
HAL Id: ensl-00381458
https://ens-lyon.hal.science/ensl-00381458

Preprint submitted on 5 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complexity analysis and performance evaluation of
matrix product on multicore architectures

Mathias Jacquelin, Loris Marchal, Yves Robert

To cite this version:
Mathias Jacquelin, Loris Marchal, Yves Robert. Complexity analysis and performance evaluation of
matrix product on multicore architectures. 2009. �ensl-00381458�

https://ens-lyon.hal.science/ensl-00381458
https://hal.archives-ouvertes.fr

Complexity analysis and performance evaluation of matrix

product on multicore architectures

Mathias Jacquelin, Loris Marchal and Yves Robert

École Normale Supérieure de Lyon, France
{Mathias.Jacquelin|Loris.Marchal|Yves.Robert}@ens-lyon.fr

LIP Research Report RRLIP2009-09

Abstract

The multicore revolution is underway, bringing new chips introducing more complex
memory architectures. Classical algorithms must be revisited in order to take the hierarchical
memory layout into account. In this paper, we aim at minimizing the number of cache
misses paid during the execution of the matrix product kernel on a multicore processor, and
we show how to achieve the best possible tradeoff between shared and distributed caches.
Comprehensive simulation results confirm the analytical performance predictions and fully
establish the practical significance of our new algorithms.

1 Introduction

Dense linear algebra kernels are the key to performance for many scientific applications. Some
of these kernels, like matrix multiplication, have extensively been studied on parallel architec-
tures. Two well-known parallel versions are Cannon’s algorithm [4] and the ScaLAPACK outer
product algorithm [2]. Typically, parallel implementations work well on 2D processor grids:
input matrices are sliced horizontally and vertically into square blocks; there is a one-to-one
mapping of blocks onto physical resources; several communications can take place in parallel,
both horizontally and vertically. Even better, most of these communications can be overlapped
with (independent) computations. All these characteristics render the matrix product kernel
quite amenable to an efficient parallel implementation on 2D processor grids.

However, algorithms based on a 2D grid (virtual) topology are not well suited for multicore
architectures. In particular, in a multicore architecture, memory is shared, and data accesses are
performed through a hierarchy of caches, from shared cache to distributed caches. To increase
performance, we need to take further advantage of data locality, in order to minimize data
movement. This hierarchical framework resembles that of out-of-core algorithms [8] (the shared
cache being the disk) and that of master-slave implementations with limited memory [7] (the
shared cache being the master’s memory). The latter paper [7] presents the Maximum Reuse
Algorithm which aims at minimizing the communication volume from the master to the slaves.
Here, we adapt this study to multicore architectures, by taking both cache levels into account.

2 Problem statement

2.1 Multicore architectures

A major difficulty of this study is to come up with a realistic but still tractable model of a
multicore processor. We assume that such a processor is composed of p cores, and that each

1

. . .Corei

CD . . . CD

Corep Processing cores

Shared cache

Distributed caches

CS

σS

Main Memory

σDσDσD

CD . . .

. . .Core1

Figure 1: Multicore architecture model.

core has the same computing speed. The processor is connected to a memory, which is supposed
to be large enough to contain all necessary data (we do not deal with out-of-core execution here).
The data path from the memory to a computing core goes through two levels of caches. The
first level of cache is shared among all cores, and has size CS , while the second level of cache
is distributed: each core has its own private cache, of size CD. Caches are supposed to be
inclusive, which means that the shared cache contains at least all the data stored in every
distributed cache. Therefore, this cache must be larger than the union of all distributed caches:
CS ≥ p × CD. Our caches are also “fully associative”, and can therefore store any data from
main memory. Figure 1 depicts the multicore architecture model.

The hierarchy of caches is used as follows. When a data is needed in a computing core,
it is first sought in the distributed cache of this core. If the data is not present in this cache,
a distributed-cache miss occurs, and the data is then sought in the shared cache. If it is not
present in the shared cache either, then a shared-cache miss occurs, and the data is loaded from
the memory in the shared cache and afterward in the distributed cache. When a core tries to
write to an address that is not in the caches, the same mechanism applies. Rather than trying to
model this complex behavior, we assume in the following an ideal cache model [5]: we suppose
that we are able to totally control the behavior of each cache, and that we can load any data
into any cache (shared of distributed), with the constraint that a data has to be first loaded
in the shared cache before it could be loaded in the distributed cache. Although somewhat
unrealistic, this simplified model has been proven not too far from reality: it is shown in [5]
that an algorithm causing N cache misses with an ideal cache of size L will not cause more than
2N cache misses with a cache of size 2L implementing a classical LRU replacement policy.

In the following, our objective is twofold: (i) minimize the number of cache misses during
the computation of matrix product, and (ii) minimize the predicted data access time of the
algorithm. To this end, we need to model the time needed for a data to be loaded in both
caches. To get a simple and yet tractable model, we consider that cache speed is characterized
by its bandwidth. The shared cache has bandwidth σS , thus a block of size S needs S/σS

time-unit to be loaded from the memory in the shared cache, while each distributed cache has
bandwidth σD. Moreover, we assume that concurrent loads to several distributed caches are
possible without contention, and that coherency mechanisms’ impact on performance can be
neglected.

Finally, the purpose of the algorithms described below is to compute the classical matrix
product C = A×B. In the following, we assume that A has size m× z, B has size z×n, and C
has size m× n. We use a block-oriented approach, to harness the power of BLAS routines [2].
Thus, the atomic elements that we manipulate are not matrix coefficients but rather square
blocks of coefficients of size q × q. Typically, q ranges from 32 to 100 on most platforms.

2

2.2 Communication volume

The key point to performance in a multicore architecture is efficient data reuse. A simple way
to assess data locality is to count and minimize the number of cache misses, that is the number
of times each data has to be loaded in a cache. Since we have two types of caches in our model,
we try to minimize both the number of misses in the shared cache and the number of misses
in the distributed caches. We denote by MS the number of cache misses in the shared cache.
As for distributed caches, since accesses from different caches are concurrent, we denote by MD

the maximum of all distributed caches misses: if M
(c)
D is the number of cache misses for the

distributed cache of core c, MD = maxc M
(c)
D .

In a second step, since the former two objectives are conflicting, we aim at minimizing the
overall time Tdata required for data movement. With the previously introduced bandwidth, it
can be expressed as Tdata = MS

σS
+ MD

σD
. Depending on the ratio between cache speeds, this

objective provides a tradeoff between both cache miss quantities.

2.3 Lower bound on communication

In [8], Irony, Toledo and Tiskin propose a lower bound on the number of communications
needed to perform a matrix product. We have extended this study to our hierarchical cache
architecture. In all the following, we consider a computing system (which consists of one or
several computing cores) using a cache of size Z. We estimate the number of computations
that can be performed owing to Z consecutive cache misses, that is owing to Z consecutive load
operations. We recall that each matrix element is in fact a matrix block of size q × q. We use
the following notations :

• Let ηold, νold, and ξold be the number of blocks in the cache used by blocks of A, B and
C just before the Z cache misses.

• Let ηread, νread, and ξread be the number of blocks of A, B and C read in the main memory
when these Z cache misses occurs.

• Let comp(c) be the amount of computation done by core c

Before the Z cache misses, the cache holds at most Z blocks of data, therefore, after Z cache
misses, we have:

{

ηold + νold + ξold ≤ Z

ηread + νread + ξread = Z
(1)

2.3.1 Loomis-Whitney’s inequality

The following lemma, given in [6] and based on Loomis-Whitney inequality, is valid for any
conventional matrix multiplication algorithm C = AB, where A is m × z, B is z × n and C
is m × n. A processor that contributes to NC elements of C and accesses NA elements of A
and NB elements of B can perform at most

√
NANBNC elementary multiplications. According

to this lemma, if we let K denote the number of elementary multiplications performed by the
computing system, we have:

K ≤
√

NANBNC

No more than (ηold + ηread)q
2 elements of A are accessed, hence NA = (ηold + ηread)q

2. The
same holds for B and C: NB = (νold + νread)q

2 and NC = (ξold + ξread)q
2. Let us simplify the

3

notations using the following variables:











ηold + ηread = η × Z

νold + νread = ν × Z

ξold + ξread = ξ × Z

(2)

Then the following equation is obtained:

K =
√

ηνξ × Z
√

Z × q3 (3)

Writing K = km
√

mq3, we obtain the following system of equation:

MAXIMIZE k SUCH THAT
{

k ≤
√

ηνξ

η + ν + ξ ≤ 2

Note that the second inequality comes from Equation (1). This system admits a solution which

is η = ν = ξ =
2

3
and k =

√

8
27 . This gives us a lower bound on the communication-to-

computation ratio (in terms of blocks) for any matrix multiplication algorithm:

CCR ≥ Z

k × Z
√

Z
=

√

27

8Z

2.3.2 Bound on shared-cache misses

We will first use the previously obtained lower bound to the study of shared-cache misses,
considering everything above this cache level as a single processor and the main memory as a
master which sends and receives data. Therefore, with Z = CS and K =

∑

c comp(c), we have
a lower bound on the communication-to-computation ratio for shared-cache misses:

CCRS =
MS

K
=

MS
∑

c comp(c)
≥

√

27

8CS

2.3.3 Bound on distributed-caches misses

In the case of the distributed caches, we first apply the previous result, on a single core c, with
cache size CD. We thus have

CCRc ≥
√

27

8CD

We have define the overall distributed CCR as the average of all CCRc, so this result also holds
for the CCRD:

CCRD =
1

p

p
∑

c=1

(
MDc

comp(c)
) ≥

√

27

8CD

Indeed, we could even have a stronger result, on the minimum of all CCRc.

4

2.3.4 Bound on overall data access time

The previous bound on the CCR can be extended to the data access time, as it is defined as a
linear combination of both MS and MD:

Tdata =
MS

σS
+

MD

σD

We can bound MS using the bound on the CCR:

MS = CCRS ×mnz ≥ mnz ×
√

27

8CS

As for distributed-cache misses, it is more complex, since MD is the maximum of all misses
on distributed caches, and CCRD is the average CCR among all cores. In order to get a
tight bound, we consider only algorithms where both computation and cache misses are equally
distributed among all cores (this applies to all algorithms developed in this paper). In this case,
we have

MD = max
c

M
(c)
D = M

(0)
D =

mnz

p
× CCR0 ≥

mnz

p
×

√

27

8CD

Thus, we get the following bound on the overall data access time:

Tdata ≥ mnz ×
(

1

σS
×

√

27

8CS
+

1

pσD
×

√

27

8CD

)

.

3 Algorithms

In the out-of-core algorithm of [8], the three matrices A, B and C are equally accessed through-
out time. This naturally leads to allocating one third of the available memory to each matrix.

This algorithm has a communication-to-computation ratio of O
(

mnz√
M

)

for a memory of size

M but it does not use the memory optimally. The Maximum Reuse Algorithm [7] proposes a
more efficient memory allocation: it splits the available memory into 1 + µ + µ2 blocks, storing
a square block Ci1...i2,j1...j2 of size µ2 of matrix C, a row Bi1...i2,j of size µ of matrix B and
one element Ai,j of matrix A (with i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2). This allows to compute
Ci1...i2,j1...j2+ = Ai,j × Bi1...i2,j . Then, with the same block of C, other computations can be
accumulated by considering other elements of A and B. The block of C is stored back only when
it has been processed entirely, thus avoiding any future need of reading this block to accumulate
other contributions. Using this framework, the communication-to-computation ratio is 2√

M
for

large matrices.
To adapt the Maximum Reuse Algorithm to multicore architectures, we must take into

account both cache levels. Depending on our objective, we adapt the previous data allocation
scheme so as to fit with the shared cache, with the distributed caches, or with both. The main
idea is to design a “data-thrifty” algorithm that reuses matrix elements as much as possible
and loads each required data only once in a given loop. Since the outermost loop is prevalent,
we load the largest possible square block of data in this loop, and adjust the size of the other
blocks for the inner loops, according to the objective (shared-cache, distributed-cache, tradeoff)
of the algorithm. We define two parameters that will prove helpful to compute the size of the
block of C that should be loaded in the shared cache or in a distributed cache:
• λ is the largest integer with 1 + λ + λ2 ≤ CS ;
• µ is the largest integer with 1 + µ + µ2 ≤ CD.
In the following, we assume that λ is a multiple of µ, so that a block of size λ2 that fits in the
shared cache can be easily divided in blocks of size µ2 that fit in the distributed caches.

5

3.1 Minimizing shared-cache misses

Algorithm 1: Adaptation of the Maximum Reuse Algorithm minimizing the number of
shared misses MS

for Step = 1 to m×n
λ2 do

Load a new block C[i, . . . , i + λ; j, . . . , j + λ] of C in the shared cache
for k = 1 to z do

Load a row B[k; j, . . . , j + λ] of B in the shared cache
for i′ = i to i + λ do

Load the element a = A[k; i′] in the shared cache
foreach core c = 1 . . . p in parallel do

Load the element a = A[k; i′] in the distributed cache of core c
for j′ = j + (c− 1)× λ

p
to j + c× λ

p
do

Load Bc = B [k; j′] in the distributed cache of core c
Load Cc = C [i′; j′] in the distributed cache of core c
Compute the new contribution: Cc ← Cc + a×Bc

Update block Cc in the shared cache

Write back the block of C to the main memory

To minimize the number of shared-cache misses, we adapt the Maximum Reuse Algorithm
with parameter λ. A square block Cblock of size λ2 of C is allocated in the shared cache,
together with a row of λ elements of B and one element of A. Then, each row of Cblock is
divided into sub-rows of λ

p
elements, which are then distributed element per element together

with corresponding element of B and one element of A, updated by the different cores, and
written back in shared cache.

As soon as Cblock is completely updated, it is written back in main memory and a new Cblock

is loaded. This is described in details in Algorithm 1, and the memory layout is depicted in
Figure 2.

A

k

l

Brow

λ

B

λ

C

k

a

Cblock

Crow

in core c

Figure 2: Data layout for Algorithm 1.

Note that the space required in each distributed-cache to process 1 bloc of q2 elements of
C is 1 + 1 + 1. For now, we have no assumption on the minimal size of distributed caches. We
thus need to make an additional assumption on the distributed cache sizes . Let , SD be the

6

size (in matrix coefficient) of each distributed cache (remember that CD is expressed in blocks)
Distributed cache must obviously be large enough to perform the matrix product, that is to say
that:

3 ≤ CD

3q2 ≤ SD

Therefore with this assumption on cache sizes, we are sure that distributed caches are large
enough to perform required computations.

• Shared-cache misses

In this algorithm, the whole matrix C is loaded in the shared cache, thus resulting in mn
cache misses. For the computation of each block of size λ2, z rows of size λ are loaded
from B, and z×λ elements of A are accessed. Since there are mn/λ2 steps, this amounts
to a total number of shared cache misses of:

MS =
mn

λ2
× z ×

(

λ + λ + λ2
)

= mn +
2mnz

λ

The communication-to-computation ratio is therefore:

CCRS =
mn + 2mnz

λ

mnz
=

1

z
+

2

λ

For large matrices, this leads to a shared-cache CCR of 2/λ, which is close to the lower
bound derived earlier.

• Distributed-caches misses

In this algorithm, each block of C is sequentially updated z times by rows of λ elements,
each row is distributed elements per elements, thus requiring λ

p
steps. Therefore, each

distributed cache holds one element of C. This therefore results in mnz
p

cache misses.

For the computation of each block of size λ2, z × λ
p

elements are loaded from B in each

distributed cache, and z×λ elements of A are accessed. Since there are mn/λ2 steps, this
amounts to a total number of shared cache misses of:

MD =

mn
λ2 × z × λ× p×

(

1 + λ
p

+ λ
p

)

p

=
2mnz

p
+

mnz

λ

The communication-to-computation ratio is therefore:

CCRD =

2mnz
p

+ mnz
λ

mnz
p

= 2 +
p

λ

This communication-to-computation does not depend upon the dimensions of the ma-
trices, and is the same for large matrices. Moreover, it is far from the lower bound on
distributed cache misses.

7

3.2 Minimizing distributed-cache misses

Our next objective is to minimize the number of distributed-cache misses. To this end, we use
the parameter µ defined earlier to store in each distributed cache a square block of size µ2 of C,
a fraction of row (of size µ) of B and one element of A. Contrarily to the previous algorithm,
the block of C will be totally computed before being written back to the shared cache. All p
cores work on different blocks of C. Thanks to the constraint p× CD ≤ CS , we know that the
shared cache has the capacity to store all necessary data.

The µ × µ blocks of C are distributed among the distributed-caches in a 2-D cyclic way,
because it helps reduce (and balance between A and B) the number of shared-cache misses:
in this case, assuming that

√
p is an integer, we load a

√
pµ × √pµ block of C in shared

cache, together with a row of
√

pµ elements of B. Then,
√

p × µ elements from a column of
A are sequentially loaded in the shared cache (

√
p non contiguous elements are loaded at each

step), then distributed among distributed caches (cores in the same “row” (resp. “column”)
accumulate the contribution of the same (resp. different) element of A but of different (resp.
the same)

√
p× µ fraction of row from B).

Algorithm 2: Adaptation of the Maximum Reuse Algorithm minimizing the number of
distributed misses MD

offseti = (My Core Num()− 1) (mod
√

p)

offsetj = ⌊My Core Num()−1√
p

⌋
for Step = 1 to m×n

pµ2 do

Load a new block C[i, . . . , i +
√

pµ; j, . . . , j +
√

pµ] of C in the shared cache
foreach core c = 1 . . . p in parallel do

Load
Cc = C[i+offseti×µ, . . . , i+(offseti +1)×µ; j+offsetj ×µ, . . . , j+(offsetj +1)×µ]
in the distributed cache of core c

for k = 1 to z do
Load a row B[k; j, . . . , j +

√
pµ] of B in the shared cache

foreach core c = 1 . . . p in parallel do
Load Bc = B[k; j + offsetj × µ, . . . , j + (offsetj + 1)× µ] in the distributed
cache of core c
for i′ = i + offseti × µ to i + (offseti + 1)× µ do

Load the element a = A[k; i′] in the shared cache
Load the element a = A[k; i′] in the distributed cache of core c
Compute the new contribution: Cc ← Cc + a×Bc

foreach core c = 1 . . . p in parallel do
Update block Cc in the shared cache

Write back the block of C to the main memory

• Shared-cache misses

The number of shared-cache misses is:

MS =
mn

pµ2
×

(

pµ2 + z × 2
√

pµ
)

= mn +
2mnz

µ
√

p

8

Hence, the communication-to-computation ratio is:

CCRS =
mn + 2mnz

µ
√

p

mnz
=

1

z
+

2

µ
√

p

For large matrices, the communication-to-computation is 2
µ
√

p
=

√

32
8×

√
pCD

. This is far

from the lower bound since
√

pCD ≤ pCD ≤ CS .

• Distributed-caches misses

The number of distributed-cache misses achieved by our algorithm is:

MD =

mn
pµ2 × p×

(

µ2 + z × 2µ
)

p
=

mn

p
+

2mnz

µ× p

Therefore, the communication-to-computation ratio is:

CCRD =

mn
p

+ 2mnz
µ×p

mnz
p

=
1

z
+

2

µ

For large matrices, the communication-to-computation is asymptotically close to the value
2
µ

=
√

32
8CD

, which is close to the lower bound
√

27
8CD

.

3.3 Minimizing Data access time

Our two objectives are antagonistic, and in both previous approaches, optimizing the number
of cache misses of one type leads to a large number of cache misses of the other type. Indeed,
minimizing MS ends up with a number of distributed-cache misses proportional to the common
dimension of matrices A and B, and in the case of large matrices this is clearly problematic.
On the other hand, focusing on MD only is not efficient since we dramatically under-use the
shared cache: a large part of it is not utilized.

This motivates us to look for a tradeoff between the latter two solutions. However, both
kinds of cache misses have different costs, since bandwidths between each level of our memory
architecture are different. Hence we have introduced the overall time for data movement, defined
as:

Tdata =
MS

σS
+

MD

σD

Depending on the ratio between cache speeds, this objective provides a tradeoff between both
cache miss numbers.

To derive an algorithm optimizing this tradeoff, we start from algorithm presented for opti-
mizing the shared-cache misses. Looking closer to the downside of this algorithm, which is the
fact that the part of MD due to the elements of C is proportional to the common dimension z
of matrices A and B, we can see that we can reduce this amount by loading blocks of β columns
(resp. of rows) of A (resp. B). This way, square blocks of C could be processed longer by the
cores before being unloaded and written back in shared-cache instead of being unloaded after
that every element of the column of A residing in shared-cache has been used. However, blocks
of C must be smaller than before, and instead of being λ2 blocks, they are now of size α2 where
α and β are defined under the constraint 2α× β + α2 ≤ CD.

In this case, the sketch of Algorithm 3 is the following:

9

1. A block of size α×α of C is loaded in the shared cache. Its size satisfies p×µ2 ≤ α2 ≤ λ2.
Both extreme cases are obtained when one of σD and σS is negligible in front of the other.

2. In the shared cache, we also load a block from B, of size β × α , and a block from A of
size α× β. Thus, we have 2α× β + α2 ≤ CD.

3. The α × α block of C is split into sub-blocks of size µ × µ which are processed by the
different cores. These sub-blocks of C are cyclicly distributed among every distributed-
caches. The same holds for the block-row of B which is split into β × µ block-rows and
cyclicly distributed, row by row (i.e. by blocks of size 1 × µ), among every distributed-
caches.

4. The contribution of the corresponding β (fractions of) columns of A and β (fractions of)
lines of B es added to the block of C. Then, another µ× µ block of C residing in shared
cache is distributed among every distributed-caches, going back to step 3.

5. As soon as all elements of A and B have contributed to the α× α block of C, another β
columns/lines from A/B are loaded in shared cache, going back to step 2.

6. Once the α×α block of C in shared cache is totally computed, a new one is loaded, going
back to step 1.

A11

A51

β

z

A

B12B11 B16B15

zβ

B

α√
p

α

α√
p

C

C12

α

Core4Core2

µ
C11

C21 C22

µ

Core3Core1

Figure 3: Data distribution of matrices A, B and C: light gray block resides in shared-cache,
dark gray blocks are distributed among distributed-caches (α = 8, µ = 2, p = 4)

• Shared-cache misses

The number of shared-cache misses is given by:

MS =
mn

α2

(

α2 +
z

β
× 2αβ

)

= mn +
2mnz

α

The communication-to-computation ratio is therefore:

CCRS =
1

z
+

2

α

10

Algorithm 3: Adaptation of the Maximum Reuse Algorithm minimizing the overall time
Tdata

offseti = (My Core Num()− 1) (mod
√

p)

offsetj = ⌊My Core Num()−1√
p

⌋
for Step = 1 to m×n

α2 do
Load a new block C[i, . . . , i + α; j, . . . , j + α] of C in the shared cache
for Substep = 1 to z

β
do

k = 1 + (Substep− 1)× β
Load a new block row B[k, . . . , k + β; j, . . . , j + α] of B in the shared cache
Load a new block column A[i, . . . , i + α; 1 + (k − 1)× β, . . . , 1 + k × β] of A in
the shared cache
foreach core c = 1 . . . p in parallel do

for subi = 1 to subi = α√
pµ

do

for subj = 1 to subj = α√
pµ

do

Load
Cµc = C[i + offseti × α√

p
+ (subi− 1)× µ, . . . , i + offseti × α√

p
+ (subi)×

µ; j + offsetj × α√
p

+ (subj − 1)× µ, . . . , j + offsetj)× α√
p

+ (subj)× µ]

in the distributed cache of core c
for k′ = k to k′ = k + β do

Load Bc =
B[k′; j+offsetj× α√

p
+(subj−1)×µ, . . . , j+offsetj× α√

p
+(subj)×µ]

in the distributed cache of core c
for i′ = i + offseti × α√

p
+ (subi− 1)× µ to

i + offseti × α√
p

+ (subi)× µ do

Load the element a = A[i′, k′] in the distributed cache of core c
Compute the new contribution: Cc ← Cc + a×Bc

Update block Cµc in the shared cache

Write back the block of C to the main memory

11

For large matrices, the communication-to-computation is asymptotically close to
√

32
8

1
α

which is farther from the lower bound than the shared-cache optimized version since
α ≤ λ ≈

√
CS .

• Distributed-caches misses

In the general case (i.e. α >
√

pµ), the number of distributed-cache misses achieved by
our new algorithm is:

MD =
1

p
× mn

α2
×

[

α2

µ2
×

(

µ2 × z

β
+

z

β
× 2βµ

)]

=
mn

p
× z

β
+

2mnz

pµ

The communication-to-computation ratio is therefore 1
β

+ 2
µ
, which for large matrices is

asymptotically close to 1
β

+
√

32
8CD

. This is far from the lower bound
√

27
8CD

derived earlier.

To optimize this CCR, we could try to increase the value of β. However, increasing the
parameter β implies a lower value of α, resulting in more shared-cache misses.

Remark. Note that if we are in the special case α =
√

pµ, we only need to load each
µ× µ sub-block of C once, since a core is only in charge of one sub-block of C, therefore
the number of distributed-caches misses becomes:

MD =
1

p
× mn

α2
×

[

α2

µ2
×

(

µ2 × 1 +
z

β
× 2βµ

)]

=
mn

p
+

2mnz

pµ

In this case, we come back to the distributed-cache optimized case, and the distributed
CCR is close to the bound.

• Data access time

With this algorithm, we get an overall data access time of:

Tdata =
MS

σS
+

MD

σD
=

mn + 2mnz
α

σS
+

mnz
pβ

+ 2mnz
pµ

σD

Together with the constraint 2α×β +α2 ≤ CD, it allows us to compute the best value for
parameters α and β, depending on the ratio σS/σD. Since we work under the assumption
of large matrices, the first term in mn can be neglected in front of the other terms, so
basically, our problem reduces to minimizing the following expression:

2

σSα
+

1

pσDβ
+

2

pσDµ

The constraint 2βα + α2 ≤ CS enables us to express β as a function of α and CS . As a
matter of a fact, we have:

β ≤ CS − α2

2α

12

Hence, the objective function becomes:

F (α) =
2

σSα
+

2α

pσD(CS − α2)

Note that we have removed the term 2
pσDµ

because it only depends on µ and therefore is

minimal when µ = ⌊
√

CS − 3/4− 1/2⌋, i.e. its largest possible value.

The derivative F ′(α) is:

F ′(α) =
2(CS + α2)

pσD(CS − α2)2
− 2

σSα2

And therefore, the root is

αnum =

√

√

√

√

√CS

1 + 2pσD

σS
−

√

1 + 8pσD

σS

2
(

pσD

σS
− 1

)

Altogether, the best parameters values in order to minimize the total data access time in
the case of square blocks are:



















α = min
(

αmax,max
(√

pµ, αnum

))

β = max

(⌊

CS − α2

2α

⌋

, 1

)

where:
αmax =

√

CS + 1− 1

Parameter α depends on the values of bandwidths σS and σD. In both extreme cases,
it will take a particular value indicating that tradeoff algorithm will follow the sketch of
either shared-cache optimized version or distributed-caches one:

– When bandwidth σD is significantly higher than σS , the parameter α becomes:

αnum ≈
√

CS =⇒ α = αmax, β = 1

which means that tradeoff algorithm chooses shared-cache optimized version of the
Multicore Maximum Reuse Algorithm whenever distributed caches are significantly
faster than the shared cache.

– On the contrary, when the bandwidth σS is significantly higher than σD, α becomes:

αnum ≈
√

CS
2pσD

−σS
=⇒ α =

√
pµ, β = 1

which means that tradeoff algorithm chooses distributed optimized version of the
Multicore Maximum Reuse Algorithm whenever distributed caches are significantly
slower than the shared cache, although it does not seem to be a realistic case.

13

4 Simulation results

We have presented three algorithms minimizing different objectives (shared cache misses, dis-
tributed cache misses and overall time spent in data movement) and provided a theoretical
analysis of their performance. However, our simplified multicore model makes some assump-
tions that are not realistic on a real hardware platform. In particular it uses an ideal and
omniscient data replacement policy instead of a classical LRU policy. This led us to design a
multicore cache simulator and implement all our algorithms, as well as the outer-product [2]
and Toledo [8] algorithms, using different cache policies. The goal is to experimentally assess
the impact of the policies on the actual performance of the algorithms, and to measure the gap
between the theoretical prediction and the observed behavior. The main motivation behind the
choice of a simulator instead of a real hardware platform resides in commodity reasons: simu-
lation enables to obtain desired results faster and allows to easily modify multicore processor
parameters (cache sizes, number of cores, bandwidths, . . .).

4.1 Settings

The driving feature of our simulator was simplicity. It implements the cache hierarchy of our
model, and basically counts the number of cache misses in each cache level. It offers two data
replacement policies, LRU (Least Recently Used) and IDEAL. In the LRU mode, read and
write operations are made at the distributed cache level (top of hierarchy); if a miss occurs,
operations are propagated throughout the hierarchy until a cache hit happens. In the IDEAL
mode, the user manually decides which data needs to be loaded/unloaded in a given cache; I/O
operations are not propagated throughout the hierarchy in case of a cache miss: it is the user
responsibility to guarantee that a given data is present in every caches below the target cache.

We have implemented two reference algorithms: (i) Outer Product, the algorithm in [2],
for which we organize cores as a (virtual) processor torus and distribute square blocks of data
elements to be updated among them; and (ii) Equal, an algorithm inspired by [8], which uses a
simple equal-size memory scheme: one third of distributed caches is equally allocated to each
loaded matrix sub-block. In fact, the algorithm in [8] deals with a single cache level, hence we
decline it in two versions, Shared Equal for shared cache optimization, and Distributed Equal for
distributed cache optimization. We have also implemented the three versions of the Multicore
Maximum Reuse Algorithm:

• Shared Opt., the version to minimize the number of shared caches misses MS

• Distributed Opt., the version to minimize the number of distributed cache misses MD

• Tradeoff, the version to minimize the data access time Tdata.

In the experiments, we simulated a ”realistic” quad-core processor with 8MB of shared
cache and four distributed caches of size 256KB dedicated to both data and instruction. We
assume that two-thirds of the distributed caches are dedicated to data, and one-third for the
instructions. Results using a more pessimistic repartition of one half for data and one-half for
instructions are also given. Recall that square blocks of matrix coefficients have size q × q.
Depending on the chosen unit block size, caches sizes communicated to our algorithms will thus
be the following:

• For q = 32: we derive CS = 977 and CD = 21 (or CD = 16 for the pessimistic assumption)

14

• For q = 64: CS = 245 & CD = 6 (or CD = 4)

• Finally, for q = 80: CS = 157 & CD = 4 (or CD = 3).

4.2 LRU vs IDEAL

Here we assess the impact of the data replacement policy on the number of shared cache misses
and on the performance achieved by the algorithm. Figure 4 shows the total number of shared
cache misses for Shared Opt., in function of the matrix dimension. Figure 5 is the counterpart
of Figure 4 but for Distributed Opt. . The same holds for Figure 6 and Tradeoff.

Shared Opt. LRU (2CS)

Shared Opt. LRU (CS)

Formula (CS)

2× Formula (CS)
150000000

250000000

S
h
ar

ed
ca

ch
e

m
is

se
s

M
S

50 100 150 200

50000000

100000000

200000000

250 300 350 400 450 500 550 600

Matrix Order (In block units)

0

Figure 4: Impact of LRU policy on the number of shared cache misses MS of Shared Opt. with
CS = 977

Distributed Opt (2CS)

Distributed Opt (CS)

2× Formula (CS)

Formula (CS)

250 450 500 550 600

Matrix Order (In block units)

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

D
is

tr
ib

u
te

d
ca

ch
e

m
is

se
s

M
D

50 100 150 200 300 350 400

Figure 5: Impact of LRU policy on the number of distributed cache misses MD of Distributed
Opt. with CD = 21

While LRU (CS) (the LRU policy with a cache of size CS) achieves significantly more
cache-misses than predicted by the theoretical formula, LRU (2CS) is quite close and always
achieve less than twice the number of cache misses predicted by the theoretical formula, thereby

15

Tradeoff (2CS)

Tradeoff (CS)

Formula (CS)

2× Formula (CS)40000000

60000000

T
d
a
ta

50 100 150 200 250

20000000

30000000

50000000

300 350 400 450 500 550 600

Matrix Order (In block units)

0

10000000

Figure 6: Impact of LRU policy on Tdata of Tradeoff with CS = 977 and CD = 21

experimentally validating the prediction of [5]. Furthermore, similar results are obtained for
Shared Equal. and Distributed Equal. Note that Outer Product is insensitive to cache policies,
since it is not focusing on cache usage.

This leads us to run our tests using the following two simulation settings:

• The IDEAL setting, which corresponds to the use of the omniscient IDEAL data re-
placement policy assumed in the theoretical model. It relies on the IDEAL mode of the
simulator and deckares entire cache sizes (CS and/or CD) to the algorithms

• The LRU-50 setting, which relies on a LRU cache data replacement policy, but declares
only one half of cache sizes to the algorithms. The other half is thus used by the LRU
policy as kind of an automatic prefetching buffer.

4.3 Performance

4.3.1 Shared Opt.

Figure 7 depicts the number of shared cache misses achieved by Shared Opt versions LRU-50

and IDEAL, in comparison with Outer Product, Shared Equal and the lower bound m3
√

27
8CS

,

according to the matrix dimension m. For every block sizes q, we see that Shared Opt. performs
significantly better than Outer Product and Shared Equal for the LRU-50 setting. Under the
IDEAL setting, it is closer to the lower bound, but this latter setting is not realistic.

4.3.2 Distributed Opt.

Figure 8 is the counterpart of Figure 7 for distributed caches. On Figure 8(a) and Figure 8(b),
we similarly see that Distributed Opt. performs significantly better than Outer Product and
Distributed Equal for the LRU-50 setting. Under the IDEAL setting, it is very close to the

lower bound m3

p

√

27
8CD

.

However, if we increase the size of the unit block, say q = 64 instead of 32, Distributed Opt.
has not enough space in memory to perform better than Outer Product and Distributed Equal:
as a matter of a fact, in that case µ = 1. This is shown on Figure 8(c).

16

Shared Equal LRU-50

Shared Opt. IDEAL

Lower Bound

Outer Product

Shared Opt. LRU-50

700 900 1000 1100

Matrix Order (In block units)

0

200000000

400000000

600000000

800000000

1000000000

S
h
ar

ed
ca

ch
e

m
is

se
s

M
S

500 600 800100 200 300 400

(a) CS = 977, q = 32

Shared Equal LRU-50

Shared Opt. IDEAL

Lower Bound

Outer Product

Shared Opt. LRU-50

600 800 900 1000 1100

Matrix Order (In block units)

0

200000000

400000000

600000000

800000000

1000000000

S
h
ar

ed
ca

ch
e

m
is

se
s

M
S

400 500 7000 100 200 300

(b) CS = 245, q = 64

Shared Equal LRU-50

Shared Opt. IDEAL

Lower Bound

Outer Product

Shared Opt. LRU-50

600 800 900 1000 1100

Matrix Order (In block units)

0

200000000

400000000

600000000

800000000

1000000000

S
h
ar

ed
ca

ch
e

m
is

se
s

M
S

400 500 7000 100 200 300

(c) CS = 157, q = 80

Figure 7: Shared cache misses MS in function of matrix order.

17

Distributed Opt. LRU-50

Distributed Equal LRU-50

Distributed Opt. IDEAL

Lower Bound

Outer Product

Matrix Order (In block units)

0

900 1000 11000 100 200 300 400 500 600

100000000

200000000

300000000

400000000

500000000

600000000

700000000

D
is

tr
ib

u
te

d
ca

ch
e

m
is

se
s

M
D

700 800

(a) CD = 21: q = 32, data occupy one half of distributed cache

Distributed Opt. LRU-50

Distributed Equal LRU-50

Distributed Opt. IDEAL

Lower Bound

Outer Product

Matrix Order (In block units)

0

900 1000 11000 100 200 300 400 500 600

100000000

200000000

300000000

400000000

500000000

600000000

700000000

D
is

tr
ib

u
te

d
ca

ch
e

m
is

se
s

M
D

700 800

(b) CD = 16: q = 32, data occupy two thirds of distributed cache

Distributed Opt. LRU-50

Distributed Equal LRU-50

Distributed Opt. IDEAL

Lower Bound

Outer Product

Matrix Order (In block units)

0

900 1000 11000 100 200 300 400 500 600

100000000

200000000

300000000

400000000

500000000

600000000

700000000

D
is

tr
ib

u
te

d
ca

ch
e

m
is

se
s

M
D

700 800

(c) CD = 6: q = 64, data occupy one half of distributed cache

Figure 8: Distributed cache misses MD in function of matrix order.

18

Altogether, unit block of size q = 64 or larger is not a relevant choice for Distributed Opt.,
but with q = 32, it will always outperform other algorithms in terms of distributed cache misses.

4.3.3 Tradeoff

The overall time spent in data movement Tdata of all six LRU-50 algorithms is shown for each
cache configuration on Figure 9, Figure 10 and Figure 11. Using q = 32 and LRU-50 setting,
as shown on Figures 9(a) and 9(c) , Tradeoff offers the best overall performance, although
Shared Opt. is very close. Moreover, looking at Figures 9(b) and 9(d), we see that Tradeoff
outperforms even more significantly other algorithms with the IDEAL setting.

However, using q = 64 and LRU-50 setting, as shown on Figures 10(a) and 10(c) ,
Tradeoff only offers the best overall performance under the pessimistic distributed-cache usage
assumption (data can only occupy one half of distributed caches), although Shared Opt. is
once again very close. If we use the loosened cache usage constraint, Shared Opt. takes the
lead over Tradeoff. This is due to the fact that the LRU policy with a larger distributed-cache
benefits more to Shared Opt. (which is unaware of distributed caches) than to Tradeoff. This
is confirmed by Figures 10(b) and 10(d), on which we see that Tradeoff and Shared Opt are
tie with the IDEAL setting.

Finally, using q = 80 with LRU-50 setting, as depicted on Figures 11(a) and 11(c) ,
Tradeoff never ranks better than Shared Opt under both cache usage assumptions. This trend
is probably due to the artificial constraints set on cache-related parameters: for instance we
require that α divides m and is a multiple of both

√
p and µ. In the implementations, parameters

λ and α can be significantly lower than their optimal numerical value. This is confirmed by
Figures 11(b) and 11(d), on which we see that Shared Opt. significantly outperforms Tradeoff
even using the IDEAL setting.

19

Distributed Opt. LRU-50

Distributed Equal LRU-50

Shared Equal LRU-50

Tradeoff IDEAL

Lower Bound

Tradeoff LRU-50

Outer Product

Shared Opt. LRU-50

600100 2000

400000000

600000000

800000000

1000000000

1200000000

1400000000

1600000000

T
d
a
ta

200000000

0

Matrix Order (In block units)

11001000900800400300 700500

(a) LRU-50 setting and CD = 21

Shared Opt. IDEAL

Distributed Opt. IDEAL

Tradeoff IDEAL

Lower Bound

Distributed Equal IDEAL

Shared Equal IDEAL

Outer Product

900

200000000

0

0 100 200 300 400 500

Matrix Order (In block units)

1100600 700 800

600000000

800000000

1000000000

1200000000

T
d
a
ta

1000

400000000

(b) IDEAL setting and CD = 21

Distributed Opt. LRU-50

Distributed Equal LRU-50

Shared Equal LRU-50

Tradeoff IDEAL

Lower Bound

Tradeoff LRU-50

Outer Product

Shared Opt. LRU-50

600100 2000

400000000

600000000

800000000

1000000000

1200000000

1400000000

1600000000

T
d
a
ta

200000000

0

Matrix Order (In block units)

11001000900800400300 700500

(c) LRU-50 setting and CD = 16

Shared Opt. IDEAL

Distributed Opt. IDEAL

Tradeoff IDEAL

Lower Bound

Distributed Equal IDEAL

Shared Equal IDEAL

Outer Product

900

200000000

0

0 100 200 300 400 500

Matrix Order (In block units)

1100600 700 800

600000000

800000000

1000000000

1200000000

T
d
a
ta

1000

400000000

(d) IDEAL setting and CD = 16

Figure 9: Overall data time Tdata, CS = 977.

20

Distributed Opt. LRU-50

Distributed Equal LRU-50

Shared Equal LRU-50

Tradeoff IDEAL

Lower Bound

Tradeoff LRU-50

Outer Product

Shared Opt. LRU-50

600100 2000

400000000

600000000

800000000

1000000000

1200000000

1400000000

1600000000

T
d
a
ta

200000000

0

Matrix Order (In block units)

11001000900800400300 700500

(a) LRU-50 setting and CD = 6

Shared Opt. IDEAL

Distributed Opt. IDEAL

Tradeoff IDEAL

Lower Bound

Distributed Equal IDEAL

Shared Equal IDEAL

Outer Product

400000000

0

1600000000

0 100 200 300 400 500 600 700 800 900 1000 1100

Matrix Order (In block units)

T
d
a
ta

1400000000

1200000000

1000000000

800000000

600000000

200000000

(b) IDEAL setting and CD = 6

Distributed Opt. LRU-50

Distributed Equal LRU-50

Shared Equal LRU-50

Tradeoff IDEAL

Lower Bound

Tradeoff LRU-50

Outer Product

Shared Opt. LRU-50

600100 2000

400000000

600000000

800000000

1000000000

1200000000

1400000000

1600000000

T
d
a
ta

200000000

0

Matrix Order (In block units)

11001000900800400300 700500

(c) LRU-50 setting and CD = 4

Shared Opt. IDEAL

Distributed Opt. IDEAL

Tradeoff IDEAL

Lower Bound

Distributed Equal IDEAL

Shared Equal IDEAL

Outer Product

400000000

0

1600000000

0 100 200 300 400 500 600 700 800 900 1000 1100

Matrix Order (In block units)

T
d
a
ta

1400000000

1200000000

1000000000

800000000

600000000

200000000

(d) IDEAL setting and CD = 4

Figure 10: Overall data time Tdata, CS = 245.

21

Distributed Opt. LRU-50

Distributed Equal LRU-50

Shared Equal LRU-50

Tradeoff IDEAL

Lower Bound

Tradeoff LRU-50

Outer Product

Shared Opt. LRU-50

600100 2000

400000000

600000000

800000000

1000000000

1200000000

1400000000

1600000000

T
d
a
ta

200000000

0

Matrix Order (In block units)

11001000900800400300 700500

(a) LRU-50 setting and CD = 4

Shared Opt. IDEAL

Distributed Opt. IDEAL

Tradeoff IDEAL

Lower Bound

Distributed Equal IDEAL

Shared Equal IDEAL

Outer Product

400000000

0

1600000000

0 100 200 300 400 500 600 700 800 900 1000 1100

Matrix Order (In block units)

T
d
a
ta

1400000000

1200000000

1000000000

800000000

600000000

200000000

(b) IDEAL setting and CD = 4

Distributed Opt. LRU-50

Distributed Equal LRU-50

Shared Equal LRU-50

Tradeoff IDEAL

Lower Bound

Tradeoff LRU-50

Outer Product

Shared Opt. LRU-50

600100 2000

400000000

600000000

800000000

1000000000

1200000000

1400000000

1600000000

T
d
a
ta

200000000

0

Matrix Order (In block units)

11001000900800400300 700500

(c) LRU-50 setting and CD = 3

Shared Opt. IDEAL

Distributed Opt. IDEAL

Tradeoff IDEAL

Lower Bound

Distributed Equal IDEAL

Shared Equal IDEAL

Outer Product

400000000

0

1600000000

0 100 200 300 400 500 600 700 800 900 1000 1100

Matrix Order (In block units)

T
d
a
ta

1400000000

1200000000

1000000000

800000000

600000000

200000000

(d) IDEAL setting and CD = 3

Figure 11: Overall data time Tdata, CS = 157.

22

We also run another experiment to assess the impact of cache bandwidths on Tdata. We
introduce the parameter r defined as: r = σS

σD+σS
. Figure 12 reports results for square matrices

of size m = 384 and the several caches configurations used before.

Shared Equal IDEAL

Distributed Equal IDEAL

Shared Opt. IDEAL

Distributed Opt. IDEALTradeoff IDEAL

Lower Bound

T
d
at

a

2500000

3000000

0 0.2 0.4 0.6 0.8 1

r

0

500000

1000000

1500000

2000000

(a) CS = 977 and CD = 21

T
d
at

a

2500000

3000000

0 0.2 0.4 0.6 0.8 1

r

500000

1000000

1500000

2000000

(b) CS = 977 and CD = 16

T
d
at

a

4000000

5000000

0 0.2 0.4 0.6 0.8 1

r

0

1000000

2000000

3000000

(c) CS = 245 and CD = 6

T
d
at

a

4000000

5000000

0 0.2 0.4 0.6 0.8 1

r

0

1000000

2000000

3000000

(d) CS = 245 and CD = 4

T
d
at

a

4000000

5000000

0 0.2 0.4 0.6 0.8 1

r

0

1000000

2000000

3000000

(e) CS = 157 and CD = 4

T
d
at

a

4000000

5000000

0 0.2 0.4 0.6 0.8 1

r

0

1000000

2000000

3000000

(f) CS = 157 and CD = 3

Figure 12: Cache bandwidth impact on Tdata in function of r, the ratio between σS and σD.
Results are given for a square matrix of dimension m = 384.

With q = 32 we see that Tradeoff performs best, and still offers the best performance
even after distributed misses have become predominant under both optimistic and pessimistic
distributed-caches usage assumptions. When the latter event occurs, plots cross over: Shared
Opt. and Distributed Opt. achieve the same Tdata. We also point out that when r = 0, Tradeoff
achieves almost the same Tdata than Shared Opt., while when r = 1, it ties Distributed Opt.

However, with q = 64 and q = 80 Tradeoff does not offer the lowest Tdata, Shared Opt.
ties or outperforms while shared cache misses are predominant under both distributed-caches
assumptions. This is probably because our implementation suffers from the rounding of cache
parameters: parameters α and β cannot be adjusted adequately.

23

5 Related work

Algorithms– In [8], the authors introduce several lower bounds on the communication volume
for standard matrix multiplication algorithms. The scope of their work ranges from one proces-
sor and its main memory to several distributed memory processors. They also provide a lower
bound for a processor having a fast cache and a large slow memory. In [7], the authors intro-
duce the Maximum Reuse Algorithm, a matrix product algorithm for master-slave platforms.
They improve the lower bound introduced in [8], and show that their algorithm is close to this
bound for large matrices. However, neither [8] nor [7] deals with multicore processors and the
additional level of cache hierarchy that they imply.

Models– The ideal-cache model is presented in [5], together with the cache-oblivious paradigm,
which aims at provide asymptotically optimal “cache-unaware” algorithms. A key contribution
is the proof that the ideal cache-model can efficiently be simulated with a LRU replacement
policy. However, the model only focuses on single-core processors. It is extended in [3] for
multicore processors: the authors of [3] study divide-and-conquer cache-oblivious algorithms
for several problems,

and they design algorithms that are asymptotically optimal for both shared and distributed
caches misses. The emphasis is on models and asymptotic performance rather than on algo-
rithms for fixed-size matrices.

In [1], the authors introduce a theoretical model for multicore processors intended to be
used to analyze the complexity of algorithms on these new platforms. They also describe a
framework called SWARM that aims at providing an open-source library for developing software
on multicore architectures. However, they do not explicitly use the notion of cache misses, but
instead focus on the number of blocks transferred between shared cache and main memory;
distributed caches are not considered in their analysis.

In [10], the authors study the behavior of DGEMM kernels and introduce a fine-tuning
version leading to better performance than Intel’s parallel DGEMM in the MKL library. This
paper provides a fine-grain analysis in terms of cache related notions, as for instance cache
misses or false sharing, on a real hardware platform. Our analysis is at a higher level (our
algorithms call sequential DGEMM kernels) and is not associated to any particular hardware
architecture.

Experiments– In [9], the authors present performance results for dense linear algebra using
recent NVIDIA GPUs, and analyse some factors impacting performance on these particular
multicore processors through the performance evaluation of their matrix-matrix multiplication
kernel. This work also is at a lower level since it focuses on implementing a better DGEMM
routine for GPUs.

6 Conclusion

In this report, we proposed cache-aware algorithms for multicore processors. We have proposed
a model for multicore memory layout. Using this model, we have extended a lower bound on
cache misses, and proposed cache-aware algorithms. For both types of caches, our algorithms
reach a CCR which is close to the corresponding lower bound for large matrices. We also
propose an algorithm for minimizing the overall data access time, which realizes a tradeoff
between shared and distributed cache misses. Every algorithm introduced in this paper has
been tested, and is behavior validated, on the simulator that we have designed, using realistic
parameters.

24

Future work will be twofold. On the algorithmic side, we will tackle more complex opera-
tions, such as LU factorization or path problems. On the more practical side, we will implement
all algorithms on state-of-the-art multicore machines, being classical multicore CPUS as well
as more exotic chips like GPUS. This will be a first step towards the (more ambitious) task of
designing efficient algorithms for clusters of multicores: we expect yet another level of hierar-
chy (or tiling) in the algorithmic specification to be required in order to match the additional
complexity of such platforms.

References

[1] D. A. Bader, V. Kanade, and K. Madduri. SWARM: A parallel programming framework for
multicore processors. In IPDPS’07, the 21st IEEE Int. Parallel and Distributed Processing
Symposium, pages 1–8, 2007.

[2] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLA-
PACK Users’ Guide. SIAM, 1997.

[3] G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons, V. Ramachandran, S. Chen, and
M. Kozuch. Provably good multicore cache performance for divide-and-conquer algorithms.
In SODA’08, the 19th ACM-SIAM symposium on Discrete algorithms, pages 501–510.
SIAM Press, 2008.

[4] L. E. Cannon. A cellular computer to implement the Kalman filter algorithm. PhD thesis,
Montana State University, 1969.

[5] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms.
In FOCS’99, the 40th IEEE Symposium on Foundations of Computer Science, pages 285–
298. IEEE Computer Society Press, 1999.

[6] D. Ironya, S. Toledo, and A. Tiskin. Communication lower bounds for distributed-memory
matrix multiplication. J. Parallel Distributed Computing, 64(9):1017–1026, 2004.

[7] J.-F. Pineau, Y. Robert, F. Vivien, and J. Dongarra. Matrix product on heterogeneous
master-worker platforms. In PPoPP’2008, the 13th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, pages 53–62. ACM Press, 2008.

[8] S. Toledo. A survey of out-of-core algorithms in numerical linear algebra. In External
Memory Algorithms and Visualization, pages 161–180. American Mathematical Society
Press, 1999.

[9] V. Volkov and J. W. Demmel. Benchmarking gpus to tune dense linear algebra. In SC’08,
the 2008 ACM/IEEE conference on Supercomputing, pages 1–11. IEEE Computer Society
Press, 2008.

[10] S. Zuckerman, M. Pérache, and W. Jalby. Fine tuning matrix multiplications on multicore.
In High Pefroamnce Computing HiPC’08, pages 30–41. Springer Verlag LNCS 5374, 2008.

25

