N

N
N

HAL

open science

Extending Routing Games to Flows over Time

Sébastien Soudan, Dinil Mon Divakaran, Eitan Altman, Pascale Vicat-Blanc

Primet

» To cite this version:

Sébastien Soudan, Dinil Mon Divakaran, Eitan Altman, Pascale Vicat-Blanc Primet. Extending
Routing Games to Flows over Time. 2009. ensl-00383918

HAL Id: ensl-00383918
https://ens-lyon.hal.science/ensl-00383918

Preprint submitted on 13 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://ens-lyon.hal.science/ensl-00383918
https://hal.archives-ouvertes.fr

Laboratoire de ’Informatique du Parallélisme

' Ecole Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL n° 5668

Extending Routing Games to Flows over
Time

Sebastien Soudan, Dinil Mon Di-
vakaran, Eitan Altman, Pascale Vicat- May 2009
Blanc Primet

Research Report N°2009-17

Ecole Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France
Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80
Adresse €lectronique : 1ip@ens-lyon.fr

% I N RIA




Extending Routing Games to Flows over Time

Sebastien Soudan, Dinil Mon Divakaran, Eitan Altman, Pascale Vicat-Blanc Primet
May 2009

Abstract

Routing game presents an interesting framework to analyse the practi-
cal problem of source routing in the Internet. It is particularly useful in
quantifying the inefficiency of selfish user behavior that results in any
transportation network without any central authority. This game as-
sumes that the only user criteria for decision making is path cost. In
this work, we take a step further, and model a routing game where user
decision is based not only on path but also on time. We show that,
under convex cost functions, this new routing game over time can be
mapped to the classical routing game, thereby presenting a model that
can exploit well-established results in the subject. Using a simple exam-
ple, we demonstrate the usefulness of the model, and motivate the need
for resource coordination to minimize inefficiency or cost.

Keywords: Routing game

Résumé

Routing game presents an interesting framework to analyse the practi-
cal problem of source routing in the Internet. It is particularly useful
in quantifying the inefficiency of selfish user behavior that results in
any transportation network without any central authority. This game
assumes that the only user criteria for decision making is path cost. In
this work, we take a step further, and model a routing game where user
decision is based not only on path but also on time. We show that, under
convex cost functions, this new routing game over time can be mapped
to the classical routing game, thereby presenting a model that can ex-
ploit well-established results in the subject. Using a simple example,
we demonstrate the usefulness of the model, and motivate the need for
resource coordination to minimize inefficiency or cost.

Mots-clés: Routing game
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1 Introduction

Routing games is a game-theoretical subject that sheds light on an important practical prob-
lem in the Internet (or for that matter, any transportation network) — the benefits and
implications of routing traffic without any central authority. The ‘routing’ here refers to
source routing, where an individual user is able to decide its route, or path, from the source
to the destination.

The literature on routing games is wealthy, briefed in Section 2. While the previous works
consider path selection as the only decision variable for a user, we explore, along with path
selection, another important variable — time preference. We call this game, routing game
over time, RGoT in short. The users in this game face a cost on the selected path which
depends on the time as well as the total amount of traffic sent on this path.

The motivation for including the time criteria for decision making comes from the need to
meet time constraints during data transfers. This has lead researchers to explore in-advance
reservation, for example [I] and [2]. We propose a model which enables to quantify the
inefficiency — price of anarchy — of realizing such a system as a result of selfish decisions,
with no centralized coordination. The model for RGoT in presented in Section 3. Therein,
we define the concept of equilibrium and optimal allocation. We show that under convex
cost function, allocation can be described using step functions. In Section 4 we prove that
RGOT can be solved by solving an instance of classical routing game, and map some of the
important results known for this kind of game. Finally, in Section 5, using a simple example
we illustrate and motivate the need for coordination.

2 Related work

Since the introduction of the concept of equilibrium in transportation network by J. G.
Wardrop in 1952, this kind of Nash equilibrium has been widely studied and extended. Among
these, we note the introduction of price of anarchy and the results on classes of cost functions
by Roughgarden et al. [3]. The dynamics of convergence to equilibrium has been investigated
in [4]. The concepts of non-atomic and atomic routing games are detailed in [5, Ch. 18].

On the other side, while concepts of network flows and flows over time was introduced by
Ford and Fulkerson, network flows have been extensively studied as summarized in [6, Ch.
26], development on the version considering time is recent [7]. But since it is used in several
works on bandwidth and flow allocation, it is interesting and important to extend non-atomic
routing games to routing games that take time into consideration. This paper presents this
extension.

3 Routing games over time

In this section, we define the model for RGoT, and then extend the concepts of equilibrium
flows and optimal allocations to this model.

3.1 Model

This section describes the RGoT model used in this paper. It is inspired from the non-
atomic routing game model and from the model of flow over time. This model of routing
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Uy demand (volume)
(sr,d;) source/destination pair
8 start time (assumed to be a rational)
td deadline (assumed to be a rational)
P, set of unique labels for s, — d, paths of G = (V, E)

Table 1: Table of notations.

game assumes infinite number of users. Each user is small, and as such doesn’t contribute
significantly to the cost. Request as presented in the following definition refers to a kind of
request; meaning that the users that form a particular request have same constraints in terms
of source, destination, and paths; and total aggregate volume is known. We now proceed to
give some important definitions. The notations used are listed in Table 1 for a given request
T.

Definition 3.1 (Request). In the directed graph G, r & (s,,d,,v.,t5,t%, P,), is a request
between vertices s, and d,, dates t;, t,‘?, allowed to transfer over one or more paths from P,
and with a total volume of v,.. Every path in P, is unique, in the sense that if two requests use

the same path (as set of edges) their labels will be different. In addition, we let P = |J; P,.

These requests induce a traffic on the network which is characterized by the rate traffic
going on each path. This is called allocation vector.

Definition 3.2 (Allocation vector). If f, is the rate for request r over the path p € P,, the

allocation vector f is defined as being the vector [fp]pep with fp Rj 7(g&+. In addition, we
—Jp

define link allocation as: f. : R:r 7(11})£+ where fo(t) £ > pepecp Ip(t)

This allocation vector gives the rates over time with which each request will send on its
paths to achieve transfer of the specified volume during the time window. If it does so, it is
said to be a feasible allocation. Link allocation gives the total rate seen on a link at a given
date.

Definition 3.3 (Feasible allocation).

td
Vr € R,/ Z fp(t)dt = v,
tS

T pEP,

Next, we define per-edge cost. It is assumed to be a piecewise constant function with
regard to the time.

Definition 3.4 (Per-edge cost function). For an edge e, c(e,b,t) is the cost function for
transferring at rate b at time t over link e. For the cost function, we furthermore assume:
given I., a finite partition of time (R ) with rational breaks, ¢ has the following structure:
c(e,b,t) = Yoger ¥ieacie(d) and cje(.) is assumed to be non-negative, continuous and non-
decreasing.

Using the definitions of allocation vector and cost, allocation f incurs cost c(e, fe(t),t) at
time t on edge e. From the assumption on the form of cost, cost on this interval can be split
on intervals I. as done below. But before doing this, we define RGoT.
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cy.() ey ()
(o) [

r1
T2

T T T T3 T T Time

I| T L | Iy | T | Is | Ts

(a) Timeline and its discrete versions. (b) Example of requests with their alternate
paths.

Figure 1: Example of requests with their intervals.

Definition 3.5 (RGoT). (G, R,c), where G is a network, R a set of requests and ¢ a cost
function, defines an RGoT.

In the remaining, we focus on the interval:
T £ |min{t*}, max{t?
reR{ ok reé({ )

All time breaks — t7, tﬁ, and changes of cost function — are rationals. Hence, we can divide
time axis in intervals of same lengths, such that all these breaks come at the boundaries by
taking this length as the least common multiplier of denominators of interval lengths. This
partitioning of time is used in Def. 3.7 to define the set of time intervals. It is illustrated in
Fig. 1(a). This is an artifact, used later, to reduce this game to normal non-atomic routing

games.

Definition 3.6 (Time intervals). For a game (G, R, c) with I. being the set of time interval
used to define cost function ¢, we define T as the set of time intervals defined by all the start
time t3 and deadline t& of request i € R and start and end of intervals I included in T. T is
a partition of T.

Definition 3.7 (Same length time intervals). We define Z as the refined set of intervals of
T such that all intervals of T have the same length (called |J| in the remaining). This set is
obtained by subdividing T.

Definition 3.8 (Intervals of a request).
I, £ {J € I|J C [t;. ]}

In the remainder of this work, c;. has been extended to J in Z by using the function c;
of the interval I € I. that contains J.

Definition 3.9 (Per-path cost on an interval). For any time interval J,

crp(f) 2 / S cle gttt

ecp
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Definition 3.10 (Per-path cost).

Cp(f) £ C’Jl‘,p(f)
:/ Z cle, f.(1),t)dt (Def. 3.9)

AZZM%&WW#W

ecp Jel.

Zﬁ:/ el fol) 1)

JET e€p

Having defined the model, next sections define some specific feasible flows which arise
from selfish user behaviors, equilibrium flows, and from social interest, optimal allocations.

3.2 Equilibrium Flows

As said before, users behave selfishly on their infinitely small fraction of volume belonging
to one request. This leads to allocations which form a subset of feasible allocations, called
equilibrium flows. We show that they can be defined using step functions with steps on 7
when cost is convex. The definition of equilibrium that follows, is similar to (characterization
of) Wardrop equilibrium.

Definition 3.11 (Equilibrium). f is an equilibrium flow in (G, R, ¢) if:
1. f is a feasible allocation vector, and;

2. for every r € R, for every interval J and J included in [t$,t?] such that |.J| = |J| and
any p, p € P, where fteJ fpdt >0, cjp(f) < ij)(f).

If f is an equilibrium flow, for every r € R and any p € Pr, cp(f) < ep( f) with f such
that, f, has been replaced by f,, and ftg Ip(t) ftg fp(t)dt, as it is a feasible flow and

following second point of Def. 3.11 with I = J = T (f, is supposed to be null out of [t¢, ]
as it doesn’t contribute to feasibility).

We proceed to show that step functions are suitable for equilibrium flows, when the cost
is convex.

Proposition 3.12. If cost function c;(b) is convex, for any link allocation f., there is one
step function constant on each J € T that transfers the same volume on each time interval
for a cost at least as good.

Proof. We proceed in two steps.

(1) fe(t) is not better than constant function on J:
Let J be an interval without arrivals/departures/cost-breaks, we suppose f.(t) is inte-
grable, [ fe(t)dt = fe|J| and cje(b) be a convex function. Let y(.) be the Lebesgue
measure, p(J) = |J| and n(.) £ p(.)/u(J). Obviously n(J) = 1 and:

/@Aﬁwmmw—Mﬂjkkmx ()
J J

bt
u(J)
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As n(J) = 1, using Jensen’s inequality:

t

m))ﬁ(dt)

Mﬂq4ﬁﬁw%mw»§MﬂlwAM

(from definition of 7(.) and above equation)

= sl [ 0y < [ ertronian

(from definition of f.)

fJ,e‘J’
s < [ esetropman

=ﬂmhmasﬂqmwmmw ()

= ,U/(J)C{Le(

(2) says that the cost of a function constant on J and equal to f;. has a cost as good
as any other function which transfer the same volume on J.

(2) For any link allocation f.(.), there is one step function as “good”:
First part of this proof can be applied on each intervals and f,(.) be replaced by a step
function with a cost at least as good.

O]

Proposition 3.13. If cost function c;j.(b) is convez, for any feasible allocation f there is f
made of step functions which: (1) for all p € P has a cost c,(f) not worse than c,(f); (2)
has steps on T.

Proof. We start with one f. For each p € P, we define fp as the step function which transfers
the same volume as f, on each intervals of Z but using a constant rate. This allocation
is also feasible as it transfers the same volumes during the same intervals and thus volume
constraints are satisfied. Furthermore, its steps are on Z. f. are step functions, as sum of
step functions fp. Using Eq. (1) and Prop. 3.12, cp(f) < ¢p(f). O

Next we show that for a convex cost function, for any equilibrium flow, there is a corre-
sponding equilibrium flow made of step function which is as good in terms of cost. If we come
back to infinitely small users making requests, this basically means, they have no incentive of
using anything other than a step function constant on intervals of 7 or Z.

Proposition 3.14. Equilibrium flows can be taken as step functions.

Proof. Equilibrium flows are feasible allocation and can thus be taken as step function for a
cost not higher, as proved by Prop. 3.13. O

It can be seen that with cost functions that are not non-negative, convex or non-decreasing
in f., the link allocation, this proposition does not apply. This is because, we can’t exploit
the structure of time intervals to define the step functions since it might be cheaper to reduce
the duration of transfer while increasing the utilized rate, eventually without limits. As
an example, this kind of allocation (equilibrium flow and later optimal allocation) as step
functions of time do not apply for sub-linear cost as it is always better to group the utilization
of the resources.
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3.3 Social Cost and Optimal Allocation

Having defined equilibrium allocation that will result from selfish decisions of users realizing
requests of R, we now define optimal allocation that minimizes the total cost charged to serve
the requests. The total cost is referred as social cost. By dividing it by ft Zp fp, average cost
can be obtained.

Definition 3.15 (Social cost).
ctn 2 [ e, 1.t
:lzgym¢wwmwwm¢wWJ

e Jel.

=3 [ X sttestrnar

Jel.

C(f) = Z Z fe(t)CJ,e(fe(t))dt (3)

Optimal allocation — in the social sense — is:

Definition 3.16 (Optimal allocation). A feasible flow of (G, R, c) is optimal if it minimizes
C(f) over other feasible flows.

As in equilibrium flow, if the social cost is convex, we can take optimal allocation as step
function as stated in Prop. 3.20. To begin with, we observe that convexity of cost function
implies convexity of social cost.

Remark 3.17. z — z.cjc(z) is convex on Ry. Since this is a product of two convex, non-
decreasing and positive functions on R.

Proposition 3.18. If cost function cj.(b) is convex, positive and non-decreasing, for any
link allocation f., there is one link allocation as step function, constant on each J € I, that
transfers the same volume on each time interval for a social cost at least as good.

Proof. As stated in Remark 3.17,  — z.cj.(x) is convex on R;. Allocation are positive
functions. Then, using Jensen’s inequality (or Hermite-Hadamard inequality) we show that
there is a step function with steps in Z which is as good as any feasible allocation and transfer
the same volume on each time interval. O

Proposition 3.19. If cost function cje(b) is convex, positive and non-decreasing, for any
feasible allocation f, there is one f made of step functions which: (1) has a costs C(f) not
worse than C(f); and (2) has steps on Z.

Proof. We start with one f. For each p € P, we define fp as the step function which transfers
the same volume as f}, on each interval of Z, but using a constant rate. This allocation is also
feasible as it transfers the same volumes during the same intervals and thus volume constraints
are satisfied, steps are on Z. fe are step functions as sum of step functions fp. Using Eq. (3)

and Prop. 3.18, C(f) < C(f). O
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We conclude this section showing that there is an optimal allocation among the set of
feasible allocations made of step functions.

Proposition 3.20. Optimal allocation can be taken as step function with steps on I.

Proof. Optimal allocations are feasible allocation and can thus be taken as step function with
step on Z for a cost not higher as proved by Prop. 3.19. 0

In the next section, we exploit the structure of step function and revisit previously in-
troduced definitions to establish equivalence between step allocations and generic allocations
under convex costs.

3.4 Discrete Allocations — Reduction to Step Function

As users and regulator try to minimize their costs (equilibrium flow) or social cost (optimal
allocation), all the feasible allocations of interest are step functions and their steps are on Z
(Prop. 3.13 and 3.19).

Hence, interesting feasible allocations are step functions with steps on Z, they can be
described by discrete value giving their value on the steps.

Definition 3.21 (f;,). For a feasible allocation f, we define the |I|x|P| matriz [f;p]
()

res ||
f on interval J.

(J,p)EIXP’

where f, = dt is the constant rate of a step function which transfers as much as

Remark 3.22. It can be noted that in Def. 3.21, fj, for J not used by a request r using
path p is supposed to be null. More formally:

Vre R,Vpe P.,VJ €I\Z,, f1,=0

This can be justified, as it would not contribute to the total volume, but will add to the cost;
hence rendering useless from a social cost and individual cost point of view.

Remark 3.23. As f is supposed to be a step function on I, it can be reconstructed from the
matriz [fr,] by:

Vp P, fp(t) =Y Wit)f1p (4)

JeT

Similarly we define discrete link allocation and show that continuous-time link allocation
can be reconstructed from the discrete version.

Definition 3.24 (f;.).
fJ,e £ Z fJ,p (5)

pEP:e€p

Proposition 3.25.

fe(t) = Z%J(t)fJ,e (6)

JeT
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Proof.
fe(t) = Z fp(t) (from Def. 3.2)
pEP:e€Ep
= Z Z%J(t)fJJ, (from Eq. (4))
pEP:e€p JET
fe(t) = W (t) fre (from Def. 3.24)
JeT

From above definition and definition of feasible flow, we get:

Proposition 3.26. f is feasible iff:

VreR > > |lfip =1 (7)

JETL pEPr
Proof. From Def. 3.3, f is feasible iff:

vr, /tr Z fp(t)dt = v,

& pep,

g
— VT,/ Z ZH‘J(t)fJ,pdt = v, (from Remark 3.23)
t peP, Jez

t
=y Z/ W (t) frpdt = v,

pEP, JeI V7

T

> Vr, Z Z |J|f1p = vr (from Remark 3.22)
peEP,. JEL,

3.5 Reduction of Cost Function, Equilibrium and Optimal

In this section, we prove that, under convex cost function, both continuous and discrete
formulations are equivalent.

Proposition 3.27. If cost function cje(b) is convez, for any f (supposed to be a vector of
step functions constant on each J ), for all p € P, and for any J in Z,

cap(f) =Y 1lese(fre) (8)

eecp
Proof. This comes from Def. (3.9) applied to step function f and interval J of 7 and [f]
defined using equations (6) and (5). O

Proposition 3.28. If cost function cj(b) is convez, for any f (supposed to be a vector of
step functions constant on each J), for all p € P,

() =D |lese(fre) (9)

J€ET ecp
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Proof. This is obtained by applying Eq. (1) to the step function f and [f;.] defined using
[f1p] as given by Eq. (6) and (5). O

Proposition 3.29. If cost function cj(b) is convez, for any f (supposed to be a vector of
step functions constant on each J),

C() =D I recrelfre) (10)

JET e
Proof. Same as previous proof but using Eq. (3). O
Proposition 3.30. f is an equilibrium flow in (G, R, c) iff:
1. f is a feasible allocation vector, and;

2. for everyr € R, for every J, J € I, cip(f) < Cjﬁ(f) with p, p in P, where ij,p > 0.
J

Proof. We prove the equivalence in two parts:

= [ is supposed to be made of step functions with steps on Z. First point is straightforward.
By replacing (7) in second point of Def. 3.11 and applying it on J and J in Z, we obtain
above mentioned conditions.

<« First point is again straightforward. Regarding second point, condition 2) in Def. 3.11
is different is the sense that it is for any pair of sub-interval of [t2,t%]. For any such
sub-interval and by linearity of the integration over time, cost can be expressed as a sum
of cost ¢y, with J in Z, or part of a such interval. From this, we get two partitions of J
and J. They can be different but we can obtain a one to one mapping of sub-intervals of
same length from J to J. On each of these pairs of sub-intervals, costs are independent
of time and fp is constant. Applying condition 2) of Prop. 3.30 on the underlying
intervals in Z, and scaling the results with respect to the length of the sub-interval,

once summed, proves condition 2) of Def. 3.11.
O
We summarize this section by the following proposition:

Proposition 3.31. f is an optimal allocation iff [f;,] is feasible and C(f) as given in (10)
s manimized.

Proof. Trivial. O

With this, we have shown the equivalence of the continuous and discrete versions of the
routing game under convex cost functions. Next, we move on to the time-expanded network.

4 Reduction to Non-atomic Routing Game

Since we have defined the RGoT and exhibited the step function structure under convex costs,
we can now reduce the game to non-atomic routing game, and then exploit the results already
known on this class of games.
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T

7 |

Figure 2: Time-expanded network.

4.1 Time-expanded Routing Game

To use the results from the classical non-atomic routing game, which we refer as Routing
Game in Time-FExpanded Network, we now present that the two games can be mapped, and
we show how to do so.

Definition 4.1 (Time-expanded (TE) network). For a RGoT (G, R,c), G is the time-
expanded graph obtained from G by duplicating it one for each interval of T and adding one
pair of virtual source and virtual sink for each request r in R. These extra sources/sinks are
connected to the actual source/sink of each duplicate of G in time intervals of Z,. We note

e=(Je).

All edges of C}’, except those connecting the actual and virtual sources/sinks, are of the
form € = (J,e). G has |V||Z| + 2|R| vertices and |E||Z| + 23, |Z-| edges.

Definition 4.2 (Path in TE network). For every request v in R, we define P, as the set of
paths in G: for every path p in P, and every interval J in I., P, contains a path p = (J,p)
which contains the same edges in G as p in G in addition to the two extra edges that connect
the virtual source and virtual sink of r to the nodes in G, which represents, for each interval
their actual source/destination in G. We let, P = Urer P,

Observe that P, has |P,||Z.| paths.

To illustrate, the time-expanded graph of requests presented in Fig. 1 is as in Fig. 2. The
network of Fig. 1(b) can be seen replicated in Fig. 2 for the intervals of a request. If two
requests (e.g., 1 and r2) have overlapping interval (Z3), the graph is shared by paths of the
same requests (P, and P). Virtual source/sink nodes connect paths of one request.
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Proposition 4.3. € = (J.,e) € p = (Jp,p) iff

ecp
Je = Jp
Proof. By construction of G in Def. 4.1. O

The edges of G that don’t have their counterparts in G are only used by one request and
have a null cost in the time-expanded routing games. Hence, they won’t contribute to the
social cost.

We now define the requests that are used in the new graph: R, the allocations and feasible

allocations in these games.
Definition 4.4 (Requests in the TE network). For every request v in R, we define: 7 =

(3, dy, Pr, v, 2 ‘”—) and the set R as the set of requests 7.

Definition 4.5 (Allocations in the TE network). Allocations in the TE network: f £ [f;] =
[f J,p]
Link allocation: fs £ Z fp
peP:eep

Remark 4.6. For each edge of G which doesn’t have a € = (J,€) form, there is no need to
define fz. In the remaining, we use the notation € = (J, e) to refer to edges that contribute to
the costs and define the counterpart in G and time intervals.

Proposition 4.7. For any € = (Je,€), fe = f..c-

Proof. By Def. 4.5, fz = Z fp and by Def. 4.5, f5 = f;,. Using Prop. 4.3 and definition
pEP:eEP
of p and e, we get: for any € = (J,,e),

fé: Z fJ,p

(J,p)EIXP:e€pAJe=J

= Z Jrep

pEP:e€Ep
fé = fJe,e
where fj, . is the one defined in Def. 3.24. O

Remark 4.8. Using Prop. 4.7 and Prop. 3.25, we get:

fy= Y. K0f

e=(J,e)eIx{e}

Using Remark 3.23 and Def. 4.5, we also have:

Lty= > K

p=(J,p)€Tx{p}

Flow allocation f can thus be reconstructed.
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Definition 4.9 (Feasible allocation). f is a feasible allocation for R iff:
Vr € R, Z fp = 'L_)T»
peEP,
This is the definition of feasibility in normal routing game.
Proposition 4.10. f is feasible iff f is feasible.
Proof.
f is feasible
<= Vr € R, Z Z |J|f1p = vr (from Prop. 3.26)

JETI, pePy

<= Vr eR, Z fip= 7 ~ (as |J] is uniform)
(J,p)EZLr X Py ’ |

< Vr e R, Z f5 = v, (Def. of G, R and f3)
pEP:

<= f is feasible

O
In the following two sections, we map the cost functions, equilibrium and optimal alloca-
tion from RGoT to routing games on the TE graph defined in this section.
4.2 Cost Function in TE Network

Here we show the mapping of cost between RGoT and time-expanded routing games.

Definition 4.11 (Costs). For all € = (J,e), cz(.) = |J|cse(.). We call ¢ the function that

associates cz(.) to €. For any f and for all p, cz(f) = > eep el fe)-

Proposition 4.12. For all p in P,

pEIx{p}
Ip(t) is still supposed to be null out of I, for each p € P,.
Proof.

ep(f) =D | Jlese(fre) (from Prop. 3.28)

JET e€p
= Z Zcé(fé) (from Def. 4.5, 4.11 and Prop. 4.3)
JeT eep

op(f) = Z cs(f) (from Def. 4.11)

pEIX{p}



Routing Games to Flows over Time 13

Proposition 4.13. For all p in P and J in I, c5(f) = c,(f) with p = (J,p).

).

Proof.
cp(f) = Zcé(fé) (from Def. 4.11)
ecp
= "|Jlese(fre) (from Def. 4.5, 4.11 and Prop. 4.3)

ecp

cp(f) = cyp(f) (from Prop. 3.27)

Definition 4.14 (Social cost). C(f) = ZféCé(fé)

Proposition 4.15. C(f) = C(f)
Proof.

C(f) =S 1JIfsecse(fre) (by Prop. 3.29)

JET e
= ng(lg(fg) (by Prop. 4.7 and Def. 4.11)

C(f) = C(f) (by Def. 4.14)

Transition between first and second line is obtained by recalling that per-edge cost over edges
that are not of the form e = (J, e) is null. O

4.3 Equilibrium and Optimal Allocations

The two definitions given here are from non-atomic routing games. The two propositions
basically state that our RGoT can be solved by recasting it to this well-known game and
using established results, as will be shown in next section.

Definition 4.16. f is an equilibrium flow in (G, R, &) if:
1. f is a feasible allocation vector, and;
2. for everyr € R, c5(f) < cﬁ(f) with p, p in P, where fz > 0.

Proposition 4.17. f is an equilibrium flow in (G,R,¢) iff f is an equilibrium flow in

(G,R,c).

Proof. First point comes from Prop. 4.10. Second point is obtained by replacing ¢, in Prop.
3.30 as established in Prop. 4.13. O

Definition 4.18. A feasible flow of (G, R, €) is optimal if it minimizes C(f) over other feasible
flows.

Proposition 4.19. A feasible flow f of (G, R,¢) is optimal iff f is optimal in (G, R, c).

Proof. The proof comes from the equivalence established in propositions 4.10 and 4.15. [
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4.4 Results — Existence and PoA

Next theorem on the existence of equilibrium flows for non-atomic routing games comes from
the literature [5].

Theorem 4.20 ([5, Theorem 18.8]). Under the assumption of existence of feasible alloca-
tion(s), for a non-atomic instance (G, R, ¢) there exists at least one equilibrium, and for any
two equilibria f and f, ¢(f.) = c(f.).

From Theorem 4.20, it follows that, C'(f) = C(f); i.e., all equilibrium have the same social
cost. We also derive from the theorem that our routing game over time have equilibria since
the time-expansion of the problem always exists and this always has at least one equilibrium.

Corollary 4.21. From Theorem 4.20 and reduction of the game made in previous sections
(game, costs, equilibrium and optimal), it follows that (G, R,c) has at least one equilibrium,
and they all have the same social cost.

Existence of optimal allocation is trivial, as there is always some (possibly one) feasible
allocation.

Definition 4.22 (PoA). Price of Anarchy (PoA) is the ratio of the cost of worst equilibrium
to the cost of optimal allocation.

Since all equilibria in routing game have the same cost, PoA is the ratio of the cost of
any equilibrium to the optimal social cost. Furthermore, since cost and social cost are same
for RGoT and its TE counterpart, PoA of (G, R, ¢) is equal to the PoA of the corresponding
(G, R,c).

5 Application to Scheduling

In this section, we illustrate the mapping of PoA between the two forms of game, and its
implications, for example, on the benefit of doing centralized scheduling to transfer data. We
consider a simple example of a single link network with time-slot preference and congestion.
First, we describe the cost functions associated with this model, and then discuss equilibrium
flows, optimal allocations and PoA.

5.1 Lateness and Time-slot Preference as Cost

In this model, f, (and thus f.) is the expected rate that players plan to have. As long as the
link is not oversubscribed, they won’t be late with respect to their deadlines. If it is congested,
lack of bandwidth increases lateness — cost — as a linear function of this over-subscription.
Figures 3(b) and 3(a) shows the cost model for congestion. Another component of this cost
represents users’ preference of one time-slot over the other.

We illustrate this cost on the following example. This RGoT uses one single link and one
request of total volume v, but the time interval [0, 7], where 0 < T, is divided in two equal
parts and is assigned user preferences: d; and do with 0 < d; < do. The cost function adopted
for this link of capacity w is then:

[ ditoee(f) ift<T/2
C(e,fe,t) - { d2 +Ce(fe) else
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ce(fe)

i A
Je — e

Je

Ue >
Je
Y Ue e
(a) Cost model for congestion on a link of capacity (b) Cost of congestion ce(fe) for edge e.
Ue.
Figure 3: Cost model for congestion.
ce(fe) ce(fe)
A A
do dy A
dy dy ' 3
! l
> ! : >
U v fe r—u ur v fe
(a) Cost functions. (b) Two feasible flows.
Figure 4: Time preference and congestion aversion.
with:

Ce(fe):{ofeu if f. € [0,u]

weo(e,R) else

Let s = #(e}%)’ s > 0. For each time interval, the cost is convex, positive and non-decreasing
in link allocation.

Using time-expansion as defined earlier, we get the routing game with two links (1 and 2)
sharing same source and destination; first of these links has cost ¢, and second ¢ as defined

presently:
~ ey ds if fz € [O,U]
ce(fe) = { ds + s(fs: —u) else

with fe(t) = Wicjo,r/2)f1 + ¥iery2,mfo in RGoT. Fig. 4(a) show the cost functions on the
time-expanded network. It includes time preference and congestion aversion for the two links
of GG. Note that, the slope s equals %.
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Let r = v/T. If the cheapest link is not congested, i.e., 7 < u, as its cost is less than that
of the other link, both equilibrium flow and optimal allocation exclusively use this path/link.
This results in a PoA of 1 as social cost of both are the same. But when the cheaper link
starts to get congested, it might remain less expensive than the second link up to a point.
Beyond this point, it is less expensive from a social cost point of view to route the flow on
the two links. But the equilibrium flow still uses only one link as its cost c,(.) remains lesser
than the other. Fig. 4(b) illustrates this situation with two alternative feasible flow and their
social cost as shaded. The sum of the areas of the two light gray rectangle are less than the
one of the dark rectangle (which is the social cost of equilibrium). More formally:

Proposition 5.1. For max{u,v — u} < r and r < min{v,2u}, equilibrium flow uses exclu-
sively link 1 and PoA > 1.

Proof. Provided r is between max{u,v — u} and min{v, 2u}, equilibrium flows only use link
1 and the social cost of such an allocation is:

Ceqg = (di + (r —u)s)r

If we consider a different feasible allocation which allocates only w on first link and the
remaining on second link, its social cost is:

C=ud+ (r—u)ds

We now demonstrate that this allocation has a social cost strictly less than the equilibrium
flow:

C < Cgy

= udi+ (r—u)dy < (di+ (r—u)s)r

= (r—u)da<(r—u)di+(r—u)sr
do —d

— 2 !

—

<r

vV—u<r

which holds by assumption.
As the cost of this feasible allocation is strictly less than the one of equilibrium flow, PoA
is strictly more than 1. O

5.2 Equilibrium and Optimal Allocation

Define z1(r) and z2(r) as the part of the traffic r sent on links 1 and 2 for equilibrium flow.
Similarly, 27 (r) and z5(r) are the fraction for optimal allocation. We have z1(r) + z2(r) =7
and z7(r) + z5(r) = r. Cey(r) denotes the social cost of equilibrium under demand r and
C*(r) the social cost of optimal allocation.

Optimal allocations Since costs are defined in pieces, social cost are also piecewise. In
the following, x denotes x; and x9 is r — x.

It follows that the social cost of a feasible allocation C'(z,r) =z ¢1(x) 4+ (r — z)co(r — x)
has the following expression in the different regions (a),(b),(c) and (d) of Fig. 5:



Routing Games to Flows over Time 17

V2 [—————

e

|
'

I
I
I
I
I
I
I
I
I
:
0 m 2u 2utv 3utv

2 2

Figure 5: Domain of feasible allocations z(r) and optimal allocations for different values of
v/2.

(a) z<wvandr —z <u: Clx,r)=x dy + (r — x)ds and%:dl—d2<0

(b) x<wandr —z >u: C(z,r) =x di + (r —x)(de + s(r —x — u)) and%—g:dl—dg—
2r+u—1x)s<0

(¢) z>uvandr —x <w C(z,r) =x(di+s(zx—u))+(r—x)dy and % =dj—da+(2z—u)s,
which is strictly positive when = > v/2, and strictly negative when = < v/2.

(d) z>vand r—z >u: C(z,r) = z(dy + s(v — u)) + (r — x)(d2 + s(r — z — u)) and
% =dj — dy + 2(2x — r)s, which is strictly negative below = = (r + (v —u)/2))/2 and
strictly positive above.

As cost functions are continuous, so are optimal and equilibrium allocations as functions of
r.
We conclude from previous list that optimal allocations are:

o r <w:xj(r)=randzi(r) =0
o u <r <2u:zi(r) =max{min{r,v/2}, u} and z5(r) = r — max{min{r,v/2},u}

o 2u <r: zi(r) = max{min{r, (r + (v — u)/2))/2},u} and z5(r) = r — max{min{r, (r +

(v —u)/2))/2}}

The optimal allocations as a function of r are shown on Fig. 5 by the emphasized lines (plain
and dashed) for different values of v/2.

Equilibrium flows Regarding equilibrium flows:
e r < v: Since ¢1(r) < ea(r), x1(r) = r and x2(r) = 0.
o v <r <u-+uwv:z(r) =v and x2(r) = r — v is the equilibrium flow.

e utv<r:xi(r)=(v—u)/2+r/2 and x2(r) = (u—v)/2+ 1/2 is the equilibrium flow.
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PoA For the specific case where u < v/2 < 2u, we have:
o r <w/2:since zj(r) =r, PoA=1.

e v/2 <r <w+v/2:in this region, z7(r) = v/2 and C* = (dy —da+ (v/2—u)s) v/2+7 da
while z1(r) =7 and Cey =7 (d1 + (r — u)s).

e r(dy+ (r—u)s)
PoA = O _(dl_d2+(v/2—u>s)’0/2+rd2
_ r (d1+(7“_u)3)

rdy— (v/2)2s

PoA is increasing as long as s < (2r + v)d/v? since 7 is less than v if s is less than
2(u + v)d/v? maximum PoA is reached for r = u + v/2 and is:

2u+v)(—2d+ s v —2s u)

(
PoA —
© “ddu—2dv+s 02

In the other case, PoA will first increase and then decrease before leaving the interval.

s v2/d—v
2

Maximum PoA is reached for r = and its value is:

(s v—d)?

e u+v/2<r: Since v/2 > u, r > 2u and then the system is clearly overloaded (both
links congested) which is not really interesting in this scenario.

Conclusion In this example, we see that as long as none of the links are congested, PoA
remains 1. This basically means that selfish behavior leads to optimal allocation. Therefore,
under the presented model no centralized control is needed to achieve optimal allocation.
This model, following Wardrop equilibrium concept, assumes that users have complete and
up-to-date information to decide which path to use based on the cost. The cost depends on
the link allocation reached so far. Thus, it assumes that users know the current link alloca-
tion. This information is not needed for the time-slot preference part of the cost, but for the
congestion aversion part. Hence, implementing this scheduling mechanism without coordina-
tor mandates the congestion information be available to users, that too, in advance. In both
cases coordination is essential: either to take the decision, or to publish the information.

In the case where the system is near congestion, as studied above, PoA is greater than 1.
Here, coordination can improve the social cost by sacrificing some of the flow. This can not
be achieved by selfish users unwilling to spontaneously take a more costly path.

From [3], we know that using affine cost functions it is possible to construct instance of the
non-atomic routing game with PoA up to 4/3. This is value is attained in two-link settings.
When the class of function quadratic functions, this bound becomes 3v/3/(3v/3 —2). Actually,
the more non-linear the cost functions are, the higher is the worst PoA. Using polynomial
cost functions of degree p, PoA tends to infinity as p does. In the next section, we see how
this inefficiency can be mitigated through coordination or modification of the cost function.
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5.3 Reducing Social Cost

Since PoA can be large, it is worth using optimal allocation to minimize social cost. Mini-
mization of social cost can be achieved by a centralized system using optimal allocation or
the game can be modified so that equilibrium of the new game is an optimal allocation for
the original game. This corresponds to a reduction of the PoA in the new instance.

Cost Sharing and Resource Coordination Consider a resources manager (RM) who
proposes some commodities for a cost which depends on the total demand. Users know only
about their own individual decisions. The cost function is likely to be convex, positive and
non-decreasing as it ultimately results from the cost of congestion. A resource coordinator
(RC) aggregating the requests and demanding the optimal allocation for the aggregate can
do better than selfish user behaviors. It follows that RC can improve the social cost, i.e.,
total cost. RC can then share the benefit among all entities: RC and clients. This makes this
configuration profitable for both clients and RC.

Pigouvian Tax Another alternative is to modify the game so that cost perceived by users
deter them from ultimately reaching an allocation other than the optimal of original game.
For this purpose the related theorem is:

Theorem 5.2 (Theorem 18.27 of [3]). Let f* be an optimal flow for (G, R,¢) and let 7z =
f2 e (f) denote the marginal cost taz for edge € with respect to f*. Then f* is an equilibrium
flow for (G,R,¢+ )

It basically says that, equilibrium of the modified game is optimal allocation of the original
game. From the realization point of view, this solution still has the problem of sharing the
information, and also in addition making the users value the modified cost.

6 Concluding Remarks

This paper presented a new model for RGoT. It shows that under convex cost this can be
solved using the results from non-atomic routing games. Based on an example, we have seen,
selfish user behavior increases the social cost. Just because they prefer one time interval to
the other, users selfishly raise the cost of cheapest links instead of sacrificing to keep it and
social cost low. This motivates the need to coordinate. Possible extension of this work is
to use atomic or splittable flow model instead of non-atomic model in order to consider the
perception users have of their own impact.
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