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Thermal conductivity for a chain of anharmonic
oscillators perturbed by a conservative noise

Cédric Bernardin

Abstract We consided-dimensional chains of (an)harmonic oscillators we pértur
by a noise conserving energy or energy and momentum. Wewdtie thermal
conduction properties we obtained for these systefhs [i]ifil, [Bl) and conclude
by several open questions.

1 Introduction

The derivation of phenomenological laws from a microscagscription of the
matter is one of the goals of statistical mechanics. Amomgntirourier’s law is
probably one of the simple: when a small gradieiit of temperature is applied to
a material, in the steady state, the energy flug proportional to the gradient of
temperature

J=—k0OT

The proportionality coefficiert is called the thermal conductivity. Despite its sim-
plicity and the interest it has in the physical and mathecahtiommunity the deriva-
tion of Fourier’s law from a microscopic model remains onéhaf main open ques-
tion of nonequilibrium statistical mechanic§ ([1 1T, J1HTH]).

In insulating crystals heat is transported by lattice Milores, and since the pio-
neering work of Debye, systems of coupled anharmonic asoit have been used
as microscopic models for heat conduction. They are clalssistem of particles
interacting through a nearest neighbour interaction giatevi and which are in an
external potentialV. The Hamiltonians# is given by
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wheremy, gy, px denotes the masse, position and momentum of the particke wit
equilibrium positionx € A.

Itis well known that harmonic chains, because of their ingilyimany conserved
quantities, have infinite conductivity and do not obey Fersilaw (]). This be-
cause phonons can traverse ballistically along the chais.dften expected that
enough strong nonlinearity or disorder (like the presericarmdom masses) causes
scattering between phonons and should imply a sufficieay decay of correla-
tions for heat current and hence a normal conductivity. Andgis treatment of a
nonlinear system, even the proof of the existence of the wciivty coefficient,
seems to be out of reach of current mathematical technidudhis context the
understanding of the coupled effect of nonlinearity andwisr is a challenge.

The situation is in fact more complex. In some low dimensiegatems § < 2)
anomalous thermal conductivity is observed numericaltyexperimentally in nan-
otubes technology. The anomalous conductivity in low disi@mhas attracted a lot
of attention in the literature, and it has been suggesteadtreservation of momen-
tum is an importantingredient. There is no agreement, gt@aidly and numerically,
about the exact dependance of the conductivity with thecfizlee system {E]I?]).

Hence it makes sense to look at simple models which incotptia important
features that one believes are necessary to see normaddranghe main difficulty
in Hamiltonian dynamics with a large number of degrees oédmm is to show
that they behave ergodically, e.g. that the only time irar@rmeasures locally ab-
solutely continuous w.r.t. Lebesgue measure are, for tefinextended spatial uni-
form systems, of the Gibbs type. For some stochastic lagéses it can be proven
but it remains a challenging problem for Hamiltonian dynesniTaking advantage
of mathematical techniques developed in the hydrodynamitslcommunauty we
introduce hybrid models between purely Hamiltonian systand purely stochastic
models which remain mathematically tractable but are saffity close to realis-
tic systems to reproduce at least qualitatively what is nkeskfor these systems.
We consider chains of oscillators perturbed by a stochastise conserving en-
ergy or energy and momentum. These stochastic perturlsadi@nhere to simulate
(qualitatively) the effective (deterministic) ergodicitoming from the Hamiltonian
dynamics.

The paper is organized as follows. In sectﬂ)n 2 we introduo@del of coupled
oscillators perturbed by a noise: the first noise consembsamergy and the second
one conserves energy and momentum. In seﬂion 3 we reviearliesponse theory
and Green-Kubo formula. Sectifh 4 is devoted to the studyobigén of oscillators
with the noise conserving only energy. For the harmonic hgenous harmonic
chain we show Fourier’s law is valid and compute the conditgtiFor anharmonic
chains we provide lower and upper bounds. The effect of desois considered
in subsectio3. Then we consider the energy-momenturseceing model in
sectior{p and show that in the homogenous harmonic case kdokea of Fourier's
law holds for low dimensional momentum conserving systeWis.provide also
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upper bounds for the conductivity in the anharmonic casectvelude the paper
by open question in secti([h 6.

Notations: The canonical basis @ is noted(e;, e, . .. ,&4) and the coordinates
of a vectoru € RY are notedu?,...,u%). Its Euclidian normu| is given by|u| =
V(U2 + ..+ (ud)2 and the scalar product afandvis u-v.

If N is a positive integeﬂTﬁ denotes thel-dimensional discrete torus of length
N and we identifyx = x+kNg foranyj=1,...,d andk € Z.

If F is a function fromzd (orTﬁ) into R then the (discrete) gradient Bfin the
directione; is defined by(Ug F)(x) = F(x+€j) — F(x) and the Laplacian of is
given by(AF)(x) = 35, {F(x+e€)) + F(x—ej) — 2F (x)}.

2 The models

In this section we introduce deterministic nonlinear ckan a multidimensional
lattice perturbed by a stochastic noise. The stochastimiations are such that
they exchange momentum between particles with a local randechanism that
conserves total energy or total energy and total momentum.

2.1 Closed system

We first consider the closed system with periodic boundanditions. The atoms
are labeled by € ’}lﬂ. Momentum of atonx is px € RY, its displacement from its
equilibrium position isgx € RY and its mass isn, > 0. The configuration space is
given by Qy = {(gx, px) € R4 x RY; x € T }. The Hamiltonian is given by

|2

%: Z |2pX

d
xeTy

1
+W(ax) + > V(qx—qy)] )
ly—x=1

We assume that andW have the following form:
d , , d .
Vig—ay) = > Vi(g—a)),  W(a) =y Wi(o)-
=1 =1

and thatvj,W; are smooth, non-negative and even. We ¢athe interaction poten-
tial, andW the pinning potential. The case whé&ke= 0 will be called unpinned.
In the sequel we will refer to thex, v)-harmonic case

Vi =ar2, Wi(@) =ve®, a>0, v=0 (1)
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for which explicit and generic results can be obtained.
The generatazy of the dynamics is defined by

N =9GN+ YN
where is the Liouville operator corresponding to the Hamiltoni&f

="y {Op I O, — O I - Op, }
X

and .7 is the generator of the Markovian noise. The paramgterO regulates
the strength of the noise. It acts only on momenta and is .Idtabnsists in an
infinitesimal exchange of momenta preserving some consenviaws. The first
conservation law we impose is the energy conservationeShenoise acts only on
momenta it is equivalent to require conservation of kinetiergy. This corresponds
to the so-calledenergy conserving noist we require also the conservation of total
momentum then we get a second noise we calleihergy-momentum conserving
noise Let us denotex = px/,/Mx. In the homogeneous casg = 1, 1§ = py.

The two noises have the following form

X' J
1=1xzeTg,
[x—2|= 1

-l>|H
™M e

WhereX is equal to o , .

for the energy conserving noise and equal to
dei:("z T&)(an'—an; (m,— 1) (9

for the energy-momentum noisedf> 2. If d = 1 in order to conserve total momen-
tum and total kinetic energy, we have to consider a randomange of momentum
between three consecutive atonﬁ; I2D.

The interpretation of the vector fields is the following. Tedpecific we takd =
1 and consider the energy conserving noise. In this Easexx,;al = (Tht10m —
T&0r,,)- Observe thaXy is the vector field tangent to the cirdlg = { (7%, 75..1); T+
2., = 1} so thatX? generates a diffusion 0. In fact it is nothing else than a
standard Brownian motion on the circle. The generatfrcorresponds to a sys-
tem of coupled Brownian diffusions preserving the kineﬁe@yzxem |%|2. The
energy-momentum conserving noise is defined by a similazgatore but the sur-
faceCy has to be replaced by the surface of constant kinetic enerdycanstant
momentum. In dimension 1, this surface is reduced to a poidtieexplains why
we have to consider a three-body interaction.

Because the noise conserves energy, a family of stationanglations invari-
ant probability measures fo#y is given by the Gibbs measures. In the energy
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conserving case they are parametrized by inverse tempefts T-1 and in the
energy-momentum conserving model by inverse temperfaed mean momen-
tum average. We denote the Gibbs measure with inverse tempergterd ~ and
zero momentum average fpy 1. It is given by

pnr (dgdp) = Z,, T exp(—Bo%)dqdp

whereZz, ;1 is the partition function. Expectation with respeci@r is denoted by
(-)n,T. Remark that ifL?(uy ) the Hamiltonian vector field#y is antisymmetric
and the noise7y is symmetric.

2.2 Open system

We now consider the case where the system is in contact wéthmid baths at
different temperature$, and T,. Thermal baths are given by Ornstein-Uhlenbeck
processes with the corresponding temperature. To simpdifgtions we takd = 1.
The configuration space is now given gy = {(px,ax) € RxR; x=1,...,N}. The
generator of the evolution has the form

~ N ~ ~
D%N - Z {dpx% . aqx — (3qxjﬁ\| . apx}
x=1

N-1 1 1
+ S G242 (108 pad) + 5 (1003, — Prud)
x=1
We have to specify boundary conditions feff,. For example one can define

|F>><|2 1
IR = Z +W (ax) + > Z V(ax—ay)
[y—x=1

with gp andqy 1 fixed.

Even if one can prove there exists a unique stationary pibityabheasure(-)y ss
for the process, there is in general no formula to expresghie. only case where
one knows(-)y ss is the equilibrium cas&, = T, = T where the stationary measure
is given by the Gibbs measure at temperafwr®therwise the probability measure
(-)nssis called anonequilibriumstationary state.

3 Thermal conductivity and linear response theory

In this section we review briefly linear response theory anek@-Kubo formula for
thermal conductivity. Derivation of the Green-Kubo formus$ heuristic and even
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its (mathematical) existence is a challenging problem.dRbuspeaking Green-
Kubo formula is the space-time variance of the total curagequilibrium. Thermal
conductivity is a transport coefficient defined by considgithe system out of equi-
librium. Linear response theory express the fact that ifteraturesl, andT,; are
different but close then a linear approximation is valid #imel thermal conductiv-
ity k(T) is equal to the Green-Kubo formuk®X(T). Such a formula belongs to
the family of fluctuation-dissipatiortheorems since it relates dissipation (i.e. the
thermal conductivity) to fluctuations (i.e. fluctuationstioé total current).

Defining the energy of the atoras

V(ay —ax)
yily—x=1

NI =

1
&= ﬁpg( +W(ax) +

the energy conservation law can be read locally as

d

&x(t) — 6x(0) = Z (JX,%X([O,'[]) - Jx,x+e,<([oat]))

=1

>

whereJxx1¢ ([0,t]) is the total energy current betwegrandx + e, up to timet.
This can be written as

Jixre ([0:1]) = /Ot Jxxte (S) S+ My xig (1)

Inthe aboveMy ¢, (t) are martingales that can be written explicitly as 16 ststic
integrals.
The instantaneous energy currepig, ¢ satisfy the equation

d
INEx = Z (J‘qu(,x— jx,x+q<)
k=1

and it can be written as

Ixxte = j>e<l,X+<-:1< + Vji,x+q< (2)

The first term in K]Z) is the Hamiltonian contribution to theeegy current

, 1 Thig Tk
fea—Liacn -0 (B2
b il
13 Mo T8
= (Ghs,— ) (TJF?
ZZ n"X‘/FQ( ud

while j3,. ¢ is the noise contribution.
For the energy conserving noise we have



Thermal conductivity for a perturbed nonlinear chain 7

aia, =~ gl
In the energy-momentum conserving case] in 2, it is
J->S<,><+eK = _Dek|7'5<|2
andind=1is
Jxxrr =— 00 (T& 1, T, Ty 1)
¢ (751, T8, Th 1) = é[rcf+l+4nf+ TC g+ ThyaTh 1 — 27 1Tk — 27K T 1]

The particular form ofj® is not very important. What is relevant is the fact that
j>s<,x+a< is adiscrete gradientle, ¢ of a local functiong. It means a weak form of
Fourier’s law is valid at the microscopic level as soon as ae K@lateg to the
(macroscopic) local temperature. Observe that it is not#se for the Hamiltonian
part of the current and one of the main difficulties is to espljé as the sum of a
discrete gradient and a small term (s@ (20)).

3.1 Nonequilibrium setting

We consider the system out of equilibrium (see subse)wiﬂ.contact with two
heat baths at different temperatufigandT, in the first direction. The conductivity
K(T) is defined by the thermodynamic limit

. . <j0,el>N,ss
K(T)=plim_lm =5

We have seen in the introduction one expects that for one \woddimensional
systems conserving momentum such a limit is equal to infihitprder to estimate
this divergence one can study the finite size thermal comndtyct

o . <j0,e1 > N,ss
=TT ©

Under suitable conditions his quantity is well defined evangurely Hamiltonian
chains but it is not straightforward. It is often expecteatth

’\IlianKN(T) =k(T)

but it is not obvious since there is an exchange of limits.
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3.2 Green-Kubo formula

The difficulty arising in the study of (T) is that we have no explicit representation
of the nonequilibrium stationary statey <. SinceT; andT, are close it is suggestive
to use a perturbative approach to comput€).

Performing a first order development in the stationary states we get that

K(T) = Kk®(T)

where the Green-Kubo formula for the conductivit§< (T ) is given by ([2B], pp.
188-190)

KSK(T) = fim im - 3 Eurldua (0% 0] (@

HereE, ; indicates the expectation with respect to the equilibriymednics starting
with the Gibbs measure - >y at temperaturd . This definition itself is formal
since we have to prove existence of the limits.

By standard stochastic calculus and a time-reversal argu(@) one can es-
tablish the following equality

7 3 Br (o0 oy (0.1)

— (2T2N%) YEy ([Z /; Ji‘,x+e1(s)dsr> +§

Here the termy/d is due to the presence of the noise. This is the first term
which is of interest. In view of the Green-Kubo formula theoaralous behavior
of the conductivity should appear in a slow time-decay ofitme correlation of the
(Hamiltonian part) of the current.

Let us denote

(5)

~ -a
Jo = z Ixx+e
X€TY

In order to study the large time behavior of

t 2
C(t) = im On(t), Cn(t) = (2TANY) By <[/O 3e1(s)ds] )

we study the asymptotics &s— o and themt — 0 of the Laplace transformy(A)
of tCy (t)

Sn(A) = /(;me*“tcN(t)dt

By stationarity and integration by parts, we have
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1 1)
EN(A) = W/O dte MEy [Je, (t)Je, (0)]

Denote byd““N the semigroup generated % and remark thade, (1) = ethfjel
then

1
En(A) = W@ela (A —A) Jenr (6)

A normal finite conductivity corresponds (in a Tauberiansggrto a positive
finite limit of A28y (A) asN — o and themd — 0. In this case, the conductivity
K(T) should be equal to the following form of the Green-Kubo folanu

KSK(T) = y/d +/{im0,\llimmN*d<3el, A —A) e (7)

No general argument gives the existence of the Iimitﬂin i) ia ﬁ) nor that if
they exist they are equal.

Observe that Green-Kubo formu@ (4) predicts only the vafuitbe thermal con-
ductivity K (T) (defined in the nonequilibrium setting). If the thermal coativity
is infinite it says a priori nothing about the behavior of theté size thermal con-
ductivity kn(T) defined by KB). To overcome this problem we definetthacated
Green Kubo formulédoy

.N 2
KN (T) = (2TN%y) By ([Z/Ot jg,x+e1(s)d3} ) —I—g

wherety = N/vs with vs the sound velocity defined by
Vs = iI(iLr}kal w(K)|

and where

d 1/2
w(k) = < > W'(0)+4v"(0) sinz(nkj)>
=1

is the dispersion relation of the approximated linear systéhis definition of the
conductivity of the finite system is motivated by the folloi consideration: in
the harmonic case the finite size thermal conductixityT) can be obtained by
this truncation technique (in a rigorous way) and we expleistis still valid for
the anharmonic chain. In the linear interactions appro&ionalyw(K) is the group
velocity of thek-mode waves, which are the heat carriers, and typieallyan upper
bound for these velocities. Consequeritlyis the typical time a lowk (acoustic)
mode takes to cross around the system once@ee[l?]). Tiypigas of order one
and we will takevs = 1 in the sequel.
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4 Energy conserving model

In this section we state the results obtained for the eneogygarving noise. As
expected one can not obtain infinite conductivity for thisdelosince momentum
is not conserved. In the homogenous harmonic case one cempxplicitly the
Green-Kubo formula®X(T) and also the conductivity(T) in the one-dimensional
unpinned system. It turns out thafT) = k®X(T) so that predictions of linear re-
sponse theory is valid although the proof does non use fative arguments. In
the anharmonic homogenous case one can establish lowerpaed bounds for
kCK(T) indicating a positive finite conductivity. The proof of therwergence of
the Green-Kubo formula in the anharmonic case remains dfferare also inter-
ested in the effect of disorder (random masses) in the emermgerving model. This
is the contain of subsectidn 4.3.

4.1 Homogenous harmonic chain

Here we consider the homogendus v)-harmonic case[kl) with all masses equal
to 1.
Let us define

o ( 40?59 sir?(nE)) )dfl...dfd
gefo,d

v+4a ¥l sinf(mél)

We have the following theorem

Theorem 1. k®K(T) defined by|ﬂ4) is finite (pinned or unpinned) in any dimension
and given by

Proof. Recall @S). A simple but crucial computation shows that
1~ Je
A—A) e = ——
( N) Je A +y

LetDn = Dn(a, V) be the constant

o

Dy =T *a? § (o, — o) Inr = '
N 2 (G =0 Inr = g v+4a 35S sirt(rE) /N)

1 < 4a2ySsinf(mg1/N) )
EeTy,

One computes easily lik.»(Je;, Je, )N,7 @nd after inversion of the Laplace trans-
form, one gets

Cnt) =~ <1+ %(1— e“))
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Then theorem follows.

Observe that if the noise becomes weaker {i.e> 0), we obtain a purely ho-
mogenous harmonic chain and the thermal conductivity igitefi

In the following theorem we study the one-dimensional unpohsystem in con-
tact with two heat baths at temperatiiy@andT,. We show that conductivity is finite
and coincides with the Green-Kubo formula. The proof remaalid in any dimen-
sion and with or without pinning as soon as we are able to prev&llowing bound

vxe {1,....N}, (8Jnss<C 8)

whereC > 0 is independent dfl. Unfortunately it has been proved only in the one
dimensional unpinned case.

Theorem 2. [B] Consider the one dimensionédr, v)-harmonic casg 1) with = 0.
Foranyy >0

AN < s >= (= y7) (Te =) 9

Hence we have(T) = k®K(T)=a(y+y 1)

The proof of this theorem can be found EI] [8]. It is based omagyt production
bounds and use an explicit decomposition of the curjgnt; as the sum

Jxxr1 = U@+ Znhy (10)

wherehy, ¢ are two explicit local functions and is the discrete gradient. Hence
the current is the sum of a dissipative part (a spatial grapland a fluctuating part
(a time derivative). For this reason we call this equationieroscopic fluctuation-

dissipation relation([H],[f],[§]).

4.2 Homogenous anharmonic chain

The introduction of nonlinearity in the Hamiltonian dynasicomplicates consid-
erably the problem. We do not have any proof of the existeng&8(T) nork (T).
At least we have estimates which indicate that a finite $grfmpsitive conductivity
is expected. By strictly positive we mean that the Hamildoncontribution to the
Green Kubo formula (the second term [h (7)) is strictly pesitthe termy/d being
only due to the noise and of no interest for the study of cotidngroperties of the
underlying deterministic dynamics. We consider the (fdjr@aeen-Kubo formula

@.

Proposition 1. Assume that
N7d<3617561>N,T <C

with a constant C independent of N. Then there exists a pesitinstant Cinde-
pendent of N such that for any> Oand N,



12 Cédric Bernardin
N7d<3e1a (A _ZN)71361>N,T <C (11)

Observe that the assumption done in this proposition israbtéund is satisfied
for reasonable potentialds W (see )). This shows that if Green-Kubo formula
(@) converges ther®K(T) is finite.

Proof. Introduce the following so-called; , andH_; , norms defined by
[ f“il,)\ = (£, (A =y ) fnr

We have the following variational formula[[[G])
(e (0 =) s = SUp{ 2(3ey U = Ul — | 1 }
To obtain the upper bound we forget the tdrmNuHEl‘/\ and we get

(Jer, (A — ) e dnr < SHP{2<5617U>N>T - ||U||§,A}
It is well known that
sup{2(3ey thr — Ul } = (Ferr (4~ V740 ey

and a simple computation shows that
1~ Jey
A—YIN) e = —
( Y- N) Je A+ y

We are left to prove that
N7d<3617561>N3T <C

with a constan€ independent oN. It is exactly our assumption.
We expect also a lower bound of the form
CH<N U ey, (A — L) e )nr

with C > 0 independent ok andN.
The strategy to prove such a lower bound is straightforwasdhave to find a
good test functiomwy, and show that

N {203 Vit = Va2 = lohoval21p b = C 7

Unfortunately we are not able to prove this lower bound fanegalV andW
but only for unpinned system®/{ = 0) in d = 1. We notery = gx;1 — Ox. Then
the p’s and ther’s are independent variables under the Gibbs measure. Some
conditions orV are imposed
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Var(V”(rg)) <C, Var(V'(rg)) <C

with C > 0 and Va(F(ro)) is the variance (independent N of F(rg) under the
Gibbs measuré )y r.

Proposition 2. Under the conditions above there exists a positive con§taintde-
pendent of N and such that

C' <N HFe, (A — A) e nr
Proof. We choose

Vna = —az px(V'(rx) +V'(rx-1)) = 2aJ¢

X

with a > 0 we will precize later. We have

g = -8y Pz (V" (rx-1) —V"(ry))
X

Let G, n(2) the solution orily of
(A —yA)Gyy = (")
Observe that (p2) = A(p2) then we get

(A = y:A) (v =—aZGNA (x=2)pZ (V" (rx-1) —=V"(rx))

It follows that

BT EPET- > G n(X=2)(pgPZ (V" (ry—1) = V" (ry)) (V" (rx-1) = V" (rx)) It

X,\y,Z
Observe now the Gibbs measuyri, 7 is product. Then an easy computation shows
a1, = NTVar(V"(ro))(AGy.)(0)

By discrete Fourier transform we have

4sirf(mk/N
(AGy,)(0 N Z /N) -1
& A+ 4ysir?(krr/N) —
On the other hand we have
2(Jey, Vvt — [via l15.5

= 4a(Je;, Jey Inr — 48 (Jey, (A — VIN) ey It
5 5 >N,T — 43-2(/\ + V)<5e1,3e1>N>T
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because/nJe, = —Je,. By a simple computation we have
(Jer, Jer )T = ANTVar(V'(ro)) 12)
If ais sufficiently small we get
N"4Jep, (A = L) ey hur 2C 7

with C > 0 independent d andA .

4.3 Disordered harmonic chain

In this subsection we are interested in the effect of disoatethe thermal con-
ductivity properties. The simplest way to introduce randess is to assume that
masses of atoms can vary from site to site according to a raiségquence. We first
review basic facts for deterministic chains with randomseasAs it is well known,
the presence of disorder generally induces localizatidhehormal modes and one
can expect to have a perfect thermal insulatexg T) — 0). The only analytically
tractable model is the one dimensional disordered harnaram (DHC). Surpris-
ingly the behavior of the thermal conductivity depends oarmtary conditions and
on the properties of the thermosta[l@ [22]). Thisousiphenomenon has been
studied in ] (see aIscEIZl]) in a more general setting andrns out that "the
exponent [ofky] depends not only on the properties of the disordered cliseif,i
but also on the spectral properties of the heat baths. Faiadpghoices of baths
one gets the "Fourier behavior” . If we add a pinning potehith the DHC ,kn(T)
becomes exponentially small k.

Recently, Dhar and Lebowitz6]) were interested in tHeafof both disorder
and anharmonicity. The conclusions of their numerical $ations are that the in-
troduction of a small amount of phonon-phonon interactiorthe DHC leads to a
positive finite thermal conductivity.

We consider now théa,v)-harmonic chain with random masses and energy
conserving noise. The noise should simulate in some semdmearity effects and
in view of the numerical simulations df [lL6] one would exptiet model to become
anormal conductorkn(T) — k(T) with k (T) finite and positive. We are not able to
obtain interesting informations fer(T) but only fork ©X(T). Hence the behavior of
the thermal conductivity is studied in the linear respohsety framework by using
the Green-Kubo formula. Behavior of the conductivity defitlerough Green-Kubo
formula has not been studied for DHC. It would be interestimgnow what is the
order of divergence of the latter. For the perturbed DHC wiiobuniform finite
positive lower and upper bounds for tdedimensional finite volume Green-Kubo
formula of the thermal conductivity with or without pinnir@heorerrﬂS) so that the
thermal conductivity is always finite and positive. In peutar it shows the presence
of the noise is sufficient to destroy localization of eigemdtions in pinned DHC.
Linear response approach avoids the difficulty to deal witl@equilibrium setting
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where effects of spectral properties of heat baths couldldficulties as in the case
of purely DHC. In the nonequilibrium setting, we expect thiatce the Green-Kubo
formula for the thermal conductivity of the perturbed DH@@&ns finite, it will not
depend on the boundaries.

Theorem 3. [E] There exists a positive constant€0 independent ok and N such
that

C !t <liminfliminf [ e "N 9Ey1[Je (t), Je, (0)]dt

<limsuplimsup [ e "N 9Ey+[Je (), Je (0)]dt <C
A—0 N—oo 0

Proof. The proofis similar to what is presented in subsedtioh 4 #hfeanharmonic
case.

A priori the Green-Kubo formula®K(T) depends on the particular realization
of the masse§my}. But a formal argument|§[6]) suggests that if masses are dis-
tributed according to some stationary ergodic probabitigasuré®* thenk®K(T)
depends only on the statistics of the masses and not on ttieytear realization of
the disorder. One can write formally an infinite Green-Kuboogenized formula
Knhom (T) obtained by averaging over the masses. In order to defing(T) one has
to consider the infinite volume dynamics with generatdigiven by

d .
£ = z {apx% ’ 0C|x - afb(% ’ apx} + yi j%: z (X>I<:>J<+9K)2

xeZd 1xezd

and

2
A= 2o (an—vycq

xeZd

Observe that the sums are taken o#ér One can show that the dynamics with
generator? is well defined. Then we have

K (T) = y/d+ lim & l [ dte™ 3 Er[ife Onide 0)

ze74d

wheret; denotes the shift on the configuration spaceEpds the expectation cor-
responding to the infinite dynamics starting from the inéniblume Gibbs measure
with temperaturd .

Theorem 4. [E] Assume that{my} is stationary undeiP* and there are positive
constants nandm such that

P*m<m<m)=1

The Hamiltonian contribution to the homogenized Greenddbmula for the ther-
mal conductivity X (T) — y/d

hom
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Kom (T) = v/d = lim " UO dte Y By [j§e, ()28, (0)]

ze7d
exists, is positive and finite.

Proof. The proof is based on functional analysis argumefiks ([4]. [H]).

5 Energy-momentum conserving model

We investigate the same problems as in the previous seatibfobthe chain per-
turbed by the energy-momentum conserving noise. Momerduinen conserved by
the total dynamics if it is conserved by the Hamiltonian dyias which is the case
if and only if the system is unpinned. Dramatic consequeitésv dimensional
systems appear. In fact we prove that for unpinned systetisha&rmonic interac-
tions, thermal conductivity is infinite in 1 and 2 dimensipwhile is finite ford > 3
or for pinned systems. So thermal conductivity in our modddyves qualitatively
like in a deterministic nonlinear system, i.e. these stetibanteractions reproduce
some of the features of the nonlinear deterministic hamgto interactions.

For anharmonic systems, even with the stochastic noiserevecd able to prove
the existence of thermal conductivity (finite or infinitef)tHe dimensiord is greater
than 3 and the system is pinned, we get a uniform bound on the §iize system
conductivity. For low dimensional pinned systerds 1, 2), we can show the con-
ductivity is finite if the interaction potential is quadm@tnd the pinning is generic.
For the unpinned system we have to assume that the interdmitoveen nearest-
neighbor particles is strictly convex and quadraticallyhded at infinity. This be-
cause we need some informations on the spatial decay oflatiores in the sta-
tionary equilibrium measure, that decay slowly in unpinagstem. In this case, we
prove the conductivity is finite in dimensiah> 3 and we obtain upper bounds in
the sizeN of the system of the forryNin d = 1 and(logN)? in d = 2 (see Theorem

0.

5.1 Homogenous harmonic chain

Consider first the homogenous, v)-harmonic case[tl) with all masses equal to 1.
In [[.[B], we obtained the following theorems.

Theorem 5. [P] In the (a,v)-harmonic case[{1), the limit defining®<(T) exists.
It is finite if d > 3 or if the on-site harmonic potential is present £ 0), and is
infinite in the other cases. When fink€X(T) is independent of T and the following
formula holds

1 (Gaw)?(k) .y
/[0,11d

K= grdy TR
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wherew(k) is the dispertion relation

p 1/2
k) = 4 i (k!
w(k) <v+ aJlel ( ))

and
(k) = 8y si(mkl), if d>2
il = 4/3 sirf(nk)(142cod(nk)), if d=1

Consequently in the unpinned harmonic cases in dimemkied and 2, the con-
ductivity of our model diverges. We have the following beloafor the truncated
Green-Kubo formula.

Theorem 6. [B] In the harmonic case, if W= O:

1. kSK(T) ~NY2ifd =1,
2. KGK(T) ~logN ifd = 2.

In all other casex$K is bounded in N and convergest&X(T).

The interest of these theorems is that they show energy-miumeconserving
model reproduces the expected behavior of purely Hamdtomionlinear chains,
meaning an infinite conductivity for low dimensional unpéasystems and a finite
conductivity otherwise. Several microscopic stochasticleis have been proposed
in the past but none of them has this property with respectatmentum conserva-
tion and dimension.

The strategy of the proofis very similar to the proof giventfee energy conserv-
ing model. Recall|]7). Then the problem is reduced to soleadisolvent equation

AUy — ANUnp = Jey

Solving explicitly such an equation is in general very diffic The key property of
A is that for quadratic potentialé andW it sends a polynomial function qgf's
andg's of degreek to a polynomial function of the same degree. Sigegis of
degree 2y ) has to be searched in the smaller space of polynomial furstid
degree 2. Moreover the translation invariancggfimplies thatuy , is in the form

Una =Y fNa(X=Y)Px By + Y hua (X=Y) G- Gy + > O (X—Y) Px- Gy
Xy Xy Xy

wherefy »,9va andhy, are functions fromllﬂ to R. Then we obtain linear equa-
tions for fyx,gna @andhy,. It turns out thatfy , = hy x = 0 and thagy , is simply
related to the Green function of a symmetric simple randok wa’]Iﬂ. Then one
computes easily

<UN./\,391>N.T

and we get the result.
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5.2 Homogenous anharmonic chain

For the anharmonic chain we are not able to solve the resodegration
AUyy — LNUnp = Je

Nevertheless we can use the same strategy as the one edrjra'mﬁ)sectio.z.
We introduce a variational formula to estimate by above

<UN./\,391>N.T

Extra assumptions on the potentigsandW assuring a uniform control on the
canonical static correlations have to be done. We have timg@ as soon a¥ is
strictly convex. In the pinned cas¥ > 0, this control is “morally” valid as soon
as the infinite volume Gibbs measure is unique. Exact assongpare given in
[E], theorem 3.1 and theorem 3.2. Hence "general anharncase” will refer to
potentialsv andW such that this control is valid.

Theorem 7. [E] Consider the general anharmonic case. There exists atzon C
(depending on the temperature T) such that

e Ford> 3,

1. either W > Qiis general
2.orifWj=0and0<c_ SVJ-” < C, < wforany j,

then
kS (T) <C.

e Ford=2,ifWj=0and0<c_ SVJ-” <C, <o forany j, then
KK(T) < C(logN)2.
e Ford=1ifWj=0and0<c. <V <C; <,then
KK (T) <CVN.

e Moreover, in any dimension, ifjVare quadratic and \W> 0 is general then
kX (T) <C.
6 Open questions

In this section we mention several open questions. Fronpttadbébly) easier to the
most difficult we have:
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e Prove E3) in thed-dimensional linear pinned or unpinned case. It should be al
valid in the nonlinear case.

e Consider the energy-momentum conserving model with liirgaractions. We
have studied the thermal conductivity in the Green-Kubafaork. Consider
the same system but in contact with thermal baths at difféesnperatures. Can
you say something abouiy(T) ? We expect it diverges like/N (resp. log\)
for d =1 (resp.d = 2) in the unpinned case and converges in the other cases
to a finite positive constant. In fact a similar unpinned aim@ensional model
has been considered 1$I[18] and numerical and analy(iwt not rigorous)
results confirm this conjecture.

e Consider thda,v)-harmonic case with random masses and energy conserving
noise. Can you say something about the temperature depmdﬁq?o'fn ? Can
you prove the almost sure convergence (w.r.t. disordef@iGreen-Kubo for-
mula to the homogenized Green-Kubo formigfgf<, ?

e Consider th€a, v)-harmonic case with random masses and energy-momentum
conserving noise. We have still upper bounds for the triett&reen-Kubo for-
mula similar to the one obtained for the homogenous nonlicleain in theorem
El. Can you obtain lower bounds? In particular do you have @&ip@sonductiv-
ity for pinned chains ?

e Can you prove convergence of the Green-Kubo formula forineal chains with
energy conserving noise ?

e Consider an homogenous nonlinear chain with energy-mameigbnserving
noise. Can you obtain (non trivial) lower bounds for the tated Green-Kubo
formula ? Can you prove convergence of the Green-Kubo farnmdimension
d > 3 or for pinned systems ? Interesting and surprising nuraksimulations
are provided in[[B].

e Consider an homogenous nonlinear chains with energy-mameconserving
noise in contact with two thermal baths at different tempees. Can you say
something aboutn (T) ?

e Consider a nonlinear chain with energy-momentum consgmnamse and random
masses. Can you say anything abe(f) or kX(T) ?
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