise spectrum accurate determination of the elastic

constant of the cantilever is also achieved.

∗present address: Université de Lyon, LTDS, École Centrale Lyon, CNRS UMR 5513, Ecully, France
†corresponding author : ludovic.bellon@ens-lyon.fr

1



Atomic force microscopy (AFM) is currently used in a great variety of studies involving small forces measure-
ment [1] including unfolding of protein [2, 3], probing the structure of biological membranes [4] and monitoring
the mechanical response of living cells [5, 6] as well as Micro-Electro-Mechanical Systems (MEMS) and other
nanotechnological devices [7, 8].

All those applications exploit the great accuracy in measuring the cantilever deflection offered by AFM and
convert this measure to unit of force assuming the cantilever as a spring with known elastic constant. The
manufacturer often specify the spring constant of their cantilever in a wide range of values, mainly because
of the great uncertainties in the dimensions, particularly the thickness, resulting from the fabrication process.
To overcome this problem several techniques have been proposed to calibrate cantilever spring constant [1, 9,
10, 11, 12]. The reader is referred to the work of Burnham and co-workers [13] and the references therein for
comparative summary of the different techniques.

One of the first and still most commonly used is the so called thermal calibration method [11] based on
the measurement of the vibration amplitude of the free end of a cantilever exited by thermal noise. The first
resonance of the thermal noise spectrum is related back to the spring constant of the cantilever modeled as an
harmonic oscillator. In a more accurate model, Butt and Jaschke [14] introduced a correction factor deduced
from the Euler-Bernoulli description of the flexural dynamic of a free-clamped beam.

In this work we measure the first four modes of the vibration amplitude due to the thermal noise and
compare the rms amplitude spatial distribution with the eigenmode of the Euler-Bernoulli model. Furthermore,
we present an extention of the thermal calibration method for the spring constant based on the multi-mode
measurement.

Let us first recall the main lines of Butt and Jaschke’s work to interpret our measurements. The cantilever
is sketched on Fig. 1. Its length L is supposed to be much larger than its width W , which itself is much larger
than its thickness T . We will limit ourself in this study to the flexural modes of the cantilever: the deformations
are supposed to be only perpendicular to its length (along axis z of Fig. 1) and uniform across its width. Theses
deformation can thus be described by the deflection d(x, t), x being the spacial coordinate along the beam, and
t the time. The generic solution of the Euler-Bernoulli equation can be expressed as follows:
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∞
∑

n=1

dn(t)φn

( x

L

)

(1)

in which the spatial solutions are in the form

φn

( x

L

)

=
[

cos
(

αn

x

L

)

− cosh
(

αn

x

L

)]

− cos(αn) + cosh(αn)

sin(αn) + sinh(αn)

[

sin
(

αn

x

L

)

− sinh
(

αn

x

L

)]

(2)

where the αn satisfy the relation
1 + cos(αn) cosh(αn) = 0 (3)

which leads to α1 = 1.875, α2 = 4.694, . . . , αn ≈ (n − 1/2)π. The amplitude dn(t) of each modes are governed
by harmonic oscillator equations, with stiffness kn, mass m and resonance frequencies fn:

kn =
α4

n

3
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α4
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3

EWT 3

4L3
(4)

m = mc = ρLWT (5)
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1

2π

√

kn

m
(6)

where kc and mc are the static stiffness and mass of the cantilever, and E and ρ are the young modulus and
density of its material.

We furthermore consider, under the hypothesis of thermal equilibrium, that the thermal noise driven deflec-
tion follows the equipartition theorem and each resonance mode can be considered as an independent harmonic
oscillator [14] with mean quadratic fluctuations

〈

d2
n

〉

:

1

2
kBT =

1

2
kn

〈

d2
n

〉

(7)

where 〈 〉 represent time average.
In our experiment, we will measure both the amplitude of the thermal noise distibution among the modes

〈

d2
n

〉

and their spatial shape φn (x/L).
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Figure 1: The thermal fluctuations of deflexion d(x, t) of a rectangular cantilever (BS-Cont-GB-G) are measured
with a differential interferometer : the optical path difference between the reference beam, reflecting on the chip
holding the cantilever, and the sensing beam, focused on the cantilever, directly gives a calibrated measurement
of spatially resolved deflexion [15]. The whole cantilever can be probed by displacing the beams along its length.
Notations used in the text are reported on the figure.

We use gold coated BudgetSensors Atomic Force Microscopy (AFM) cantilevers (Cont-GB-G). They present
a nominal rectangular geometry: L = 450µm long, W = 50µm wide and T = 2µm thick, with a 70 nm gold
layer on both sides. We observe the fluctuation of the cantilever deflection induced by thermal noise. The
measurement is performed with a home made interferometric deflection sensor [15, 16], inspired by the original
design of Schonenberger [17] with a quadrature phase detection technique [18]: the interference between the
reference laser beam reflecting on the chip of the cantilever [15] and the sensing beam on the cantilever gives
a direct measurement of the deflection d(x, t), with very high accuracy (see Fig. 1). A first advantage of
the technique is that it offers a calibrated measurement of deflection, without conversion factor from angle to
displacement, as in the standard optical lever technique common in AFM. A second advantage of our detection
system is a very low intrinsic noise, as illustrated in Fig. 2 with the power spectrum density of a rigid mirror
(bottom black line): the light intensities on the photo diodes are tuned exactly as during the measurement
on the cantilever, but since the mirror is still the measured spectrum reflects only the detection noise. This
background noise is as low as 3 × 10−28 m2/Hz, in the frequency range from 1 kHz to 800kHz, just 10% higher
than the shot noise limit of our detection system. A third advantage is that the precision of the measurement
is independent of the focused beam size on the cantilever, which was tuned as small as 10µm to ensure good
spatial resolution of the measurement.

When translating the focusing lens with respect to the cantilever, both reference and sensing laser beams are
shifted along the chip and cantilever respectively [15]. The chip first structural mode is at very high frequency
compared to that of the cantilever, hence it is considered as a rigid fixed mirror independently of the actual
reference beam position on top of it. The measured interference signal is therefore only due to the thermal
noise driven deflection of the cantilever. Fig. 2 illustrates such a spectrum when the sensing beam is close to
the free end. The signal to noise ratio is enough to identify the first four flexural resonances (as well as the
first two torsional resonances, that are visible due to an approximate centering of the spot laterally). The peak
frequencies are positioned according to the relation that directly derive from equations 4 and 6:

fn

f1

=
α2

n

α2
1

(8)

The experimental ratios of resonance frequencies are in good agreement with the expected values of the coeffi-
cients (table 1).

A precision screw allows adjusting the horizontal position of the focusing lens and locate the sensing beam
at different positions along the cantilever length while the reference beam is always on the chip [15]. For each
measurement, the x position of the laser spot on the cantilever can be estimated from the image acquired
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Figure 2: Power Spectrum Density (PSD) Sd of thermal noise induced deflexion (red curve) measured close to
the free end of the cantilever as a function of frequency f (log scale on both axis). The first 4 flexural modes
and first 2 torsional modes are clearly above the background noise (bottom black line), measured with a rigid
mirror. With our interferometric setup, resolution better than 1.7 × 10−14 m/

√
Hz can be achieve on the whole

frequency range explored here (1 kHz − 800kHz).

by a simple CCD camera. The spot center in the images can be detected with about ±1.4µm accuracy on
the cantilever. Measurement have been repeated at about 15 µm steps. At every position we measure the
deflection d(x, t) produced by thermal excitation of the cantilever and evaluate the Power Spectrum Density
(PSD) Sd(x, f). The complete set of results is reported in Fig. 3 as a 3D representation. The first four oscillation
modes can be clearly seen with their respective number of nodes. Two further peaks can be noted, the first at
about 220 kHz and a second, of smaller amplitude, at 790kHz, that we can attribute to the first and second
torsional modes.

For a quantitative characterization of the mode shape we determine the rms amplitude of each mode
〈

δ2
n(x)

〉

as a function of the position x. To this aim we integrated the PSD in a convenient frequency interval 2∆f around
each peak:
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〉
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Sd(x, f)df (9)

According to equation 1, we should have
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It is then possible to fit the data with the expression of
〈

d2
n

〉

(equation 7) with 3 free parameters: the length of
the lever L′, the clamping position x0 and the static spring constant of the cantilever k′

c. We realize the fit on
the rms amplitude simultaneously on the 4 modes with the following functions:

√
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(11)

where n = 1, ..., 4. The red curves in Fig. 4 represent the result of the fit on the four considered modes, in good
agreement for all modes. The best fit values are: L′ = 450µm and k′

c = 0.37N/m. The length and stiffness
are compatible with the values provided by the manufacturer (L = (450 ± 10)µm and kc from 0.07N/m to
0.4N/m).

It’s worth noting that the accuracy of our instrument provides a precise measurement of the thermal noise
driven deflection along the cantilever length and allows to verify the Euler-Bernoulli model for the micro-lever.
Furthermore this multi-mode approach provide a more reliable way to estimate the elastic constant of a cantilever
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Figure 3: Power Spectrum Density (PSD) Sd of thermal noise induced deflexion as a function of position x
along the cantilever and frequency f . The first 4 normal modes are clearly visible, with a vanishing amplitude
toward the clamped extremity of the mechanical beam and the nodes of each mode. Another vibration peak
with no nodes is also visible close to the third mode, it is attributed to the first mode in torsion, but is not
studied in this letter.

with respect to the standard thermal noise calibration method limited to the integral of the first mode only and
just at the cantilever free end (circled point in Fig. 4). Actually a precise measurement of the cantilever stiffness
could be obtained from the first 3 modes only, the presence of the nodes providing a favorable constrain to the
fitting process.

Experimental PSD curves show peaks width depending on the viscosity of the environment, mainly due
to the viscous drag of the fluid, an effect that is not considered in the Euler-Bernoulli framework. A simple
model that account for this aspect, for each eigenmode, is a damped harmonic oscillator characterized by three
parameter: the resonance frequency fn, the elastic constant kn and the quality factor Qn. The PSD of the
damped oscillator can be expressed as:

Sd(f) =
2kBT

knπfn

Qn

(1 − u2)
2
Q2

n + u2
(12)

with u = f/fn the normalised frequency. For each mode the PSD depends on the spatial coordinate along

the cantilever length still according to |φn(x)|2. The Qn are evaluated from experimental data by a fitting in
the region around the peaks of each node (see Fig. 5). Those values are constant along the cantilever. Since
the elastic constant kn and resonant frequency fn of each mode is known, quality factor Qn is the only free
parameter in the fit. In table 1 the Qn values of the first four modes are compared with the hydrodynamic
predictions of the Sader model [19] that account for viscous effect in the fluid. These predictions were computed
with tabulated values of silicon and gold for the Young modulus and density, and the physical dimensions
of the cantilever (length, width and thickness) were tuned within the manufacturer tolerance to match the
experimental observation. Note that the elastic modulus of gold and silicon are of the same order of magnitude,
whereas the density of gold is about eight times that of silicon, therefore even a thin coating layer of 70 nm
produces a mass increment of about 60% that cannot be neglected in the evaluation of total mass.
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Figure 4: Amplitude of thermal noise for the first 4 flexural modes along the cantilever. Errors bars correspond to
the equivalent noise of the detection system in the bandwidth chosen around each resonance (a very conservative
estimation of incertitude). The simultaneous fit (red curves) of the 4 resonances with the normal modes shapes
is excellent and leads to a precise measurement of the stiffness of the cantilever. The common calibration
method for the spring constant considers only the value of δ2

1(L), the circled point in the upper graph.

Mode fn/kHz fn/f1 α2
n/α2

1 Qn QSader
n

1 14.046 1 1 88 85
2 87.921 6.26 6.27 231 243
3 245.500 17.48 17.55 420 423
4 479.970 34.17 34.40 680 601

Table 1: measured and expected parameters for first 4 flexural modes
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A good agreement between the model and experiment is observed for the first three resonances, but at the
highest frequency a deviation is observed: a lower dissipation than that foreseen by the Sader model. This
behavior was already observed by Maali et al [20].

This deviation is expected since the original Sader model neglects the 3D nature of the fluid flowing around
the cantilever, an effect increasing with mode number [19]. In an extended model by Sader and co-workers [21],
such a correction is also observed in the same direction as in our observation.

We presented in this paper a high precision measurement of thermal noise induced deflexion of a soft rectan-
gular micro-cantilever as a function of frequency and position along the mechanical beam. The 4 first flexural
spatial modes could be studied without any external forcing. Their shapes are very well fitted by the Euler-
Bernoulli model, and their vibration amplitudes accurately described in the Butt and Jaschke [14] framework.
Furthermore this multi-mode approach provides a extension of the standard thermal noise calibration method
for the spring constant of the cantilever, with a more robust estimation: it is obtained by a simultaneous fit
on several modes, when the classic measurement is limited to the integral of the first mode only and just at
the cantilever free end. Quality factors of resonances are also robustly extracted from the measurements and
compare well to the Sader estimation [19].

Although presented here on an academic geometry, this method could be applied to more complex structures,
such as double clamped beams, membranes and other micromechanical structures. The absence of external
forcing (that may not be well controlled or hard to characterize) and the great resolution of the interferometric
setup make it a very promising tool for the mechanical characterization of MEMS.

Acknowledgements The authors thank F. Vittoz and F. Ropars for technical support, and S. Ciliberto,
A. Petrosyan and J.P. Aimé for stimulating discussions. One of us (B.T.) thanks École Normale Supérieure de
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Figure 5: Power Spectrum Density (PSD) Sd of thermal noise induced deflexion measured close to the free end
of the cantilever as a function of frequency f around each resonance fn. We subtract from the raw measurement
(dashed blue) the background noise (black) to estimate the mechanical noise of the cantilever (blue), then we
perform a fit with a simple damped harmonic oscillator model (dashed red). For each plot, the horizontal scale
spans ±10fn/Qn around fn.
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