
HAL Id: ensl-00391185
https://ens-lyon.hal.science/ensl-00391185v1

Preprint submitted on 3 Jun 2009 (v1), last revised 25 Nov 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing correctly-rounded reciprocal square roots for
embedded VLIW cores

Claude-Pierre Jeannerod, Guillaume Revy

To cite this version:
Claude-Pierre Jeannerod, Guillaume Revy. Optimizing correctly-rounded reciprocal square roots for
embedded VLIW cores. 2009. �ensl-00391185v1�

https://ens-lyon.hal.science/ensl-00391185v1
https://hal.archives-ouvertes.fr


Optimizing correctly-rounded reciprocal square roots for embedded VLIW cores

(Extended Summary) - LIP Research Report 2009-21

Claude-Pierre Jeannerod1, 2 Guillaume Revy2, 1

1INRIA Rhône-Alpes (Arénaire project-team), 2Université de Lyon

email: {Claude-Pierre.Jeannerod,Guillaume.Revy}@ens-lyon.fr

Laboratoire LIP (CNRS/ÉNSL/INRIA/UCBL)

École normale supérieure de Lyon — 46, allée d’Italie, 69364 Lyon cedex 07, France

Abstract

This paper presents an optimized software implementa-

tion of the reciprocal square root function x 7→ x−1/2, for

IEEE binary32 floating-point data and with correct round-

ing to nearest. The main feature of this implementation is

high instruction level parallelism (ILP) exposure, which re-

sults here from an extension of the polynomial evaluation-

based method of [3] as well as from the design of a specific

rounding procedure. This implementation proves to be very

efficient for some VLIW processor cores like STMicroelec-

tronics’ ST231 (used mainly for embedded media process-

ing), where a low latency of 29 cycles has been measured.

Keywords: reciprocal square root, binary floating-point

arithmetic, correct rounding, polynomial evaluation, soft-

ware implementation, VLIW processor core.

1. Introduction

Reciprocal square roots frequently appear in digital sig-

nal processing and scientific computing [6], and correctly-

rounded implementations are recommended in the latest re-

vision of the IEEE 754 standard [1]. Our aim here is to

present such an implementation, in software, for binary32

data (formerly called “single precision”) and rounding to

nearest even. The targeted processors are the ST231 four-

issue VLIW, 32-bit cores from STMicroelectronics, whose

main features are: 4 parallel ALUs, 2 parallel multipliers

(giving the first or last 32 bits of a 32×32 product), a leading

zero counter, 64 general purpose registers and 8 condition

registers, partial predication through select instructions, and

encoding of immediate operands up to 32 bits.

In order to fully exploit the high degree of parallelism of

our target and to avoid using coefficient tables, we extend

to reciprocal square roots the high-ILP, polynomial-based

square rooting method introduced in [3]. This extension,

which is presented in Section 2, seems to allow for more

ILP exposure than the Newton-like iterations used for ex-

ample in [6, 4, 5]. Section 3 then gives some details about

our implementation of this extension for the binary32 for-

mat, its validation, and the performances obtained on the

ST231 core. In particular, a latency of 29 cycles has been

measured, for rounding to nearest even and with subnormal

number support.

Application. A typical use of correctly-rounded recipro-

cal square roots is for 3D vector normalization [x, y, z] 7→

[x/w, y/w, z/w], with w =
√

x2 + y2 + z2. In the context

of the FLIP library,1 our implementation allows to replace

one square root (23 cycles) and three divisions (3 × 32 cy-

cles) by one reciprocal square root (29 cycles) and three

products (3 × 21 cycles). Both cases yield an error of at

most 1 ulp but the latter reduces latency by over 20%.

2. Reciprocal square root algorithm

Special operands. Operands like ±0, ±∞, negative

numbers, and NaNs are filtered out as in [3]. Then the spe-

cial results required by the standard [1] are computed in par-

allel with the generic case described next, which dominates

the cost.

Positive finite operands. When x is non special, it has

the form x = m · 2e, where, for a binary floating-point

system of precision p ≥ 2 and extremal exponents emin and

emax = 1 − emin,

m = (m0.m1 . . .mp−1)2 and emin ≤ e ≤ emax.

1http://flip.gforge.inria.fr/



In this case, we can show that x−1/2 always falls in the

normal range and that it can not be exactly halfway be-

tween two consecutive floating-point numbers. (Therefore,

neither under/overflow nor rounding ties can occur, which

makes the implementation simpler and faster.) It follows

that x−1/2 = ℓ · 2d for some real ℓ in [1, 2] and some inte-

ger d such that emin ≤ d < emax. The correctly-rounded (to

nearest even) value of x−1/2 is thus given by

RN(x−1/2) = RN(ℓ) · 2d,

and, classically, RN(ℓ) and d are computed in parallel.

First, we provide explicit formulae for ℓ and d. Let λ be

the number of leading zeros of m and let m′ = m · 2λ and

e′ = e − λ. Let c be 1 if e′ is even, 0 otherwise. Then

ℓ = s
√

2/(1 + t) and d = −(e′ + 1 + c)/2,

where s = 2c/2 and t = m′ − 1.

Second, the above formula for d being already suitable

for implementation, we focus on the computation of RN(ℓ).
As in [3] we proceed by correcting “one-sided truncated ap-

proximations” [2]: ℓ is approximated from above by v to

precision p. Then v is truncated after p fraction bits into

a number u. Finally RN(ℓ) is obtained by adding a small

correction to u and truncation after p − 1 fraction bits. The

main difficulties are to compute v as fast as possible, and to

evaluate the condition u ≥ ℓ in order to decide whether u
should be corrected or not.

To maximize ILP exposure, we compute v as the value

(up to rounding errors) of a bivariate polynomial

P (s, t) = 2−p−1 + s · a(t) (1)

such that a(t) is a “good enough” polynomial approxima-

tion of
√

2/(1 + t) over [0, 1). To decide whether u ≥ ℓ or

not, we evaluate the equivalent condition

(1 + t)u2 ≥ 2s2, (2)

whose both sides now have finite binary expansions.

3. Implementation for the binary32 format

The above algorithm has been implemented in C99 for

the binary32 format of [1], where p = 24 and emin = −126.

The lines of code for handling special operands, comput-

ing d, and correcting u have been written and optimized by

hand. However, the polynomial a(t) =
∑

i ait
i has been

computed as a truncated Remez approximant using Sollya,2

and a parallel and accurate evaluation code for v has been

written automatically by a generator under development.

Generating polynomial evaluation codes. The poly-

nomial a(t) used has degree 9 and our generator found the

following scheme for evaluating P (s, t) in (1):

2http://sollya.gforge.inria.fr/

r23

r22

r11 r21

r0

r1

r2

r3

T a1

2
−25

S

a0

r10 r15

r9

r8r7

r6 r4

T T T

S

r5

r13

r12

T T

r14

r20

r19

r18 r17

r16a9 a7

a6

a5

a4

a3

a2

T a8

multiplcation (3 cycles)

addition (1 cycle)

Its latency is of 14 cycles for the ST231 (compared to 38
cycles using Horner’s rule). Its accuracy (rounding errors)

has been checked by Gappa.3

Implementing the condition for correct-rounding.

Three 32-bit words are needed for representing the left hand

side of (2). However, we can show that the first 64 bits are

enough for evaluating (2) exactly, thus reducing the overall

latency of the rounding step.

Validation and performances. Our implementation,

called rsqrt, has been compared exhaustively to the

power functions of the glibc and MPFR.

We have also compiled it with the ST200 VLIW com-

piler, in -O3 and for the ST231 core. Without subnormal

support, the latency of the generated assembly code is of 28

cycles. For comparison, the previously best available code

for the ST231 was an implementation of Goldschmidt’s

method with initial approximation by a degree-3 polyno-

mial [5, §12] and had a latency of 67 cycles. Our approach

is thus more than 2.3 times faster. Also, our code offers full

subnormal support at the cost of only 1 extra cycle, since

the latency then is of 29 cycles.

Finally, the table below shows the advantage of using our

specialized operator rsqrt rather than simply compound-

ing division/inversion and square root. (Brackets indicate

that subnormals are not supported.)

Code sequence used Number N of Latency L N/L

for computing x
−1/2 instructions (cycles)

div(1.0f,sqrt(x)) 147 [124] 53 [47] 2.7 [2.6]

inv(sqrt(x)) 121 [115] 49 [47] 2.5 [2.4]

rsqrt(x) 68 [63] 29 [28] 2.3 [2.2]

Although each of the operators div, inv, and sqrt

used here is highly optimized for the ST231, full special-

ization yields significantly smaller and faster codes. In fact,

such codes are also more accurate since only one rounding

error occurs instead of two.

3http://lipforge.ens-lyon.fr/www/gappa/



References

[1] IEEE standard for floating-point arithmetic. IEEE Std. 754-

2008, pp.1-58, Aug. 29 2008.

[2] M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan

Kaufmann, 2004.

[3] C.-P. Jeannerod, H. Knochel, C. Monat, and G. Revy. Com-

puting floating-point square roots via bivariate polynomial

evaluation. Technical Report RR2008-38, LIP, Oct. 2008.

[4] J.-A. Piñeiro and J. D. Bruguera. High-speed double-

precision computation of reciprocal, division, square root and

inverse square root. IEEE Trans. Computers, 51(12):1377–

1388, 2002.

[5] S.-K. Raina. FLIP: a Floating-point Library for Integer Pro-

cessors. PhD thesis, ÉNS Lyon, France, 2006.

[6] M. J. Schulte and K. E. Wires. High-speed inverse square

roots. In Proceedings of the 14th IEEE Symposium on Com-

puter Arithmetic (ARITH-14), pages 124–131. IEEE Com-

puter Society, 1999.


