
HAL Id: ensl-00381907
https://ens-lyon.hal.science/ensl-00381907v1

Submitted on 6 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exact algorithms for a task assignment problem
Kamer Kaya, Bora Uçar

To cite this version:
Kamer Kaya, Bora Uçar. Exact algorithms for a task assignment problem. Parallel Processing Letters,
2009, 19 (3), pp.451–465. �10.1142/S012962640900033X�. �ensl-00381907�

https://ens-lyon.hal.science/ensl-00381907v1
https://hal.archives-ouvertes.fr

May 6, 2009 16:7

Parallel Processing Letters
c© World Scientific Publishing Company

EXACT ALGORITHMS FOR A TASK ASSIGNMENT PROBLEM

KAMER KAYA∗

Department of Computer Engineering, Bilkent University, 06800, Ankara, Turkey.

and

BORA UÇAR†

Centre National de la Recherche Scientifique,
Laboratoire de l’Informatique du Parallélisme,

(UMR CNRS-ENS Lyon-INRIA-UCBL),
Université de Lyon,

46, Allée d’Italie, ENS-Lyon, F-69364, Lyon France.

Received December 2008

Revised March 2009
Communicated by J. Dongarra and B. Tourancheau

ABSTRACT

We consider the following task assignment problem. Communicating tasks are to be
assigned to heterogeneous processors interconnected with a heterogeneous network. The
objective is to minimize the total sum of the execution and communication costs. The
problem is NP-hard. We present an exact algorithm based on the well-known A∗ search.
We report simulation results over a wide range of parameters where the largest solved
instance contains about three hundred tasks to be assigned to eight processors.

Keywords: task assignment; heterogeneous computing systems; task interaction graph;

A∗ search

1. Introduction

Given a model of tasks and a model of computing environment, the task assignment

problem asks for a proper assignment of tasks to available processors in order to op-

timize some performance metric. In our target problem, the tasks are modeled using

a task interaction graph (TIG). In this model, the vertices of the graph correspond

to the tasks and the edges correspond to the intertask communications. There is no

∗Supported by the Turkish Scientific and Technological Research Agency (TÜBİTAK) Ph.D. schol-
arship.
†The work of this author is partially supported by “Agence Nationale de la Recherche”, through
the SOLSTICE project ANR-06-CIS6-010.

1

May 6, 2009 16:7

2 Parallel Processing Letters

precedence relation among the tasks—the edges represent the communication that

takes place at any time or intermittently throughout the execution of the respective

tasks. We assume a heterogeneous computing system in which the execution cost

of a task depends on which processor it is executed. We further assume that the

network is heterogeneous, i.e., the cost of communication between two interacting

tasks depends on which processors they are mapped. The objective is to minimize

the sum of the total execution and communication costs. The problem is known to

be NP-hard [4]. We propose an exact algorithm based on A∗ search. Exact algo-

rithms can be useful in there different contexts. First, when the optimal utilization

of resources is utmost importance, such an approach would be indispensable, of

course if the solutions are delivered in an acceptable time frame. Second, in case

a set of tasks is run multiple times, the optimal mapping would be reused, and

hence the time to compute such a solution can be amortized. Third, probably of

more general adoption, the exact solutions can be used to evaluate the heuristic

approaches designed for the same problem.

The TIG model was first introduced by Stone [13]. In this original work, the

model is used to represent sequentially executing, persistent tasks. In this setting,

at any time exactly one task is being executed on one of the processors. The edges

of the model represent two-way interactions between the tasks where a task passes

control to another one and waits the control to be returned back again. The same

interpretation is used, for example, in mapping parallel pipelines [17] and phased

messages-passing programs [8]. For more on the use of TIG model on task as-

signment in distributed computing systems, we refer the reader to two recent pa-

pers [2, 16] and the references therein.

Formally, the task assignment problem we consider is as follows. Let P be the

set of P processors in the heterogeneous computing system, T be the set of T

tasks to be assigned to the processors, ETC = {xip}T×P be the expected time

to compute matrix where xip denotes the execution cost of task i on processor p,

and G = (T , E) be the task interaction graph. The processors are heterogeneous in

the sense that there is no special structure on the ETC matrix. In other words,

processor p being faster than processor q on task i, e.g., xip ≤ xiq, does not imply

anything about their speeds for another task. Each edge (i, j) ∈ E is associated

with a weight cij representing the amount of data transfers needed between tasks

i and j. The network is heterogeneous in the sense that the links between different

pairs of processors are not uniform. A “distance” dpq is associated with the link of

processors p and q, e.g., the inverse of the bandwidth between p and q, such that if

tasks i and j are mapped to the processors p and q, then a communication cost of

cijdpq is incurred. The distance metric is symmetric, i.e., dpq = dqp. Furthermore, we

assume that dpp = 0 for any processor p. Hence, no communication cost is incurred

if two interacting tasks are assigned to the same processor. The objective is to find

an assignment A : T → P that minimizes the sum of execution and communication

costs. The formulation is as follows:

May 6, 2009 16:7

Exact Task Assignment Algorithms 3

Minimize

T
∑

i=1

P
∑

p=1

aipxip +
∑

(i,j)∈E

P
∑

p=1

P
∑

q=1

aipajqcijdpq

 subject to

P
∑

p=1

aip = 1, i ∈ T

aip ∈ {0, 1}, p ∈ P; i ∈ T .

The variables are aip, where if task i is assigned to processor p, then aip = 1,

otherwise aip = 0. The constraint
∑P

p=1 aip = 1 ensures that task i is assigned

to exactly one processor. The first part of the objective function corresponds to

the total cost of task executions, and the second part corresponds to the total

communication cost. Although the problem is NP-hard [4], some special instances

are polynomial time solvable. We note especially the instances whose TIGs are

in tree structure. Those instances are solvable in O(TP 2) time [4] in heterogeneous

networks. If, furthermore, the network is homogeneous, then an O(TP) time solution

exists [3].

The A∗ search algorithm is a best-first graph search algorithm. Starting from a

given initial node, it finds the least cost path to a goal node. A heuristic function

lies at the core of an A∗ search-based algorithm. This heuristic function is used to

estimate the minimum cost from a given node to a goal node, and it effects the way

along which the search proceeds.

In [9], an A∗ search-based algorithm is proposed for mapping TIGs to heteroge-

neous processors interconnected with a homogeneous network where the objective

is to minimize the turnaround time, i.e., the maximum load of a processor in terms

of the total execution and communication costs. In [15], two A∗ search-based algo-

rithms are proposed, one for mapping TIGs to heterogeneous processors in a het-

erogeneous network, and another one for mapping communicating tasks with prece-

dence constraints again with heterogeneous processors and network. The objective

function is to minimize the turnaround time. In [14], A∗ search-based algorithm is

proposed for the same problem considered in this paper, i.e., a TIG is to be mapped

to heterogeneous processors interconnected with a heterogeneous network in order

to minimize the total execution and communication cost. In [10], algorithms based

on A∗ search are proposed for optimizing the execution of communicating tasks

with precedence constraints on homogeneous processors. These four works explore

the search space of the task assignments following a tree structure. The search space

tree has T + 1 levels. In the first level there is only one node which corresponds

to an empty assignment. That node is the initial node for the search. At level ℓ

of the the tree there are P ℓ nodes, where all the assignment for the first ℓ nodes

are represented. The common heuristic function in these three works is based on

computing the objective function without taking the communication costs between

the yet to be assigned tasks into account, i.e., at a level ℓ node, the tasks ℓ+1 to T

May 6, 2009 16:7

4 Parallel Processing Letters

are pared from their communication requirements, and the task assignment prob-

lem confined to those communication-free tasks are solved to obtain an estimate of

the cost. In [15], it has been observed that if the tasks yet to be assigned form an

independent set, i.e., a set of tasks among which there is no communication, then

assigning those tasks after the others will reduce the search space drastically. This

was possible, because the task assignment problem for a set of independent tasks is

easily solvable. In other words, the heuristic function becomes an exact algorithm,

if the tasks on which it is called form an independent set. Another study that aims

to obtain exact solutions to some three task assignment problems is given in [11].

In this work, one of three problems corresponds to the problem formally defined

above, but in a homogeneous network. The author proposes different formulations

and uses a state-of-the-art commercial integer linear program solver to evaluate the

effectiveness of the proposed formulations.

In this work, we propose the use of the exact algorithm for tree structured TIGs

as the heuristic function to be used in the A∗ search. As it is an essential part of

our contribution, we summarize that algorithm in Section 2.1. We then give a brief

summary of the A∗ search in Section 2.2. In Section 3, we discuss the use of Bokhari’s

algorithm in the context of A∗ search, and elaborate on how we take advantage

of that algorithm to develop the proposed exact algorithm. Section 4 contains a

summary of a large set of experiments among which solutions to a problem instance

with 307 tasks and 8 processors (yielding a search space of 8307 nodes) are reported.

Section 5 concludes the paper with a brief summary.

2. Background

2.1. Bokhari’s shortest tree algorithm

Here, we reproduce Bokhari’s exact algorithm [4] for tree structured TIGs. In doing

so, our aim is two-folds: completeness, and a clearer exposition of the algorithm

described in [4].

Bokhari’s algorithm uses a dynamic programming formulation. Consider a TIG

in the form of a tree. Let A(i, p) denote the cost of the optimal solution of the

subtree rooted at the node i under the condition that the task associated with the

node i is assigned to processor p. Now consider an internal node i such that for each

child j of i, we have computed A(j, k) for k = 1, . . . , P . Then

A(i, p) = xip +
∑

j∈child(i)

min
k
{A(j, k) + cijdpk} .

That is, for each child j of i, we consider P optimal solutions A(j, k) and their

extensions by assigning the task i to the processor p. Clearly for a leaf node ℓ, we

have A(ℓ, p) = xℓp. Processing the nodes of tree in a topological order, that is in an

order where all the children nodes are processed before their father, will yield A(r, p)

for the root node r and for each processor p = 1, . . . , P . The value minp A(r, p) is

thus the value of an optimal solution.

May 6, 2009 16:7

Exact Task Assignment Algorithms 5

Consider the computation of an A(i, p). As seen from the above formula, it

requires O(1 + P |child(i)|) time. Therefore, for a node i, the time complexity of

operations is O(P + P 2|child(i)|). The sum of these quantities over all tasks thus

gives a time complexity of O(TP 2), as the sum of the number of children is O(T).

2.2. A∗ Search

A∗ search is a best-first, graph search algorithm mostly used in artificial intelligence

literature [12]. Its aim is to find a least cost path from a given initial node to a

goal node. It starts from the initial node and expands it, that is, generates all of its

successors—all its neighboring nodes. Each such node v is evaluated with a function

f(v) = g(v) + h(v) , (1)

where g(v) is the actual cost to reach the node v from the initial node, and h(v) is

a heuristic function that estimates the cost of the cheapest path from v to a goal

node. In other words, the evaluation function is an estimate of the cheapest cost of

a path that passes through v. After evaluating each generated node, those nodes are

placed in a list of active nodes. Among the active nodes, the one with the minimum

f -value is selected to be expanded next, whereupon it becomes inactive. The search

terminates with the least cost path when an active node with the minimum f -value

is a goal node. The most important component of the A∗ search is the heuristic

function h. The search is guaranteed to terminate by finding an optimal goal node

if h satisfies certain conditions. When run on tree’s, the necessary condition on h for

the search to be as such is that h should be an admissible heuristic, i.e., h(v) should

never overestimate the cost of the path from v to a goal node. Other conditions are

required for general graphs [12, p.99]. Two notable characteristics of the A∗ search

are in order. First, it is optimally efficient for any heuristic function h in the sense

that no other algorithm, for example branch-and-bound, employing h can expand

fewer nodes than A∗. Second, A∗ never expands a node whose f -value is larger than

an optimal solution.

In the task assignment problem, the graph is the search space of assignments

which can be perceived as a tree. The initial node is the empty assignment. The

nodes are partial assignments. In particular, all nodes at a distance ℓ from the

initial node, pertain to assigning task tℓ to a particular processor given a particular

assignment of all tasks t1 to tℓ−1. The goal nodes are those at distance T from

the initial node, i.e., the complete assignments. Each active node v of the tree thus

contains a node identifier and the values g(v) and h(v). The assignments of tasks t1
through tℓ−1 that yielded the node v can also be stored in order to be able to return

an optimal task-to-processor assignment. With these definitions, the A∗ search for

the task assignment problem assumes the following form (somehow simplified).

May 6, 2009 16:7

6 Parallel Processing Letters

1: Let L be the list of active nodes, initially containing P assignments t1 → p for

p = 1, . . . , P , keyed with the g+h values of the assignments

2: while L 6= ∅ do

3: 〈tℓ, q〉 ←extractMin(L)

4: if tℓ = tT then

5: return

6: for p = 1, . . . , P do

7: compute g and h for the assignment tℓ+1 → p

8: add 〈tℓ+1, q〉 to L with key g+h

The design of an efficient and effective heuristic function h for the task assignment

problem and making best use of that heuristic are our contributions to be explained

in the following section.

3. An exact algorithm

In order to be able to expose the designed algorithm, we resume the discussion of A∗.

Recall that we explore the search space of the task assignment problem which can

be represented as a tree. The initial node is empty assignment, and an intermediate

node at level ℓ of the search space tree represents the assignment of tasks t1 to tℓ.

For example, at level 1, we have P nodes, each one corresponding to the assignment

of task t1 to a particular processor. Each of these P nodes has P children, each

corresponding to the assignment of task t2 to a certain processor. As it is implicitly

mentioned, there is an order of task assignments—which we will return to in the

next subsection. For now, assume that we are given an order t1, . . . , tT of tasks. We

represent a node of the search space with a triplet v = 〈ℓ, p, π(v)〉, where ℓ is the

level of the node v, hence v is associated with the task tℓ; the second component

p is the processor number to which tℓ is assigned; π(v) is the father of the node v

in the search space tree. Two values g and h are associated with each node. The

value g is the actual cost of the assignments of tasks t1 to tℓ to the processors that

led to the node v, and the value h is the heuristic estimate of the cost of the best

assignment of the tasks tℓ+1 to tT .

As discussed before, A∗ search keeps a list of active nodes and chooses the node

with the least evaluation function f to expand next. The children of that node are

generated, and those nodes are added to the list of active nodes after computing

the g and h values for each. Suppose the node v = 〈ℓ− 1, p, π(v)〉 is an active node

with the least f -value. Then the nodes

nq = 〈ℓ, q, v〉 , for 1 ≤ q ≤ P ,

are generated. Each of these nodes corresponds to appending the assignment of the

task tℓ to a processor, q, to the partial assignment represented by v. Clearly,

g(nq) = g(v) + xtℓ,q +

ℓ−1
∑

u=1,

(u,tℓ)∈E

P
∑

p=1

aupctℓ,udpq . (2)

May 6, 2009 16:7

Exact Task Assignment Algorithms 7

In other words, the actual cost of a child node 〈ℓ, q, v〉 is computed from its parent

cost by adding the execution cost xtℓ,q and the communication cost with the already

assigned tasks (those tasks ti where i < ℓ).

We next describe the heuristic function h that we have designed. In short, we

create a task assignment problem with a tree structure defined on the tasks yet to

be assigned. We then solve this task assignment problem using Bokhari’s shortest

tree algorithm [4] (see summary in the previous section), and use the cost of the

resulting assignment as the h-value. Given a node v = 〈ℓ, p, π(v)〉 of the search

space, we take a spanning forest Fℓ = (Tℓ, Eℓ) of the nodes corresponding to the

tasks tℓ+1, . . . , tT . That is, Tℓ = T \ {t1, . . . , tℓ} and Eℓ ⊆ E ∩Tℓ×Tℓ. Note that any

node of the search space at level ℓ from the root is associated with the same graph,

and therefore Fℓ = (Tℓ, Eℓ) is a common spanning forest to all those nodes. Any

edge (i, j) ∈ Eℓ inherits the same communication amount cti,tj
from the original

problem. We could have done the same for the execution costs of the tasks in Tℓ,

but one can do better by utilizing the partial assignment associated with node v.

Consider an edge (ti, tk) ∈ E where i < ℓ ≤ k. As the task ti has been assigned

to a processor, say q, a cost of xtk,p + cti,tk
dpq will be incurred if the task tk is

executed on processor p. Therefore, we define the expected time to compute matrix

ETCℓ = {x′
tk,p}(T−ℓ)×P as follows

x′
tk,p = xtk,p +

∑

i<ℓ,

(ti,tk)∈E

ati,qcti,tk
dpq for k ≥ ℓ and p = 1, . . . , P . (3)

Note that ati,q is defined according to the partial assignment associated with node

v of the search space, and hence the subproblems associated with nodes at level ℓ

from the root node of the search space can have different ETC matrices.

As the spanning forest is a part of the original problem, using the exact solution

for subproblem associated with a node forms an admissible heuristic function. The

proposed heuristic dominates the heuristic used in [9, 10, 15] in the sense that

the assignment cost found by the proposed heuristic is never less than those that

can be found by that alternative (the latter one ignores the communication of the

remaining tasks). There can be many spanning forests associated with the tasks in

Tℓ, and the heuristic function would be admissible when run on any of those forests.

As we would like to include as much cost as possible into the subproblem associated

with the node v, we choose the maximum edge weighted spanning forest which can

be found using Kruskal’s or Prim’s algorithms [6, Chapter 24] in O(|Eℓ| log2 |Tℓ|)

time. We compute the maximum edge weighted spanning forest Fℓ for each task

tℓ before commencing on the search procedure. During A∗, at a node v containing

task tℓ, we use the spanning forest Fℓ.

3.1. Order of the task assignments

As the proposed heuristic function becomes exact for a tree structured subproblem,

we can stop the search procedure as soon as the subgraph Gℓ = (Tℓ, E ∩ Tℓ × Tℓ) of

May 6, 2009 16:7

8 Parallel Processing Letters

the active node with the minimum f -value is a tree. In other words, we can stop

when Gℓ does not contain a cycle, or, when T \ Tℓ contains at least one vertex from

every cycle of G. In such a case, the search space that needs to be explored becomes

of size PT−|Tℓ|. To minimize the size of the search space we would like to have the

largest subgraph without cycles (so as to maximize |Tℓ|), or have the smallest set

of vertices that contains at least one vertex from every cycle (so as to minimize

T − |Tℓ|). However, finding such a set is known to be NP-hard (see [7], problem

GT7, the minimum feedback vertex set).

As the problem of minimizing the size of the search space is NP-hard, we resort

to some heuristics. We proceed in two stages. First, we find an independent set in

G = (T , E), and then augment the independent set with vertices as long as the

vertex set thus grown is acyclic.

In order to find an independent set, we sort the vertices of the graph G = (T , E)

in the increasing order of degrees and then visit the vertices in that order. Each

vertex is added to the set S, initially an empty set, if it has no neighbor in S. At the

end of this step S is a maximal independent set, i.e., no other vertex can be added

to S without violating this property. Then, we visit the vertices in T \ S one more

time, in the same order and add each visited vertex to S, if its neighbors in S are

not connected through paths. For this purpose, we use disjoint set operations [6,

Chapter 22]. We start the second stage by making each vertex of the independent

set found at the end of first stage a set. During visiting a vertex ti in the second

stage, we test whether its neighbors in S are in disjoint sets. If that is the case, those

sets are unified by set union operation, including the vertex ti, and ti becomes a

member of S. If not, ti is skipped. We note also that S is a maximal acyclic set.

We now define the order of task assignments, i.e., define the task tℓ to be assigned

at a node at the level ℓ from the initial node of the search space. We build a tentative

assignment of tasks from scratch, where the order in which task assignments took

place defines the task orders to be used during the A∗ search. We define the order

of task assignments only for the tasks in T \ S, as the assignments for those in S

would not be represented in the search space—the A∗ search terminates when a

node at level |T \ S| + 1 is reached. Note that this ordering of tasks is done only

once before starting the search procedure.

For a task tℓ, we compute the g- and h-values as we have done in the A∗ search

for each possible assignment of tℓ, i.e., we compute f -values for the assignments

tℓ → p, for each p. Then, we add up these f -values and obtain a single value for

the task tℓ. This procedure is performed for each task yet to be assigned, and the

task with the minimum sum is tentatively assigned to the processor p where the

assignment tℓ → p yielded the minimum f -value among the P alternatives. Then,

the process is repeated with a reduced number of tasks yet to be assigned. The total

cost of this preprocessing step is thus O
(

∑T−1
r=1 r2P 2

)

= O(P 2T 3).

May 6, 2009 16:7

Exact Task Assignment Algorithms 9

3.2. Other details

In order to find the active node with the minimum f -value, we use a priority queue

implemented as a binary heap. We maintain the heap in such a way that among the

nodes with the same f -value, the one which is at he highest level has the highest

priority. This way, we aim to go deeper in the search tree whenever possible.

We also utilize task assignment heuristics from the literature to find upper

bounds on the optimal assignment cost. For this purpose, we use variants of the

algorithms given in [16] for homogeneous networks and that of the sufferage heuris-

tic given in [5] for independent tasks to compute upper bounds. The variants keep

the main ideas of the original works while adapting them for communicating tasks

in heterogeneous networks. Before starting the A∗ search, we run each of these vari-

ants once and get the lowest of the upper bounds to be used during the search

procedure. For a generated node, we check if its f -value is larger than the upper

bound (at line 8 of the generic algorithm of Section2.2). If so, the node is not added

to the list of active nodes. We note that this pruning operation reduces the run-time

of the algorithm only due to heap operations, and saves memory only for the pruned

nodes themselves, as the A∗ search never expands a node with an f -value larger

than the optimal cost.

4. Experiments

We tested the performance of the proposed exact algorithm in comparison with

some other heuristic. All the algorithms were implemented in C language on a

Linux platform. All experiments were performed on a PC equipped with a Dual 250

Opteron AMD processors and 4GB of RAM.

We constructed the TIGs from five small sparse matrices, members of the DWT

matrix set (available at http://math.nist.gov/MatrixMarket). We conducted our

experiments for T ∈ {59, 72, 87, 209, 307} and P ∈ {2, 3, 4, 8}. Table 1 gives the num-

ber of edges, the size of a maximal independent set (IS), and the size of a maximal

acyclic component (AS) for the resulting task assignment problem instances.

Table 1: Some properties of the problems.

T
59 72 87 209 307

|E| 104 75 227 767 1,108
IS 22 33 18 53 79
AS 38 63 38 103 147

The task and processor heterogeneity were modeled by incorporating different

execution times for each task on different processors. The estimated execution-time

values of the tasks were stored in a T ×P expected time to compute (ETC) matrix.

The ETC matrix can be consistent or inconsistent in terms of the relation between

execution times of different tasks [1]. In a consistent ETC matrix, if a processor

executes a task faster than another processor, then it executes all other tasks faster

May 6, 2009 16:7

10 Parallel Processing Letters

than that processor. If there is no such relation between execution times, then

the ETC matrix is said to be inconsistent. We believe that an inconsistent ETC

matrix is a better model for the task assignment problem since today’s computing

environments contains very heterogeneous computing resources with different task

execution characteristics [1].

We used the methods in [1] to obtain four different ETC matrices to better

evaluate the performance of the proposed task assignment algorithm. These ETC

matrices differ in terms of the task and processor heterogeneity where the variations

along a column and a row of an ETC matrix are referred to as the task and processor

heterogeneity, respectively. The ETC matrix types are given in Table 2.

Table 2: ETC matrix types with different task and processor heterogeneity.

ETC task heterogeneity processor heterogeneity

0 low low

1 low high
2 high low

3 high high

To model network heterogeneity, we first constructed a processor tree as in

Fig 1(a). From the processor tree, we obtained the matrix in Fig. 1(b) for distances.

In the experiments, for each P ∈ {2, 3, 4, 8}, we use the P × P principal submatrix

as the distance matrix.

1

2

4

8

3

7

5 6

(a)

0

B

B

B

B

B

B

B

B

B

B

@

0 1 3 2 5 5 4 3
1 0 2 1 4 4 3 2
3 2 0 1 4 4 3 2

2 1 1 0 3 3 2 1
5 4 4 3 0 2 1 2

5 4 4 3 2 0 1 2

4 3 3 2 1 1 0 1
3 2 2 1 2 2 1 0

1

C

C

C

C

C

C

C

C

C

C

A

(b)

Fig. 1. (a) The processor tree. (b) Associated distance matrix.

Our experiments vary with the communication-to-computation ratio ρ defined as

ρ =
(

∑

t,u ctu

) /((

∑

t,p xtp

)

/P
)

. We used three different ratios ρ = {0.7, 1.0, 1.4}

to simulate the computation and communication intensive tasks along with the bal-

anced task sets where the required amount of computation is closer to the required

amount of communication.

We created 2 instances for each T , P , ρ, and ETC matrix type quadruplet and

reported the average performance of the algorithms in the tables. Table 3 shows the

number of examined nodes (i.e., for which g- and h-values are computed) for the

proposed exact task assignment algorithm with the proposed heuristic function.

May 6, 2009 16:7

Exact Task Assignment Algorithms 11

Table 3: The number of opened nodes for the exact task assignment algorithm.

P ETC ρ
T

59 72 87 209 307

2

0

0.7 18 8 64 109 250

1.0 18 9 64 161 203

1.4 25 9 64 171 247

1

0.7 26 10 84 214 242

1.0 34 10 64 214 322

1.4 26 8 84 108 242

2

0.7 18 10 64 163 458

1.0 34 9 64 193 179
1.4 36 8 84 415 1,535

3

0.7 32 9 251 677,546 117,779,136

1.0 33 9 220 10,209,628 NA
1.4 63 9 2,633 12,196,477 NA

3

0
0.7 27 9 44 162 368
1.0 27 11 65 182 545
1.4 27 9 44 169 601

1

0.7 27 11 85 215 243

1.0 27 11 85 215 243
1.4 35 9 65 162 323

2

0.7 28 9 65 162 325

1.0 27 11 44 178 342
1.4 35 11 65 168 2539

3

0.7 85 10 205 13,052,714 19,648,139

1.0 157 12 2,181 85,338,182 NA
1.4 119 10 1,093 NA NA

4

0
0.7 28 10 86 163 331
1.0 20 12 66 185 3,060

1.4 28 18 100 1576 6,618

1
0.7 28 12 66 216 244
1.0 36 12 86 216 244

1.4 32 10 66 163 244

2
0.7 28 12 86 219 689
1.0 28 11 137 242 889

1.4 38 13 93 565 258,305

3
0.7 81 19 1,126 20,167,622 NA
1.0 262 13 9,571 NA NA

1.4 143 14 21,552 NA NA

8

0

0.7 40 21 90 225 340

1.0 40 33 90 347 956
1.4 68 16 120 1,057 26,713

1
0.7 40 16 90 220 248
1.0 32 16 90 220 328

1.4 40 16 90 220 328

2
0.7 40 19 90 250 1,673
1.0 40 26 97 357 807

1.4 52 18 97 103,462 3,647,736

3
0.7 79 49 3,210 NA NA
1.0 547 40 532,934 NA NA

1.4 9,953 37 1,457,131 NA NA

In the experiments, we restricted the maximum number of active nodes to be 50

million. Note that this number is different than the examined nodes, as some become

May 6, 2009 16:7

12 Parallel Processing Letters

inactive after expanding its children, and some other might have been pruned (see

Section 3.2). In Table 3, the NAs represent the problem instances which were not

solved within this limit. As expected, when the number of tasks and/or the number

of tasks increase the number of examined (and also active) nodes increases. The

number of examined nodes for dwt72 does not obey this rule, however, as we realized

after looking its structure, the dwt72 matrix contains a big acyclic component hence

the admissible heuristic runs very well for those instances.

Another important observation is that the task assignment algorithm becomes

harder when the ETC matrices have both high task and processor heterogeneity,

i.e., when the problem instances contain ETC matrices of type 3. Note that all of

the problem instances which are not solvable with less than 50 million active nodes

contain such an ETC matrix. The effects of other ETC matrix types on the memory

requirement are not as significant.

Table 3 also shows that for communication intensive task sets, i.e., for ρ =

1.4, finding an optimal assignment is harder than finding one for the computation

intensive tasks, i.e., for ρ = 0.7.

We tested the effect of network heterogeneity on the performance of the exact

algorithm by solving the same problem instances with unit processor distances. The

comparison of the results is given in Table 4.

Table 4: The effect of network heterogeneity on the memory requirement.

P
T

59 87 209 307

3
35 65 168 2,539

28 65 1,347 27,538

4
38 93 565 258,305

36 104 1,998 11,931,202

8
52 97 103,462 3,647,736
57 165 21,378,979 NA

The values in Table 4 are the number of examined nodes for problem instances

with an ETC matrix of type 2 and ρ = 1.4. In each cell, the value above represents

the number of examined nodes for the heterogeneous network, whereas the value

below represents the same number for the homogeneous network. Table 4 shows

that when we use the distance matrix given in Fig. 1(b), the task sets are easier to

assign compared to the case when the network is homogeneous. It is expected since

with heterogeneity, an assignment which assigns two communicating tasks to two

distant processors can be pruned earlier in the A∗ search.

We also investigated the performance of the acyclic component approach with

respect to that of the independent set (IS) approach. Essentially, we compare the

proposed exact algorithm with the approach proposed in [14] with a slight difference

in the algorithm that is used to find an IS. Table 5 shows the results of this com-

parison. Note that we find an acyclic component starting from an independent set

(see Section 3.1), i.e., even if the IS heuristic of [14] is used, the acyclic component

will be always larger than the IS found.

May 6, 2009 16:7

Exact Task Assignment Algorithms 13

Table 5: The memory savings of the acyclic component approach compared to the IS approach.

P ETC ρ
T

59 72 87 209 307

2

0
0.7 45.5% 89.9% 31.0% 60.6% 35.7%
1.0 45.5% 90.2% 32.1% 52.3% 84.4%
1.4 63.4% 94.7% 32.4% 76.2% 94.0%

1
0.7 46.4% 93.8% 31.1% 31.4% 29.3%
1.0 46.9% 92.2% 31.0% 31.4% 29.4%
1.4 46.4% 91.8% 31.1% 31.2% 59.8%

2

0.7 58.6% 91.7% 31.0% 48.6% 68.8%

1.0 46.9% 95.4% 31.4% 72.0% 88.9%
1.4 66.7% 91.9% 48.0% 94.4% 99.4%

3

0.7 83.6% 97.2% 98.1% – –

1.0 85.9% 92.7% 99.5% – NA
1.4 99.0% 91.8% 99.9% – NA

3

0
0.7 45.5% 82.3% 30.2% 36.1% 77.8%
1.0 45.5% 91.2% 44.6% 94.1% 98.8%
1.4 61.4% 88.1% 10.0% 98.6% –

1
0.7 45.5% 91.6% 30.9% 31.3% 29.3%
1.0 45.5% 89.2% 30.9% 31.3% 29.3%
1.4 46.2% 85.9% 30.6% 31.2% 37.2%

2
0.7 70.7% 87.9% 30.6% 33.0% 89.5%
1.0 60.9% 92.3% 63.2% 31.5% 99.7%
1.4 73.5% 89.4% 32.5% 99.3% 99.9%

3
0.7 98.1% 98.1% 99.6% – –
1.0 99.5% 96.4% 99.7% – NA
1.4 100.0% 91.3% – NA NA

4

0
0.7 44.6% 88.0% 13.7% 32.2% 35.2%
1.0 42.9% 96.9% 37.2% 94.6% 99.5%
1.4 52.1% 94.7% 46.2% 99.9% –

1
0.7 44.6% 87.9% 30.3% 31.2% 29.2%
1.0 45.5% 87.1% 30.6% 31.2% 29.2%
1.4 57.2% 86.1% 30.3% 31.1% –

2
0.7 77.2% 94.3% 37.6% 67.4% 99.5%
1.0 46.7% 96.6% 46.5% 90.9% 99.7%

1.4 64.9% 93.5% 67.9% 100.0% NA

3
0.7 99.3% 98.1% 49.4% – NA
1.0 99.9% 92.7% 99.6% NA NA

1.4 99.9% 95.2% NA NA NA

In Table 5, the values show the memory savings when the acyclic component

approach is used in the admissible heuristic instead of the IS approach. These val-

ues are computed by dividing, whenever possible, the reduction in the number of

examined nodes to the number of examined nodes with the IS approach. The table

does not contain the instances with P = 8, because with the IS approach quite a

number of the instances could not be solved with less than 50 million active nodes.

In the table, the cells marked with “–” shows the cases where the IS-based heuristic

could not obtain solution, whereas the proposed one did. Those marked with NA

marks the cases where both of the approaches could not deliver a solution.

Table 5 shows that the memory savings depend on the structure of the TIG. For

example, there is a big acyclic component in dwt72. With this acyclic component,

May 6, 2009 16:7

14 Parallel Processing Letters

the proposed approach save more than 85% memory for all of the cases. This is not

the case for other TIGs. However, even for these TIGs, significant memory savings

are also obtained, especially when the task and processor heterogeneity are high.

Note that these instances are harder to solve and the effect of the TIG structure is

expected to be less effective on the hardness of the optimal assignment problem.

Table 6 shows the average execution times of the proposed exact task assignment

algorithm for all problem instances averaged over ρ. For most of the cases, the

algorithm seems to be very efficient and assigns the tasks in less than a second.

For comparison with the IS-based approach, we give its results on two instances:

with T = 59, P = 8, ρ = 1.0 and an ETC matrix of type 3, the IS-based heuristic

obtained the optimal result in about 6,988 seconds, whereas the proposed approach

obtained the same result in less than 2 seconds; with T = 307, P = 3, ρ = 1.4 and

an ETC matrix of type 2, the timings were 4,863 versus 4.5 seconds.

Table 6: The execution times of the proposed algorithm in seconds.

P ETC
T

59 72 87 209 307

2

0 0.44 0.25 0.38 0.48 0.3

1 0.25 0.32 0.20 0.42 0.29
2 0.32 0.31 0.38 0.42 0.34
3 0.32 0.25 0.34 318.20 8,871.86

3

0 0.45 0.32 0.45 0.27 0.38

1 0.26 0.37 0.45 0.26 0.34
2 0.38 0.25 0.25 0.27 0.49
3 0.26 0.31 0.29 4,528.07 2,873.64

4

0 0.32 0.32 0.26 0.36 1.02
1 0.45 0.25 0.26 0.29 0.38
2 0.44 0.38 0.32 0.32 17.43

3 0.26 0.19 0.93 2,682.29 NA

8

0 0.26 0.32 0.35 0.68 9.62

1 0.33 0.19 0.35 0.45 0.74
2 0.33 0.38 0.48 22.49 1,139.59

3 0.59 0.32 57.77 NA NA

5. Conclusion

We have presented an exact algorithm for assigning communicating tasks into het-

erogeneous processors interconnected with a heterogeneous network. Our algorithm

is based on A∗ search which needs a heuristic function to estimate the cost of a

subproblem. For this purpose, we have adapted an algorithm which solves the tree

structured problems exactly in polynomial time. To better make use of that poly-

nomial time algorithm and to reduce the search space drastically, we described a

preprocessing step. We have reported a summary of our extensive experiments in

which task assignment problems with about 300 tasks and 8 processors are solved

in a reasonable amount of time.

May 6, 2009 16:7

Exact Task Assignment Algorithms 15

Acknowledgements and availability

We thank Dr. Jack Dongarra and Dr. Bernard Tourancheau, the organizers of

the Clusters and Computational Grids for Scientific Computing (CCGSC 2008)

meeting, for encouraging us to write the paper. The authors keep a web page

of the data set and the optimal solutions. As of time of writing, the page is at

http://graal.ens-lyon.fr/~bucar/tig/.

References

[1] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and S. Ali. Task execution time
modeling for heterogeneous computing systems. In Cauligi Raghavendra, editor, Pro-
ceedings of the 9th Heterogeneous Computing Workshop (HCW 2000), pages 185–199,
Cancun, Mexico, May 2000. IEEE.

[2] B. Arafeh, K. Day, and A. Touzene. A multilevel partitioning approach for efficient
tasks allocation in heterogeneous distributed systems. J. Syst. Architect., 54:530–548,
2008.

[3] A. Billionnet. Allocating tree structured programs in a distributed system with uni-
form communication costs. IEEE T. Parall. Distr., 5(4):445–448, 1994.

[4] S. H. Bokhari. A shortest tree algorithm for optimal assignments across space and
time in distributed processor system. IEEE T. Software Eng., 7:583–589, 1981.

[5] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuristics for parameter
sweep applications in Grid environments. In Proc. Ninth Heterogeneous Computing
Workshop, pages 349–363. IEEE Computer Society Press, 2000.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, first edition, 1990.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York, 1979.

[8] J. Gehring and A. Reinefeld. MARS – A framework for minimizing the job execution
time in a metacomputing environment. Future Gener. Comp Sy., 12:97–99, 1996.

[9] M. Kafil and I. Ahmad. Optimal task assignment in heterogeneous distributed com-
puting systems. IEEE Concurr., 6:42–51, 1998.

[10] Y.-K. Kwok and I. Ahmad. On multiprocessor task scheduling using efficient state
space search approaches. J. Parallel Distr. Com., 65:1515–1532, 2005.

[11] S. Menon. Effective reformulations for task allocation in distributed systems with
a large number of communicating tasks. IEEE T. Knowl. Data En., 16:1497–1508,
2004.

[12] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson Edu-
cation Inc., New Jersey, USA, second edition, 2003.

[13] H. S. Stone. Multiprocessor scheduling with the aid of network flow algorithms. IEEE
T. Software Eng., SE-3:85–93, 1977.

[14] A. Tom P. and C. S. R. Murthy. An improved algorithm for module allocation in
distributed computing systems. J. Parallel Distr. Com., 42:82–90, 1997.

[15] A. Tom P. and C. S. R. Murthy. Optimal task allocation in distributed systems by
graph matching and state space search. J Syst. Software, 46:59–75, 1999.

[16] B. Uçar, C. Aykanat, K. Kaya, and M. Ikinci. Task assignment in heterogeneous
computing systems. J. Parallel Distr. Com., 66:32–46, 2006.

[17] J. B. Weissman and X. Zhao. Run-time support for scheduling parallel applications in
heterogeneous nows. In HPDC ’97: Proc. of the 6th International Symposium on High
Performance Distributed Computing, pages 347–355, Portland, USA, 1997. IEEE.

