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On monohromati arm exponents for 2Dritial perolationVinent Be�ara, Pierre NolinÉole Normale Supérieure de Lyon,Courant Institute of Mathematial SienesAbstratWe investigate the so-alled monohromati arm exponents for ritialperolation in two dimensions. These exponents, desribing the proba-bility of observing j disjoint marosopi paths, are shown to exist andto form a di�erent family from the (now well-understood) polyhromatiexponents.1 IntrodutionPerolation is one of the most-studied disrete models in statistial physis. Theusual setup is that of bond perolation on the square lattie Z
2, where eah bondis open (resp. losed) with probability p ∈ (0, 1) (resp. 1 − p), independently ofthe others. This model exhibits a phase transition at a ritial point pc ∈ (0, 1)(in this partiular ase, pc = 1/2): For p < pc, almost surely all onnetedomponents are �nite, while for p > pc there exists a unique in�nite omponentwith density θ(p) > 0. Site perolation is de�ned in a similar fashion, thedi�erene being that the verties are open or losed, instead of the edges; onean then see it as a random oloring of the lattie, and use the terms blak andwhite in plae of open and losed.The behavior of perolation away from the ritial point is well understood,however it is only reently that preise results have been obtained at and nearritiality. For ritial site perolation on the regular triangular lattie, the proofof onformal invariane in the saling limit was obtained by Smirnov [15℄, and

SLE proesses, as introdued by Shramm [13℄ and further studied by Lawler,Shramm and Werner [8, 9℄, provide an expliit desription of the interfaes (inthe saling limit) in terms of SLE(6) (see e.g. [17℄).This desription allows for the derivation of the so-alled polyhromati armexponents [10, 16℄, desribing the probability of observing onnetions arosslarge modulus annuli by disjoint onneted paths of di�erent olors (with atleast one arm of eah olor), and also the derivation of the one-arm exponent.Combined with Kesten's saling relations [7℄, these exponents then provide theexistene and the values of most of the other ritial exponents, like e.g. theexponent β = 5/36 assoiated with the density of the in�nite luster: As p ↓ pc,
θ(p) = (p − pc)

5/36+o(1).1



On the other hand, very little is known onerning the monohromati armexponents (i.e., with all the onnetions of the same olor � see below fora formal de�nition) with more than one arm. Here, the SLE approah doesnot seem to work and, orrespondingly, there is no onjeture for the values ofthose exponents. One notable exeption however is the 2-arm monohromatiexponent, for whih an interpretation in terms of SLE(6) is proposed at theend of [10℄ � but again no expliit value has been omputed. That partiularexponent is atually of physial interest: Known as the bakbone exponent, itdesribes the �skeleton� of a perolation luster. Even the existene of theseexponents is not lear, as there does not seem to be any diret sub-additivityargument.In this paper, we prove that the monohromati exponents do exist, andinvestigate how they are related to the polyhromati exponents. We showthat they have di�erent values than their polyhromati ounterparts. As anillustration, our result implies that the bakbone of a typial large perolationluster at ritiality is muh �thinner� than its boundary.AknowledgmentsWe are indebted to J. van den Berg for pointing us out inequality (2.5). We arealso very grateful to W. Werner for many stimulating disussions.Part of this researh was realized during a semester (resp. year) spent by P.N.(resp. V.B.) at Université de Genève, and both authors would like to thankthe mathematis department there for its hospitality, in partiular StanislavSmirnov. P.N.'s visit was made possible by the NSF grant OISE-07-30136.2 Bakground2.1 The settingWe restrit ourselves here to site perolation on the triangular lattie, at riti-ality (p = pc = 1/2). Reall that it an be obtained by oloring randomly thefaes of the honeyomb lattie, eah ell being blak or white with probability
1/2, independently of the others. In the following, we denote by P = P 1/2 theorresponding probability measure on the set of on�gurations. Let us mentionhowever that all the results of ombinatorial nature based on Russo-Seymour-Welsh type estimates should also hold for bond perolation on Z

2, due to theself-duality property of this lattie.Let Sn denote the ball of radius n in the triangular lattie (i.e. the inter-setion of the triangular lattie with the Eulidean dis of radius n, though thespei�s of the de�nition are of little relevane), seen as a set of verties. Wewill denote by ∂Sn its outer boundary, i.e. the set of verties in Sn that haveat least one neighbor outside of Sn, and, for n < N , by
Sn,N := SN \ Snthe annulus of radii n and N . To desribe ritial and near-ritial perolation,ertain exeptional events play a entral role: the arm events, referring to the2



existene of a number of rossings (�arms�) of Sn,N , the olor of eah rossing(blak or white) being presribed.De�nition 1. Let j ≥ 1 be an integer and σ = (σ1, . . . , σj) a sequene of olors(blak or white). For any two positive integers n < N , a (j, σ)-arm on�gurationin the annulus Sn,N is the data of j disjoint monohromati paths (ri)16i6j �the arms � onneting the inner boundary ∂Sn and the outer boundary ∂SN ,where the olor of the arm ri is given by σi. We denote by
Aj,σ(n, N) :=

{

∂Sn 
j,σ

∂SN

} (2.1)the orresponding event.Wewill write down olor sequenes by abbreviating olors, usingB and W forblak and white respetively. To avoid the obvious ombinatorial obstrutions,we will also use the notation n0 = n0(j) for the smallest integer suh that jarms an possibly arrive on ∂Sn0
(n0(j) is of the order of j) and only onsiderannuli of inner radius larger than n0. This restrition will be done impliitly inwhat follows.The so-alled olor exhange trik (notied in [1, 16℄) shows that one �xedthe number j of arms, presribing the olor sequene σ hanges the probabilityonly by a onstant fator, as long as both olors are present in σ (an interfaeis needed to proeed). Their asymptoti behavior an be desribed preiselyusing SLE(6): It is possible to prove the existene of the (polyhromati) armexponents, and to derive their values ([16℄) whih had been predited in thephysis literature (see e.g. [1℄):Theorem 2. Fix j > 2. Then for any olor sequene σ ontaining both olors,

P
(

Aj,σ(n0(j), N)
)

= N−αj+o(1) (2.2)as N → ∞, with αj = (j2 − 1)/12.The value of the exponent for j = 1 (orresponding to the probability ofobserving one arm rossing the annulus) has also been established [10℄ and it isknown to be equal to 5/48 (oddly enough formally orresponding to j = 3/2 inthe above formula . . . ).For future referene, let us mention the following fats about ritial pero-lation that we will use.1. A-priori bound for one arm: There exist onstants C, ε > 0 suh that forall n < N ,
P

(

A1,B(n, N)
)

= P
(

A1,W (n, N)
)

6 C

(

n

N

)ε

. (2.3)2. Quasi-multipliativity property: For any j > 1 and any sequene σ, thereexist onstants C1, C2 > 0 suh that for all n1 < n2 < n3,
C1 P

(

Aj,σ(n1, n2)
)

P
(

Aj,σ(n2, n3)
)

6 P
(

Aj,σ(n1, n3)
)

6 C2 P
(

Aj,σ(n1, n2)
)

P
(

Aj,σ(n2, n3)
)

.3



These two properties atually rely on the so-alled Russo-Seymour-Welsh(RSW) lower bounds, that we will use extensively in various situations: Roughlyspeaking, these bounds state that the probability of rossing a given shape of�xed aspet ratio is bounded below independently of the sale. For instane,the probability of rossing a 3n× n retangle in its longer diretion is boundedbelow, uniformly as n → ∞. We refer the reader to [6℄ for more details.2.2 A orrelation inequalityA key ingredient in our proof will be a not-that-lassi orrelation inequalitywhih is an intermediate step in the proof of the van-den-Berg-Kesten-Reimer(BKR) inequality, onjetured in [2℄ and proved in [12℄.Let us �rst �x some notation. We follow here the lines of the review paper[3℄. Consider an integer n, and Ω = {0, 1}n. For any on�guration ω ∈ Ω andany set of indies S ⊆ {1, . . . , n}, we introdue the ylinder
[ω]S := {ω̃ : ∀i ∈ S, ω̃i = ωi},and more generally for any X ⊆ Ω, any S : X → P({1, . . . , n}),

[X ]S :=
⋃

ω∈X

[ω]S(ω).For any two A, B ⊆ Ω, we denote as usual by A ◦ B the disjoint ourreneof A and B:
A ◦ B := {ω s.t. for some S(ω) ⊆ {1, . . . , n}, [ω]S ⊆ A and [ω]Sc ⊆ B}.Reall that the BKR inequality states that

P (A ◦ B) 6 P (A) P (B). (2.4)We also denote by ω̄ = 1 − ω the on�guration obtained by ��ipping� everybit of the on�guration ω ∈ Ω, so that if X ⊆ Ω, X̄ := {ω̄, ω ∈ X}. We are nowin a position to state the orrelation inequality that will be a key ingredient inthe following, referred to as Reimer's main lemma in [3℄:Theorem 3. For any A, B ⊆ Ω, we have
|A ◦ B| 6 |A ∩ B̄| = |Ā ∩ B|. (2.5)For the sake of ompleteness, let us just mention that this inequality is notstated expliitly in [3℄. It an be dedued from Lemma 4.1 by taking X = A◦B,and S : X → P({1, . . . , n}) assoiated with A and B by the de�nition of disjointourrene, i.e. so as to satisfy [ω]S(ω) ⊆ A and [ω]S(ω)c ⊆ B for all ω ∈ A ◦ B(so that [X ]S ⊆ A and [X ]Sc ⊆ B).2.3 Statement of the resultsIn this paper, we will be interested in the asymptoti behavior of the probability

P (Aj,σ(n0(j), N)) as N → ∞ for a onstant σ, say σ = B . . .B, so that Aj,σsimply refers to the existene of j disjoint blak arms. Our �rst result showsthat this probability follows a power law, as in the ase of a non-onstant σ:4



Theorem 4. For any j > 2, there exists an exponent α′

j > 0 suh that
P

(

Aj,B...B(n0(j), N)
)

= N−α′

j+o(1) (2.6)as N → ∞.These exponents α′

j are known as the monohromati arm exponents, andit is natural to try to relate them to the previously mentioned polyhromatiexponents αj .Consider any j > 2; we start with a few easy remarks. On the one hand,the FKG inequality implies that
P (Aj+1,B...BW (n0, N)) = P (Aj,B...B(n0, N) ∩ A1,W (n0, N))

6 P (Aj,B...B(n0, N)) P (A1,W (n0, N)),and by using item 1. above, we get that, for some onstant C,
P (Aj+1,B...BW (n0, N)) 6 CN−ε

P (Aj,B...B(n0, N)), (2.7)or in other words that α′

j < αj+1. On the other hand, inequality (2.5) diretlyimplies that
P (Aj,B...BB(n0, N)) = P (Aj−1,B...B(n0, N) ◦ A1,B(n0, N))

6 P (Aj−1,B...B(n0, N) ∩ A1,W (n0, N))

= P (Aj,B...BW (n0, N)),hene α′

j > αj . We will atually prove the following, stronger result:Theorem 5. For any j > 2, we have
αj < α′

j < αj+1. (2.8)The monohromati exponents α′

j thus form a family of exponents di�erentfrom the polyhromati exponents.We would like to stress the fat that the ase of half-plane exponents (ormore generally, boundary exponents in any planar domain) is onsiderably dif-ferent: Indeed, whenever a boundary is present, the olor-exhange trik impliesthat the probability of observing j arms of presribed olors is exatly the samefor all olor presriptions, whether mono- or poly-hromati. In partiular thereis no di�erene between the monohromati and polyhromati boundary expo-nents. (For the reader's peae of mind, they an notie that the presene of theboundary provides for a anonial hoie of a leftmost arm, the lak of whih ispreisely the ore idea of the proof of our main result in the whole plane.)We will �rst prove the inequality αj < α′

j (whih is the main statement inthe above theorem, the other strit inequality being the simple onsequene ofthe FKG inequality we mentioned earlier), sine its proof only requires ombi-natorial arguments, and postpone the proof of the existene of the exponents tothe end of the paper. 5



In order not to refer to the α′

j 's, we adopt the following equivalent formu-lation of the inequality: What we formally prove is that, for any j > 2, thereexists ε > 0 suh that for any N large enough,
P (Aj,B...BB(n0, N)) 6 N−ε

P (Aj,B...BW (n0, N)).The proof of that inequality only relies on self-duality and RSW-type estimates,and hene it an be easily adapted to the ase of bond perolation on Z
2 �where the existene of the exponents, whih strongly relies on the knowledge ofthe saling limit, is still unproved.3 The set of winding angles3.1 Strit inequalities between the exponentsOur proof is based on an energy vs. entropy onsideration. The di�erene be-tween the monohromati and the polyhromati j-arm exponents an be writ-ten in terms of the expeted number of �really di�erent� hoies of j arms out ofa perolation on�guration with j arms: For a polyhromati on�guration, thisnumber is equal to 1, whereas for a monohromati on�guration, it grows atleast like a positive power of the modulus, and the ratio between these two num-bers behaves exatly like (N/n)αj−α′

j beause, for �xed disjoint arms (r1, . . . , rj)with respetive lengths (ℓ1, . . . , ℓj), the probability that they are present in theon�guration with a presribed oloring does not depend on that oloring (it isequal to 2−(ℓ1+···+ℓj)).More preisely, but still roughly speaking, the proof relies on the followingobservation: Given a on�guration where j blak arms are present, there aremany ways to hoose them, sine by RSW there is a positive density of iruitsaround the origin (allowing �surgery� on the arms � see Figure 1), while if weonsider a on�guration with arms of both olors, then there is essentially onlyone way to selet them. Of ourse the geometry of an arm is quite intriateand many loal modi�ations � on every sale � are always possible: Whatwe mean here is that this hoie is unique from a marosopi point of view.To formalize this intuition, we thus have to �nd a way of distinguishing twomarosopi hoies of arms, and for this we will use the set of winding anglesassoiated with a on�guration.De�nition 6. For any on�guration of arms, one an hoose a ontinuousdetermination of the argument along one of the arms; we all winding angle ofthe arm (or simply angle for short) the total variation of the argument alongthat arm.Clearly, the winding angles of the arms orresponding to a given (j, σ)-armon�guration di�er by at most 2π. However, for the same perolation on�g-uration, there might exist many di�erent hoies of a (j, σ)-arm on�guration,orresponding to di�erent angles: We denote by Ij,σ(n, N) the set of all theangles whih an be obtained from suh a on�guration; we omit the subsriptfrom the notation whenever j and σ are lear from the ontext. For the sake ofompleteness, we also delare Ij,σ(n, N) to be empty if the on�guration doesnot ontain j arms of the presribed olors.6



∂SN

∂Sn

∂SN

∂Sn

Figure 1: To a given monohromati on�guration orrespond many di�erent�marosopi� ways to hoose the arms, ontrary to the polyhromati ase.We will atually rather use Īj,σ(n, N), the set of angles obtained by �om-pleting� Ij,σ(n, N):
Īj,σ(n, N) :=

⋃

α∈Ij,σ(n,N)

(

α − π, α + π
]

.It is an easy remark that in the polyhromati ase (σ non-onstant), we havefor any α ∈ Ij,σ(n, N)

Ij,σ(n, N) ⊆ (α − 2π, α + 2π),so that Īj,σ(n, N) is an interval of length at most 6π. In the monohromatiase (σ onstant), no suh bound applies (and atually it is not obvious that
Īj,σ(n, N) is an interval � this is proved as Proposition 7 below).In the ase of a polyhromati arm on�guration, onsidering suessiveannuli of a given modulus as independent, one would expet a entral limittheorem to hold on the angles, or at least �utuations of order √

log N . Onthe other hand, for a monohromati on�guration, performing surgery usingiruits in suessive annuli should imply that every time one multiplies theouter radius by a onstant, the expeted largest available angle would inreaseby a onstant, so that one would guess that, by a areful hoie of arms, thetotal angle an be made of order ± log N .Fix ε > 0, and let Aε
1,B (resp. Aε

1,W , resp. Aε
j,σ) be the event that thereexists a blak arm (resp. a white arm, resp. j arms with olors given by σ) withangle larger than ε log N between radii n0 and N . Applying inequality (2.5)with A = Aj−1,B...B and B = Aε

1,B, this would imply:
P (Aj,B...BB) ≍ P (A ◦ B)

6 P (Aj−1,B...B ∩ Aε
1,W )

= P (Aε
j,B...BW ),7



and we ould expet
P (Aε

j,B...BW ) 6 N−ε′

P (Aj,B...BW )by a large-deviation priniple. However, proving this LDP seems to be di�ult,and we propose here an alternative proof that relies on the same ideas, butbypasses some of the di�ulties.Proof of Theorem 5. Step 1. First, note that it su�es to prove that the ratio
P (Aj,B...BB(n, N))

P (Aj,B...BW (n, N))an be made arbitrarily small as n/N → 0, uniformly in n: Indeed, assumingthat this is the ase, then for any δ > 0, there exists η > 0 suh that thisratio is less than δ as soon as n/N 6 η. Then, as a diret onsequene of thequasi-multipliativity property (item 2. above), we have
P (Aj,B...BB(n, η−kn))

6 Ck−1
2 P (Aj,B...BB(n, η−1n)) . . . P (Aj,B...BB(η−(k−1)n, η−kn))

6 Ck−1
2 δk

P (Aj,B...BW (n, η−1n)) . . . P (Aj,B...BW (η−(k−1)n, η−kn))

6 Ck−1
2 δk(C−1

1 )k−1
P (Aj,B...BW (n, η−kn)),and for δ = 1/(2C2C

−1
1 ) this gives

P (Aj,B...BB(n, η−kn)) 6 2−k
P (Aj,B...BW (n, η−kn)), (3.1)whih immediately implies that for some ε > 0,

P (Aj,B...BB(n, N)) 6

(

N

n

)−ε

P (Aj,B...BW (n, N)).In partiular, applying this for n = n0 (and N large enough) leads to theinequality that we need.Step 2. The key step of the proof is as follows. Given a on�guration with
j arms in an annulus of large modulus, we use RSW-type estimates to provethe existene of a large number of disjoint sub-annuli of it, in eah of whihone an �nd blak paths topologially equivalent to those in Figure 2 (in thease j = 2) or its re�etion. Every time this on�guration appears, one hasthe possibility to replae the original arms (in plain lines on the �gure) withmodi�ed � and still disjoint � arms, obtained by using one of the dashedspirals in eah of them. The new arms then land at the same points on theouter irle, but with a winding angle di�ering by 2π. This allows us to showthat, with high probability, the set of angles Ī(n, N) ontains an interval oflength at least ε log(N/n), for some ε > 0 (whih an be written in terms of theRSW estimates). We now proeed to make the onstrution in detail.Let j > 2, and let m be a positive integer. De�ne a j-spiral between radii mand 4m as the on�guration pitured in Figure 3. More preisely, a j-spiral isthe union of 4 families of j blak paths in a perolation on�guration, namely:8



Figure 2: When they enounter this on�guration, the arms an make an extraturn (or not).
• j disjoint rays between radii m and 4m;
• j disjoint �spiraling paths� ontained in the annulus S2m,3m, eah onnet-ing two points of one of the rays and making one additional turn aroundthe origin;
• j disjoint iruits around the origin, ontained in the annulus Sm,2m;
• j disjoint iruits around the origin, ontained in the annulus S3m,4m.RSW-type estimates diretly show that, uniformly as m → ∞, the probabilityof observing a j-spiral between radii m and 4m is bounded below by a positiveonstant (depending only on j).The presene of j-spirals in disjoint annuli are independent events, eahwith positive probability, so that, for some ε > 0, the probability of the event

E
(ε)
j (n, N) of having at least ε log(N/n) disjoint j-spirals between radii n and Ngoes to 1 as N/n goes to in�nity. The presene of j-spirals being an inreasingevent, the FKG inequality ensures the onditional probability of E

(ε)
j (n, N),given the existene of j blak arms between radii n and N , still goes to 1 as

N/n goes to in�nity.We now explain how to use j-spirals to perform surgery on blak arms.Assume that there are j arms between radii n and N , and a j-spiral Σ betweenradii m and 4m. For eah ray of Σ, we all inner (resp. outer) ative point thelast (resp. �rst) intersetion point of the ray with ∂S2m (resp. ∂S3m), whenstarting from inside. Let Σ1 be the onneted omponent of Σ adjaent to ∂Smwhen one removes the inner ative points, and let Γ1 be the union of Σ1 and9



the j arms up to radius 2m. It is easy to hek that, whenever one marks j − 1points on Γ1, there still exists a path ompletely ontained in Γ1 and avoidingthe marked points, whih onnets the irle of radii n to one of the inner ativepoints of Σ on the irle of radius 2m. Indeed, at least one of the arms, oneof the iruits and one of the rays ontain no marked point. Menger's theoremthen ensures that Γ1 ontains j disjoint arms, eah onneting Sn to one of theinner ative points of Σ � in other words, we an always assume that the jarms land on the irle of radius 2m on the inner ative points.The same onstrution an be made inwards between radii N and 3m. It isthen apparent that there are two ways of onneting the inner ative points of Σto its outer ative points pairwise using verties from Σ, and that these lead totwo j-arms on�gurations between radii n and N with winding angles di�eringby exatly 2π (note however that it may be the ase that the angles of these twoon�gurations are both di�erent from the angle of the initial on�guration).Sine the onstrution above an be performed inside eah annulus wherethere is a j-spiral, and does not modify the arms outside of Sm,4m, one arrivesto the following fat: Whenever there are j arms between radii n and N , andthe event E
(ε)
j (n, N) is realized, the set Ī(n, N) ontains an interval of lengthat least 2πε log(N/n) � and this ours with onditional probability going to

1 as N/n goes to in�nity.Step 3. Using the BK inequality, it is not hard to see that the winding angle ofthe arms annot be larger than log(N/n) [log log(N/n)]
2. Indeed, assume thisis not the ase and onsider a. C log(N/n) overlapping �retangles� betweenangles −π/10 and π/10, loated between radii n and 4n, 2n and 8n, and so on:One of them has to be rossed (in either diretion) at least 1

C [log log(N/n)]
2times, whih has a probability at most

C log(N/n)(1 − δ)
1

C
[log log(N/n)]2by RSW estimates. Hene, the probability that Ī(n, N) is ontained in the inter-val [± log(N/n) log log(N/n)] is larger than 1/2 for N/n large enough. Dividingthat interval into sub-intervals of length ε
2 log(N/n), and using the previousstep, we get that for one of them, say iε(n, N),

P (iε(n, N) ⊆ Ī(n, N) | Aj,B...BB(n, N)) >
C′

[log log(N/n)]
2 ,where C′ > 0 is a universal onstant.Step 4. We are now in a position to onlude. If we take αmin suh that

P (Aj,B...BW (n, N) ∩ {αmin ∈ Ī(n, N)})is minimal among αmin ∈ iε(n, N) ∩ (6πZ), then
P (Aj,B...BW (n, N) ∩ {αmin ∈ Ī(n, N)}) 6 6π

ε
2 log(N/n)

P (Aj,B...BW (n, N))sine, as we noted earlier, whenever there are arms of di�erent olors, 6πZannot ontain more than one element of Ī(n, N). On the other hand, we know10



Figure 3: Generalization of Figure 2 in the ase of j > 3 arms. The additionaliruits are needed to apply Menger's theorem; the irles of radii m and 4m(resp. 2m and 3m) are drawn in strong (resp. dotted) lines, the spiraling pathsin dashed lines and the ative points are marked with a blak square.from the previous step that
P (Aj,B...BB(n, N) ∩ {αmin ∈ Ī(n, N)})

> P (Aj,B...BB(n, N) ∩ {iε(n, N) ⊆ Ī(n, N)})

>
C′

[log log(N/n)]
2 P (Aj,B...BB(n, N)).If we apply inequality (2.5) to A = Aj−1,B...B(n, N)∩{αmin ∈ Īj−1,B...B(n, N)}

11



and B = A1,B(n, N), we obtain that
C′

[log log(N/n)]
2 P (Aj,B...BB(n, N))

6 P (Aj,B...BB(n, N) ∩ {αmin ∈ Īj−1,B...B(n, N)})
= P (A ◦ B)

6 P (A ∩ B̄)

= P (Aj,B...BW (n, N) ∩ {αmin ∈ Īj−1,B...B(n, N)})
6 P (Aj,B...BW (n, N) ∩ {αmin ∈ Īj,B...BW (n, N)})

6
6π

ε
2 log(N/n)

P (Aj,B...BW (n, N)),whih onludes the proof.3.2 The density of the set of anglesIn this setion, we further desribe the set of angles I(n, N) � whih happenedto be a key tool in the previous proof � in the monohromati ase. Weprove that (onditionally on the existene of j disjoint blak arms) Ī(n, N) isalways an interval, as in the polyhromati ase. For that, we use the followingdeterministi statement that I(n, N) does not have large �holes�:Proposition 7. Let j > 1 and σ = B . . . BB of length j. Let α, α′ ∈ Ij,σ(n, N)with α < α′; then there exists a sequene (αi)06i6r of elements of Ij,σ(n, N),satisfying the following two properties:
• α = α0 < α1 < · · · < αr = α′;
• for every i ∈ {0, . . . , r − 1}, αi+1 − αi < 2π.This result diretly implies that Ī(n, N) is an interval, and the onstrutionof the previous sub-setion, reating extra turns (step 2 of the proof), gives alower bound on the diameter of Ī(n, N): We hene get that for σ onstant,there exists some ε > 0 (depending only on j) suh that Ī(n, N) is an intervalof length at least ε log(N/n) with probability tending to 1 as N/n gets large.The main step in the proof of the density result is the following topologiallemma:Lemma 8. Let j > 0, and let γ1, . . . , γj be j disjoint Jordan urves ontainedin the (losed) annulus {n 6 |z| 6 N}, eah having its starting point on theirle of radius n and its endpoint on the irle of radius N . For eah k ∈

{1, . . . , j}, let αk be the winding angle of γk (as de�ned above) and let δk be theray [ne2iπk/j , Ne2iπk/j ]. Assume that, for eah pair (k, k′), the intersetion of
γk and δk′ is �nite. Then, provided all the αk are larger than 2π(1 + 2/j), theunion of all the paths γk and δk ontains j disjoint paths δ̃1, . . . , δ̃j , all havingangle 2π/j.In other words: starting from two olletions of paths, if their angles di�erenough, one an �orret� the one with the smaller angle in suh a way as tomake it turn a little bit more. 12



Proof. We shall onstrut the paths δ̃k expliitly. The �rst step is to redue thesituation to one of lower ombinatorial omplexity, namely to the ase wherethe starting points of the γk are separated by those of the δk. For eah k 6 j,let τk = inf{t : γk(t) ∈ [neiπ(2k−1)/j , Neiπ(2k−1)/j ]} (whih is always �nite byour hypotheses), and let
Γ :=

j
⋃

k=1

{γk(t) : 0 6 t 6 τk}.

Γ intersets eah of the δk �nitely many times, so eah of the δk \ Γ has �nitelymany onneted omponents: let ∆ be the union of those omponents that donot interset the irle of radius N , and let
Ω0 := {n 6 |z| 6 N} \ (Γ ∪ ∆).Let Ω be the onneted omponent of Ω0 having the irle of radius N asa boundary omponent. Ω is homeomorphi to an annulus, and for eah k,the point γk(τk) is on its boundary; by onstrution, the γk(τk) are intertwinedwith the (remaining portions of the) rays of angles 2πk/j. We will perform ouronstrution of the δ̃k inside Ω; ontinuing them with the δk outside of Ω thenprodues j disjoint paths satisfying the onditions we need.Up to homeomorphism, we an now assume without loss of generality thatfor eah k, γk(0) = neiπ(2k−1)/j . The only thing we lose in the above redutionis the assumption on the angles of the γk; but sine it takes at most one turnfor eah of the γk to reah the appropriate argument, we an still assume thatthe remaining angles are all larger than 4π/j. In partiular, eah of the γk willross the wedge between angles 2πk/j and 2π(k + 1)/j in the positive diretionbefore hitting the irle of radius N .For every k 6 j, let θk(t) be the ontinuous determination of the argumentof γk(t) satisfying θk(0) = (2k − 1)π/j, and let

Tk :=

{

t > 0 :
2πk

j
< θj(t) <

2π(k + 1)

j

}

and Γ̃k = {γk(t) : t ∈ Tk}.We now desribe informally the onstrution of δ̃k. Start from the point
ne2iπk/j , and start following δk outwards, until the �rst intersetion of δk with
Γ̃k. Then, follow the orresponding onneted omponent of Γ̃k, until interset-ing either δk or δk+1; follow that one outwards until it intersets either Γ̃k orthe irle of radius N ; iterating the onstrution, one �nally obtains a Jordanpath joining ne2πk/j to Ne2π(k+1)/j , and ontained in the union of δk, δk+1 and
Γ̃k (see Figure 4).All that remains is to prove that the δ̃k are indeed disjoint; by symmetry, itis enough to do so for δ̃1 and δ̃2. Besides, beause the γk are themselves disjoint,any intersetion point between δ̃1 and δ̃2 has to our on δ2 (at least in the ase
j > 2 � but the ase j = 2, where they ould also interset along δ1, againfollows by symmetry).The intersetion of δ̃1 with δ2 onsists in a �nite olletion (Im) of ompatintervals; besides, the points of the intersetion are visited by δ̃1 in order ofinreasing distane to the origin. Similarly, the intersetion of δ̃2 with δ2 onsistsin a �nite olletion (Jl) of ompat intervals, whih are also visited in order ofinreasing distane to the origin. 13



Figure 4: The onstrution of the δ̃k (in the ase j = 5). The dotted linesare the paths γk, and the strong lines are the δ̃k obtained at the end of theonstrution.Suppose that ⋃

Ip and ⋃

Jp have a non-empty intersetion; and let z0 bethe intersetion point lying losest to the origin. Let p0 and q0 be suh that
z0 ∈ Ip0

∩ Jq0
; notie that z0 is the endpoint losest to the origin of either Ip0or Jq0

. Aording to the order in whih γ1 (resp. γ2) visits the endpoints of Ip0(resp. Jq0
), this gives rise to eight possible on�gurations; it is straightforwardin all ases to apply Jordan's theorem to prove that γ1 and γ2 then have tointerset, thus leading to a ontradition.For the purpose of the proof of Proposition 7, we will need a slight variation ofthe lemma, where the hypothesis of �niteness of the intersetions between pathsis replaed with the assumption that the paths onsidered are all polygonal lines.The proof is exatly the same though, and does not even require any additionalnotation: whenever two paths, say γk and δk′ , oinide along a line segment, thede�nition of Γk amounts to onsidering some of the endpoints of this segment asintersetions, whih in other words is equivalent to shifting γk by an in�nitesimalamount towards the exterior of the wedge used to de�ne Tk in order to reover�niteness.Proof of Proposition 7. The previous Lemma is stated with partiular urveson whih a surgery an be dons, but it an obviously be applied to more generalases through a homeomorphism of the annulus. The general statement is thenthe following (roughly speaking): Assuming the existene of two families of

j arms with di�erent enough winding angles, it is possible to produe a third14



family using the same endpoints as the �rst one but with a slightly larger windingangle.We are now ready to prove Proposition 7. Consider a on�guration in whihone an �nd two families of rossings, say (λk) and (λ′

k), in suh a way thatfor every k, the di�erene between the winding angles of λk and λ′

k is at least
2π. Let α0 be the minimal angle in the �rst family, and apply the topologiallemma with δk = λk and γk = λ′

k: One obtains a new family of pairwise disjointpaths (λ1
k), whih share the same family of endpoints as the (λk), the endpointof λ1

k being that of λk+1 (with the obvious onvention that j + 1 = 1).One an then iterate the proedure, applying the topologial lemma withthis time δk = λ1
k, and still letting γk = λ′

k; one gets a new family (λ2
k) with theendpoints again shifted amongst the paths in the same diretion. Continuing aslong as the winding angle di�erene is at least 2π, this onstrution produes asequene (λi

k) of j-tuples of disjoint paths, the winding angles of whih vary byless than 2π at eah step. Besides, the onstrution ends in �nitely many steps,for after j steps, eah of the winding angles has inreased by exatly 2π. Thisreadily implies our laim.Remark 9. Notie that, as early as the seond step of the proedure, (λn
k ) and

(λ′

k) will always oinide on a positive fration of their length, whih is why weneeded the above extension of the lemma.4 Existene of the monohromati arm exponentsWe now prove Theorem 4, stating the existene of the monohromati exponents
α′

j . For that, we use a rather ommon argument, as presented e.g. in [16℄:sine the quasi-multipliativity property holds (item 2. above), it is atuallyenough to hek that there exists a funtion fj (whih will automatially besub-multipliative itself � one an take C2 = 1 in the quasi-multipliativityproperty) suh that, for every R > 1,
P (Aj,B...BB(n, Rn)) → fj(R) (4.1)as n → ∞ � notie that RSW-type estimates provide both the fat that theleft-hand term in bounded above and below by onstants for �xed R as n → ∞,and a priori estimates on any (potentially subsequential) limit, of the form

R−εj 6 fj(R) 6 R−1/εjwhere εj depends only on j.By Menger's theorem (see [5℄), the omplement of the event Aj,B...BB(n, N)an be written as
Dj(n, N) = {There exists a iruit in Sn,N that surrounds ∂Snand ontains at most j − 1 blak sites}.This makes it possible to express the event Aj,B...BB(n, N) in terms of theolletion of all luster interfaes (or �loops�): It is just the event that theredoes not exist a �neklae� of at most (j − 1) loops, with white verties on theirinner boundary and blak ones on their outer boundary, forming a hain around

∂Sn and suh that two onseutive loops are separated by only one blak site.15



Standard arguments show that the probability that two interfaes touh inthe saling limit is exatly the asymptoti probability that they �almost touh�(in the sense that they are separated by exatly one vertex) on disrete latties� it is e.g. a simple onsequene of the fat that the polyhromati 6-armexponent is stritly larger than 2, whih in turn is a onsequene of RSW-typeestimates (the fat that the polyhromati 5-arm exponent is equal to 2 beingtrue on any lattie on whih RSW holds � at least for olors BWBWW ).What this means, is that to show onvergene of the probability in Equa-tion (4.1), it is enough to know the probability of the orresponding ontinuousevent. While we do not know the exat value of the limit, it is neverthelesseasy to hek that the event itself is measurable with respet to the full salinglimit of perolation, as onstruted by Camia and Newman in [4℄, and that isenough for our purpose. Notie that the measurablility of the event in terms ofthe full saling limit is ensured by the exploration proedure desribed in thatpaper: It is proved there that for every ε > 0, all loops of diameter at least εare disovered after �nitely many steps of the exploration proedure.Referenes[1℄ M. Aizenman, B. Duplantier, A. Aharony, Path rossing exponents andthe external perimeter in 2D perolation, Phys. Rev. Lett. 83, 1359-1362(1999).[2℄ J. Van den Berg, H. Kesten, Inequalities with appliations to perolationand reliability, J. Appl. Probab. 22, 556-569 (1985).[3℄ C. Borgs, J.T. Chayes, D. Randall, The van den Berg-Kesten-Reimer in-equality: a review, in Perplexing Problems in Probability: Festshrift inHonor of Harry Kesten, Birkhäuser (1999).[4℄ F. Camia, C.M. Newman, Two-dimensional ritial perolation: the fullsaling limit, Comm. Math. Phys. 268, 1-38 (2006).[5℄ R. Diestel, Graph theory, 2nd edition, Springer, New York (2000).[6℄ G.R. Grimmett, Perolation, 2nd edition, Springer, New York (1999).[7℄ H. Kesten, Saling relations for 2D-perolation, Comm. Math. Phys. 109,109-156 (1987).[8℄ G.F. Lawler, O. Shramm, W. Werner, Values of Brownian intersetion ex-ponents I: Half-plane exponents, Ata Mathematia 187, 237-273 (2001).[9℄ G.F. Lawler, O. Shramm, W. Werner, Values of Brownian intersetionexponents II: Plane exponents, Ata Mathematia 187, 275-308 (2001).[10℄ G.F. Lawler, O. Shramm, W. Werner, One-arm exponent for ritial 2Dperolation, Ele. J. Probab. 7, paper no.2 (2002).[11℄ P. Nolin, Near-ritial perolation in two dimensions, Ele. J. Probab. 13,paper no.55 (2008). 16



[12℄ D. Reimer, Proof of the van den Berg-Kesten onjeture, Combin. Probab.Comput. 9, 27-32 (2000).[13℄ O. Shramm, Saling limits of loop-erased random walks and uniformspanning trees, Israel J. Math. 118, 221-288 (2000).[14℄ O. Shramm, J.E. Steif, Quantitative noise sensitivity and exeptionaltimes for perolation, Ann. Math., to appear.[15℄ S. Smirnov, Critial perolation in the plane: onformal invariane,Cardy's formula, saling limits, C. R. Aad. Si. Paris Sér. I Math. 333,239-244 (2001).[16℄ S. Smirnov, W. Werner, Critial exponents for two-dimensional perola-tion, Math. Res. Lett. 8, 729-744 (2001).[17℄ W. Werner, Letures on two-dimensional ritial perolation, IAS-ParkCity 2007 summer shool, PCMI, AMS (2009).
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