
HAL Id: ensl-00379365
https://ens-lyon.hal.science/ensl-00379365v4

Submitted on 16 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Direct measurement of spatial modes of a
micro-cantilever from thermal noise

Pierdomenico Paolino, Bruno Tiribilli, Ludovic Bellon

To cite this version:
Pierdomenico Paolino, Bruno Tiribilli, Ludovic Bellon. Direct measurement of spatial modes
of a micro-cantilever from thermal noise. Journal of Applied Physics, 2009, 106, pp.094313.
�10.1063/1.3245394�. �ensl-00379365v4�

https://ens-lyon.hal.science/ensl-00379365v4
https://hal.archives-ouvertes.fr


Direct measurement of spatial modes of a

micro-cantilever from thermal noise

Pierdomenico Paolino
∗
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Abstract

Measurements of the deflection induced by thermal noise have been performed on a rectangular atomic

force microscope cantilever in air. The detection method, based on polarization interferometry, can achieve a

resolution of 10−14 m/
√

Hz in the frequency range 1 kHz−800 kHz. The focused beam from the interferometer

probes the cantilever at different positions along its length and the spatial modes’ shapes are determined

up to the fourth resonance, without external excitation. Results are in good agreement with theoretically

expected behavior. From this analysis accurate determination of the elastic constant of the cantilever is also

achieved.
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1 Introduction

Atomic force microscopy (AFM) is currently used in a great variety of studies involving small forces measurement
[1] including unfolding of protein [2, 3], probing the structure of biological membranes [4] and monitoring the
mechanical response of living cells [5, 6] as well as Micro-Electro-Mechanical Systems (MEMS) and other
nanotechnological devices [7, 8].

All those applications exploit the great accuracy in measuring the cantilever deflection offered by AFM
and converting this measurement in units of force assuming the cantilever behaves like a spring with known
stiffness. Manufacturers often specify the spring constant of their cantilevers in a wide range of values, mainly
because of the great uncertainties in the dimensions, particularly the thickness, resulting from the fabrication
process. To overcome this problem several techniques have been proposed to calibrate cantilever spring constant
[1, 9, 10, 11, 12]. The reader is referred to the work of Burnham and co-workers [13] and the references therein
for a comparative summary of the different techniques.

One of the first and still most commonly used is the so called thermal calibration method [11] based on the
measurement of the vibration amplitude of the free end of a cantilever exited by thermal noise. The first peak
of the thermal noise spectrum is related back to the spring constant of the cantilever modeled as an harmonic
oscillator. In a more accurate model, Butt and Jaschke [14] introduced a correction factor deduced from the
Euler-Bernoulli description of the flexural dynamic of a free-clamped beam.

In this work we measure thermal noise spectrums of the cantilever deflection along its length, and compare
the rms amplitudes of the first four modes of vibration as a function of spatial position with the eigenmodes of
the Euler-Bernoulli model. Furthermore, we present an extention of the thermal noise calibration method for
the spring constant based on the multi-mode measurement.

2 Theoretical background
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Figure 1: The thermal fluctuations of deflection d(x, t) of a rectangular cantilever (BS-Cont-GB-G) are measured
with a differential interferometer : the optical path difference between the reference beam, reflecting on the chip
holding the cantilever, and the sensing beam, focused on the cantilever, directly gives a spatially resolved and
calibrated measurement of deflection d [15]. The whole cantilever can be probed by displacing the beams along
its length (x axis). Length L, thickness T and width W of the cantilever are indicated on the figure.

Let us first recall the main lines of Butt and Jaschke’s work [14] to interpret our measurements. The
cantilever is sketched on Fig. 1. Its length L is supposed to be much larger than its width W , which itself is
much larger than its thickness T . We will limit ourself in this study to the flexural modes of the cantilever: the
deformations are supposed to be only perpendicular to its length (along axis z of Fig. 1) and uniform across its
width. These deformations can thus be described by the deflection d(x, t), x being the spacial coordinate along
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the beam, and t the time. The generic solution of the Euler-Bernoulli equation can be expressed as follows:

d(x, t) =

∞
∑
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dn(t)φn
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L

)

(1)

in which the spatial solutions are in the form
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where the αn satisfy the relation
1 + cos(αn) cosh(αn) = 0 (3)

which leads to α1 = 1.875, α2 = 4.694, . . . , αn ≈ (n − 1/2)π. The amplitude dn(t) of each modes are governed
by harmonic oscillator equations, with spring constants kn, mass m and resonance frequencies fn:

kn =
α4

n

3
kc =

α4
n

3

EWT 3

4L3
(4)

m = mc = ρLWT (5)

fn =
1

2π

√

kn

m
(6)

where kc and mc are the static stiffness and mass of the cantilever, and E and ρ are the Young’s modulus and
density of its material.

We furthermore consider, under the hypothesis of thermal equilibrium, that the thermal noise driven deflec-
tion follows the equipartition theorem and each resonance mode can be considered as an independent harmonic
oscillator [14] with mean quadratic fluctuations

〈

d2
n

〉

:

1

2
kBT =

1

2
kn

〈

d2
n

〉

(7)

where 〈 〉 represents time average.

3 Experimental methodology and results

In our experiment, we measure both the amplitude of the thermal noise distibution among the modes
〈

d2
n

〉

and
their spatial shape φn (x/L). We use gold coated BudgetSensors Atomic Force Microscopy (AFM) cantilevers
(Cont-GB-G). They present a nominal rectangular geometry: L = 450µm long, W = 50µm wide and T = 2µm
thick, with a 70nm gold layer on both sides. We observe the fluctuation of the cantilever deflection induced
by thermal noise. The measurement is performed with a home made interferometric deflection sensor [15, 16],
inspired by the original design of Schonenberger [17] with a quadrature phase detection technique [18]: the
interference between the reference laser beam reflecting on the chip of the cantilever [15] and the sensing beam
on the cantilever gives a direct measurement of the deflection d(x, t), with very high accuracy (see Fig. 1).

A first advantage of this technique is that it offers a calibrated measurement of deflection, without conversion
factor from angle to displacement, as in the standard optical lever technique common in AFM. A second
advantage of our detection system is a very low intrinsic noise, as illustrated in Fig. 2 with the power spectrum
density of a rigid mirror (bottom black line): the light intensities on the photo diodes are tuned exactly as
during the measurement on the cantilever, but since the mirror is still, the measured spectrum reflects only
the detection noise. This background noise is as low as 3 × 10−28 m2/Hz in the frequency range from 1 kHz
to 800kHz, just 10% higher than the shot noise limit of our detection system. A third advantage is that the
precision of the measurement is independent of the focused beam size on the cantilever, which was tuned as
small as 10µm to ensure good spatial resolution along the cantilever length.

When translating the focusing lens with respect to the cantilever, both reference and sensing laser beams are
shifted along the chip and cantilever respectively [15]. The chip’s first structural mode is at very high frequency
compared to that of the cantilever, hence it is considered as a rigid fixed mirror independently of the actual
reference beam position on top of it. The measured interference signal is therefore only due to the thermal noise
driven deflection of the cantilever. Fig. 2 illustrates such a spectrum when the sensing beam is close to the
free end. The signal to noise ratio is good enough to identify the first four flexural resonances (as well as the
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Figure 2: Power Spectrum Density (PSD) Sd(x ≈ L, f) of thermal noise induced deflection (red curve) measured
close to the free end of the cantilever as a function of frequency f (log scale on both axis). The first 4 flexural
modes and first 2 torsional modes are clearly above the background noise (bottom black line), measured with
a rigid mirror. With our interferometric setup, resolution better than 1.7 × 10−14 m/

√
Hz can be achieved on

the whole frequency range explored here (1 kHz − 800 kHz).

first two torsional resonances, which are visible due to imperfect centering of the spot laterally). The relative
frequencies of the peaks should obey the following relation that directly derives from equations 4 and 6:

fn

f1

=
α2

n

α2
1

(8)

The experimental ratios of resonance frequencies are in good agreement with the expected values (see table 1).

Mode fn/kHz fn/f1 α2
n/α2

1 Qn QSader
n

1 14.046 1 1 88 85
2 87.921 6.26 6.27 231 243
3 245.500 17.48 17.55 420 423
4 479.970 34.17 34.40 680 601

Table 1: Measured and expected parameters for first 4 flexural modes.

A precision screw allows adjusting the horizontal position of the focusing lens and locating the sensing
beam at different positions along the cantilever length while the reference beam is always on the chip [15].
For each measurement, the x position of the laser spot on the cantilever can be estimated from the image
acquired by a simple CCD camera. The spot center in the images can be detected with ±1.4µm accuracy on
the cantilever. Measurements were repeated with approximative 15µm steps. At every position we measure the
deflection d(x, t) produced by thermal excitation of the cantilever and evaluate the Power Spectrum Density
(PSD) Sd(x, f). The complete set of results is reported in Fig. 3 as a 3D representation. The first four oscillation
modes can be clearly seen with their respective number of nodes. Two further peaks can be noted, the first
at about 220 kHz and a second, of smaller amplitude, at 790kHz, that we attribute to the first and second
torsional modes.

For a quantitative characterization of the shape of the modes we determine the rms amplitude of each
resonance

〈

δ2
n(x)

〉

as a function of the position x, by integrating the PSD in a convenient frequency interval
2∆f around each peak:

〈

δ2
n(x)

〉

=

∫ fn+∆f

fn−∆f

Sd(x, f)df (9)
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Figure 3: Power Spectrum Density (PSD) Sd(x, f) of thermal noise induced deflection as a function of frequency
f and position x along the cantilever. The first 4 normal modes are clearly visible, with a vanishing amplitude
toward the clamped extremity of the mechanical beam and the nodes of each mode. Another vibration peak
with no nodes is also visible close to the third mode, it is attributed to the first mode in torsion, but is not
studied in this paper.

This quantity is computed directly from the experimental spectrums, without any fitting process of the reso-
nances. We anyway take care to subtract contribution of the background noise of the interferometer and to
compensate for the finite integration range in frequency. Experimental data computed this way is plotted on
Fig. 4. Error bars correspond to the equivalent noise of the detection system in the bandwidth chosen around
each resonance (a very conservative estimation of uncertainty).

According to equation 1, we should have

〈
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〉

=
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〉

∣
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(10)

Using the expression of
〈

d2
n

〉

(eq. 7), it is therefore possible to fit the data with 3 adjustable parameters: the
length of the lever L′, the clamping position x0 and the static spring constant of the cantilever k′

c. We realize
the fit on the rms amplitude simultaneously on the 4 modes with the following functions:

√
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∣

∣

∣

(11)

where n = 1, ..., 4. The red curves in Fig. 4 represent the fits of the four considered modes, in good agreement
for all modes. The best fit values are: L′ = (450 ± 5)µm and k′

c = (0.376 ± 0.015)N/m. These length and
stiffness are compatible with the values provided by the manufacturer (L = (450±10)µm and kc from 0.07N/m
to 0.4N/m).

It is worth noting that the accuracy of our instrument provides a precise measurement of the thermal noise
driven deflection along the cantilever length and allows to verify the Euler-Bernoulli model for the micro-
lever. Furthermore this multi-mode approach provides a more reliable way to estimate the spring constant of a
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cantilever with respect to the standard thermal noise calibration method, which is limited to the integral of the
first mode only and just at the cantilever free end (circled point in Fig. 4). Actually a precise measurement of
stiffness could be obtained from the first 3 modes only, the presence of the nodes providing a favorable constraint
to the fitting process. Moreover, the use of the interferometric set-up allows one to avoid the calibration of
the segmented photodiode response as in the classical optical lever readout scheme: this step implies a contact
between the AFM tip and a hard sample which is translated of a known amount, a process that may be
undesirable to preserve the probe’s sharpness or its coating. Our calibration method leaves only a small 4%
uncertainty on the spring constant value for the cantilever used here (confidence interval corresponding to one
standard deviation estimated during the linear least square fitting process).

Experimental PSD curves show that resonances have a mode number dependent frequency width. This effect
is mainly due to the viscous drag of the fluid, an point that is not considered in the Euler-Bernoulli framework.
A simple model that accounts for this aspect, for each eigenmode, is a damped harmonic oscillator characterized
by three parameters: the resonance frequency fn, the elastic constant kn and the quality factor Qn. The PSD
of the damped oscillator can be expressed as:

Sd(f) =
2kBT

knπfn

Qn

(1 − u2)
2
Q2

n + u2
(12)

with u = f/fn the normalised frequency. For each mode the PSD depends on the spatial coordinate along the

cantilever length still according to |φn(x)|2. The Qn are evaluated from experimental data by a fit in the region
around the peaks of each node (see Fig. 5). Those values are constant along the cantilever. Since the elastic
constant kn and resonant frequency fn of each mode is known, the quality factor Qn is the only free parameter
in these fits. In table 1 the Qn values of the first four modes are compared with the hydrodynamic predictions of
the Sader model [19] that account for viscous effect in the fluid. These predictions were computed with tabulated
values of silicon and gold for Young’s modulus and density, and the physical dimensions of the cantilever (length,
width and thickness) were tuned within the manufacturer tolerance to match the experimental observations.
Note that the elastic modulus of gold and silicon are of the same order of magnitude, whereas the density of
gold is about eight times that of silicon, therefore even a thin coating layer of 70 nm produces a mass increment
of about 60% that cannot be neglected in the evaluation of total mass.

A good agreement between the model and experiment is observed for the first three resonances, but at the
highest frequency a deviation is observed: a lower dissipation than that foreseen by the Sader model. This
behavior was already observed by Maali et al [20]. This deviation is expected since the original Sader model
neglects the 3D nature of the fluid flowing around the cantilever, an effect increasing with mode number [19].
In an extended model by Sader and co-workers [21], such a correction is also observed in the same direction as
in our observation.

4 Conclusions

We presented in this paper a high precision measurement of thermal noise induced deflection of a soft rectangular
micro-cantilever as a function of frequency and position along the mechanical beam. The 4 first flexural spatial
modes could be studied without any external forcing. Their shapes are very well fitted by the Euler-Bernoulli
model, and their vibration amplitudes accurately described within the Butt and Jaschke [14] framework. Fur-
thermore this multi-mode approach provides an extension to the standard thermal noise calibration method
for the spring constant of the cantilever, with a more robust estimation: it is obtained by a simultaneous fit
on several modes, when the classic measurement is limited to the integral of the first mode only and just at
the cantilever free end. Here, the stiffness of our cantilever could be determined with only 4% uncertainty.
Quality factors of resonances are also robustly extracted from the measurements and compare well to the Sader
estimation [19].

The very simple geometry considered here, a rectangular AFM probe, is commonly used in many other appli-
cations. In fact single-clamped structures, similar to cantilevers, are often the basic elements of complex MEMS
devices. Many physical, chemical and biological sensors, a large family of micro-devices, are based on cantilever
shaped structures. They respond to an external change with a small, barely detectable, mechanical movement.
The proposed calibration method would be directly applicable to these objects. The characterization of more
complex structures (bi-dimensional for instance) such as arrays, double clamped elements, membranes and other
micro-mechanical structures could also be performed, although it would also require a proper theoretical treat-
ment to extract the relevant physical parameters from the measurement. The absence of external forcing (that
may not be controlled or hard to characterize) thanks to the use of thermal noise and the great resolution of the

6



interferometric setup make our approach a very promising tool for the mechanical characterization of MEMS.
Even beyond such calibration, our setup proves to be a valuable tool to perform measurements of extremely
small mechanical displacements with a high bandwidth.
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Figure 4: Amplitude of thermal noise for the first 4 flexural modes along the cantilever. Errors bars correspond to
the equivalent noise of the detection system in the bandwidth chosen around each resonance (a very conservative
estimation of uncertainty). The simultaneous fit (red curves) of the 4 resonances with the normal modes shapes
is excellent and leads to a precise measurement of the stiffness of the cantilever. The common calibration
method for the spring constant considers only the value of δ2

1(L), the circled point in the upper graph.
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Figure 5: Power Spectrum Density (PSD) Sd(x ≈ L, f) of thermal noise induced deflection measured close to
the free end of the cantilever as a function of frequency f around each resonance fn. We subtract from the
raw measurement (dashed blue) the background noise (black) to estimate the mechanical noise of the cantilever
(blue), then we perform a fit with a simple damped harmonic oscillator model (dashed red). For each plot, the
horizontal scale spans ±10fn/Qn around fn.
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