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Abstract

We investigate the so-called monochromatic arm exponents for critical
percolation in two dimensions. These exponents, describing the proba-
bility of observing j disjoint macroscopic paths, are shown to exist and
to form a different family from the (now well understood) polychromatic
exponents. More specifically, our main result is that the monochromatic
j-arm exponent is strictly between the polychromatic j-arm and (j + 1)-
arm exponents.

1 Introduction

Percolation is one of the most-studied discrete models in statistical physics. The
usual setup is that of bond percolation on the square lattice Z2, where each bond
is open (resp. closed) with probability p ∈ (0, 1) (resp. 1− p), independently of
the others. This model exhibits a phase transition at a critical point pc ∈ (0, 1)
(in this particular case, pc = 1/2): For p < pc, almost surely all connected
components are finite, while for p > pc there exists a unique infinite component
with density θ(p) > 0. Site percolation is defined in a similar fashion, the
difference being that the vertices are open or closed, instead of the edges; one
can then see it as a random coloring of the lattice, and use the terms black and
white in place of open and closed.

The behavior of percolation away from the critical point is well understood,
however it is only recently that precise results have been obtained at and near
criticality. For critical site percolation on the regular triangular lattice, the proof
of conformal invariance in the scaling limit was obtained by Smirnov [15], and
SLE processes, as introduced by Schramm [13] and further studied by Lawler,
Schramm and Werner [8, 9], provide an explicit description of the interfaces (in
the scaling limit) in terms of SLE(6) (see e.g. [18]).

This description allows for the derivation of the so-called polychromatic arm
exponents [16], describing the probability of observing connections across annuli
of large modulus by disjoint connected paths of specified colors (with at least
one arm of each color), and also the derivation of the one-arm exponent [10].
Combined with Kesten’s scaling relations [7], these exponents then provide the
existence and the values of most of the other critical exponents, like e.g. the
exponent β = 5/36 associated with the density of the infinite cluster: As p ↓ pc,

θ(p) = (p− pc)
5/36+o(1).
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On the other hand, very little is known concerning the monochromatic arm
exponents (i.e., with all the connections of the same color — see below for a
formal definition) with more than one arm. Here, the SLE approach does not
seem to work and, correspondingly, there is no universally established conjecture
for the values of those exponents. One notable exception however is the 2-arm
monochromatic exponent, for which an interpretation in terms of SLE(6) is
proposed at the end of [10] — but again no explicit value has been computed.
That particular exponent is actually of physical interest: Known as the backbone
exponent, it describes the “skeleton” of a percolation cluster. Even the existence
of these exponents is not clear, as there does not seem to be any direct sub-
additivity argument.

In this paper, we prove that the monochromatic exponents do exist, and
investigate how they are related to the polychromatic exponents. We show
that they have different values than their polychromatic counterparts. As an
illustration, our result implies that the backbone of a typical large percolation
cluster at criticality is much “thinner” than its boundary.
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2 Background

2.1 The setting

We restrict ourselves here to site percolation on the triangular lattice, at crit-
icality (p = pc = 1/2). Recall that it can be obtained by coloring the faces of
the honeycomb lattice randomly, each cell being black or white with probability
1/2 independently of the others. In the following, we denote by P = P 1/2

the corresponding probability measure on the set of configurations. Let us
mention however that many of the results of combinatorial nature based on
Russo-Seymour-Welsh type estimates should also hold for bond percolation on
Z2, due to the self-duality property of this lattice.

Let Sn denote the ball of radius n in the triangular lattice (i.e. the inter-
section of the triangular lattice with the Euclidean disc of radius n, though the
specifics of the definition are of little relevance), seen as a set of vertices. We
will denote by ∂iSn (resp. ∂eSn) its internal (resp. external) boundary, i.e. the
set of vertices in (resp. outside) Sn that have at least one neighbor outside (resp.
in) Sn, and, for n < N , by

Sn,N := SN \ Sn

the annulus of radii n and N . To describe critical and near-critical percolation,
certain exceptional events play a central role: the arm events, referring to the
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existence of a number of crossings (“arms”) of Sn,N , the color of each crossing
(black or white) being prescribed.

Definition 1. Let j > 1 be an integer and σ = (σ1, . . . , σj) be a sequence
of colors (black or white). For any two positive integers n < N , a (j, σ)-arm
configuration in the annulus Sn,N is the data of j disjoint monochromatic, non-
self-intersecting paths (ri)16i6j — the arms — connecting the inner boundary
∂eSn and the outer boundary ∂iSN of the annulus, ordered counterclockwise in
a cyclic way, where the color of the arm ri is given by σi. We denote by

Aj,σ(n,N) :=
{

∂eSn 
j,σ

∂iSN

}

(2.1)

the corresponding event. It depends only on the state of the vertices in Sn,N .

We will write down color sequences by abbreviating colors, using B and W
for black and white respectively. To avoid the obvious combinatorial obstruc-
tions, we will also use the notation n0 = n0(j) for the smallest integer such that
j arms can possibly arrive on ∂eSn0

(n0(j) is of the order of j) and only consider
annuli of inner radius larger than n0. This restriction will be done implicitly in
what follows.

The so-called color exchange trick (noticed in [1, 16]) shows that for a fixed
number j of arms, prescribing the color sequence σ changes the probability only
by at most a constant factor, as long as both colors are present in σ (because
an interface is needed to proceed). The asymptotic behavior of that probability
can be described precisely using SLE(6): It is possible to prove the existence of
the (polychromatic) arm exponents and to derive their values [16], which had
been predicted in the physics literature (see e.g. [1] and the references therein):

Theorem 2. Fix j > 2. Then for any color sequence σ containing both colors,

P
(

Aj,σ(n,N)
)

= N−αj+o(1) (2.2)

as N → ∞ for any fixed n > n0(j), where αj = (j2 − 1)/12.

The value of the exponent for j = 1 (corresponding to the probability of
observing one arm crossing the annulus) has also been established [10] and it
is equal to 5/48 (oddly enough formally corresponding to j = 3/2 in the above
formula).

For future reference, let us mention the following facts about critical perco-
lation that we will use.

1. A priori bound for arm configurations: There exist constants C, ε > 0
such that for all n < N ,

P
(

A1,B(n,N)
)

= P
(

A1,W (n,N)
)

6 C

(

n

N

)ε

. (2.3)

For all j > 1, there exist constants cj , βj > 0 such that for all n < N,

P
(

Aj,B...BB(n,N)
)

> cj

(

n

N

)βj

. (2.4)
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2. Quasi-multiplicativity property: For any j > 1 and any sequence σ, there
exist constants C1, C2 > 0 such that for all n1 < n2 < n3,

C1 P
(

Aj,σ(n1, n2)
)

P
(

Aj,σ(n2, n3)
)

6 P
(

Aj,σ(n1, n3)
)

6 C2 P
(

Aj,σ(n1, n2)
)

P
(

Aj,σ(n2, n3)
)

.

The first of these two properties actually relies on the so-called Russo-
Seymour-Welsh (RSW) lower bounds, that we will use extensively in various
situations: Roughly speaking, these bounds state that the probability of cross-
ing a given shape of fixed aspect ratio is bounded below independently of the
scale. For instance, the probability of crossing a 3n × n rectangle in its longer
direction is bounded below, uniformly as n → ∞. We refer the reader to [6] for
more details.

In the second one, the independence of arm events in disjoint annuli im-
plies that one can actually take C2 = 1, which we will do from now on. The
lower bound is obtained using a so-called separation lemma, as first proved by
Kesten [7] (technically, he does the proof in the case of 4 arms, but the argument
extends easily to the general case). The monochromatic case is rather easier, as
is follows directly from RSW estimates and Harris’ lemma.

2.2 A correlation inequality

For two increasing events, the probability of their disjoint occurrence can be
bounded below by the classic van den Berg-Kesten (BK) inequality [2]; Reimer’s
inequality, conjectured in [2] and proved in [12], extends it to the case of arbi-
trary events. A key ingredient in our proof will be a not-that-classic correlation
inequality which is an intermediate step in the proof of Reimer’s inequality.
Note that actually, in the simpler case of increasing events (which is the only
one we need here), this inequality was obtained earlier by Talagrand [17]; but
we choose to follow the more established name of the general result even for this
particular case.

Instead of using the terminology in Reimer’s original paper [12], we follow
the rephrasing (with more “probabilistic” notation) of his proof in the review
paper [3]. Consider an integer n, and Ω = {0, 1}n. For any configuration ω ∈ Ω
and any set of indices S ⊆ {1, . . . , n}, we introduce the cylinder

[ω]S := {ω̃ : ∀i ∈ S, ω̃i = ωi},

and more generally for any X ⊆ Ω, any S : X → P({1, . . . , n}),

[X ]S :=
⋃

ω∈X

[ω]S(ω).

For any two A,B ⊆ Ω, we denote by A ◦B the disjoint occurrence of A and
B (the notation A�B is also often used to denote this event):

A ◦B :=
{

ω : for some S(ω) ⊆ {1, . . . , n}, [ω]S ⊆ A and [ω]Sc ⊆ B
}

.

Recall that Reimer’s inequality states that

P (A ◦B) 6 P (A)P (B). (2.5)
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We also denote by ω̄ = 1− ω the configuration obtained by “flipping” every
bit of the configuration ω ∈ Ω, so that if X ⊆ Ω, X̄ := {ω̄ : ω ∈ X}. We are
now in a position to state the correlation inequality that will be a key ingredient
in the following:

Theorem 3 ([12], Theorem 1.2). For any A,B ⊆ Ω, we have

|A ◦B| 6 |A ∩ B̄| = |Ā ∩B|. (2.6)

For the sake of completeness, let us just mention that this inequality is not
stated explicitly in that form in [12]. It can be deduced from Theorem 1.2 by
applying it to the flock of butterflies B = {(ω, f(ω)), ω ∈ A ◦ B}, where f(ω)
coincides with ω exactly in the coordinates in S(ω). Here, S(ω) ⊆ {1, . . . , n}
is the subset of indices associated with A and B by the definition of disjoint
occurrence, i.e. so as to satisfy [ω]S(ω) ⊆ A and [ω]S(ω)c ⊆ B for all ω ∈ A ◦B.
For this particular B, we indeed have Red(B) ⊆ A and Yellow(B) ⊆ B.

Equivalently, it can be obtained from Lemma 4.1 in [3] by taking X = A◦B,
and S : X → P({1, . . . , n}) associated with A ◦ B (so that [X ]S ⊆ A and
[X ]Sc ⊆ B).

2.3 Statement of the results

In this paper, we will be interested in the asymptotic behavior of the probability
of the event Aj,σ(n0(j), N) as N → ∞ for a monochromatic σ, say σ = B . . . B,
so that Aj,σ simply refers to the existence of j disjoint black arms. Our first
result shows that this probability follows a power law, as in the case of a poly-
chromatic choice of σ:

Theorem 4. For any j > 2, there exists an exponent α′

j > 0 such that

P
(

Aj,B...B(n,N)
)

= N−α′

j+o(1) (2.7)

as N → ∞ for any fixed n > n0(j).

These exponents α′

j are known as the monochromatic arm exponents, and
it is natural to try to relate them to the previously mentioned polychromatic
exponents αj .

Consider any j > 2; we start with a few easy remarks. On the one hand, one
can apply Harris’ Lemma (more often referred to in the statistical mechanics
community as the FKG inequality, which is its generalization to certain non-
product measures — we will follow that convention in what follows): It implies
that

P (Aj+1,B...BW (n0, N)) = P (Aj,B...B(n0, N) ∩ A1,W (n0, N))

6 P (Aj,B...B(n0, N)) P (A1,W (n0, N)),

and by using item 1. above, we get that, for some constants C, ε > 0,

P (Aj+1,B...BW (n0, N)) 6 CN−ε
P (Aj,B...B(n0, N)), (2.8)

or in other words that α′

j < αj+1. On the other hand, inequality (2.6) directly
implies that

P (Aj,B...BB(n0, N)) = P (Aj−1,B...B(n0, N) ◦A1,B(n0, N))

6 P (Aj−1,B...B(n0, N) ∩A1,W (n0, N))

= P (Aj,B...BW (n0, N)),
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hence α′

j > αj . We will actually prove the following, stronger result:

Theorem 5. For any j > 2, we have

αj < α′

j < αj+1. (2.9)

The monochromatic exponents α′

j thus form a family of exponents different
from the polychromatic exponents.

We would like to stress the fact that the case of half-plane exponents (or
more generally, boundary exponents in any planar domain) is considerably dif-
ferent: Indeed, whenever a boundary is present, the color-exchange trick implies
that the probability of observing j arms of prescribed colors is exactly the same
for all color prescriptions, whether mono- or poly-chromatic. In particular there
is no difference between the monochromatic and polychromatic boundary expo-
nents. (For the reader’s peace of mind, they can notice that the presence of the
boundary provides for a canonical choice of a leftmost arm, the lack of which is
precisely the core idea of the proof of our main result in the whole plane.)

We will first prove the inequality αj < α′

j (which is the main statement in
the above theorem, the other strict inequality being the simple consequence of
the FKG inequality we mentioned earlier), since its proof only requires combi-
natorial arguments, and postpone the proof of the existence of the exponents to
the end of the paper.

In order not to refer to the α′

j ’s, we adopt the following equivalent formu-
lation of the inequality: What we formally prove is that, for any j > 2, there
exists ε > 0 such that for any N large enough,

P (Aj,B...BB(n0, N)) 6 N−ε
P (Aj,B...BW (n0, N)).

The proof of that inequality only relies on discrete features such as self-duality
and RSW-type estimates, and hence it is possible that our proof could be ex-
tended to the case of bond percolation on Z2 — where the existence of the
exponents, which strongly relies on the knowledge of the scaling limit, is still
unproved; however, the statement of duality in that case is different enough
(the color exchange trick for instance has no exact counterpart) that some of
our arguments do not seem to extend directly.

3 The set of winding angles

3.1 Strict inequalities between the exponents

Our proof is based on an energy vs. entropy consideration. The difference be-
tween the monochromatic and the polychromatic j-arm exponents can be writ-
ten in terms of the expected number of “really different” choices of j arms out of
a percolation configuration with j arms: For a polychromatic configuration, this
number is equal to 1, whereas for a monochromatic configuration, it grows at
least like a positive power of the modulus, and the ratio between these two num-
bers behaves exactly like (N/n)αj−α′

j because, for fixed disjoint arms (r1, . . . , rj)
with respective lengths (ℓ1, . . . , ℓj), the probability that they are present in the
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∂SN

∂Sn

∂SN

∂Sn

Figure 1: To a given monochromatic configuration correspond many different “macroscopic”
ways to choose the arms, contrary to the polychromatic case. The left-hand picture shows the
sort of realization in which many macroscopically different 5-arm configurations can be found
— the actual topology needed is a little bit more involved, and is illustrated below.

configuration with a prescribed coloring does not depend on that coloring (it is
equal to 2−(ℓ1+···+ℓj)).

More precisely, but still roughly speaking, the proof relies on the following
observation: Given a configuration where j black arms are present, there are
many ways to choose them, since by RSW there is a positive density of circuits
around the origin (allowing “surgery” on the arms — see Figure 1), while if we
consider a configuration with arms of both colors, then there is essentially only
one way to select them. Of course the geometry of an arm is quite intricate
and many local modifications — on every scale — are always possible, both in
the monochromatic and polychromatic setups: What we mean here is that this
choice is unique from a macroscopic point of view. To formalize this intuition,
we thus have to find a way of distinguishing two macroscopic choices of arms,
and for this we will use the set of winding angles associated with a configuration.

Definition 6. For any configuration of arms, one can choose a continuous
determination of the argument along one of the arms; we call winding angle
of the arm (or simply angle for short) the overall (algebraic) variation of the
argument along that arm.

Clearly, the winding angles of the arms corresponding to a given (j, σ)-arm
configuration differ by at most 2π. However, for the same percolation config-
uration, there might exist many different choices of a (j, σ)-arm configuration,
corresponding to different winding angles: We denote by Ij,σ(n,N) the set of
all the winding angles which can be obtained from such a configuration; we
omit the subscript from the notation whenever j and σ are clear from the con-
text. For the sake of completeness, we also declare Ij,σ(n,N) to be empty if the
configuration does not contain j arms of the prescribed colors.

We will actually rather use Īj,σ(n,N), the set of angles obtained by “com-
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pleting” Ij,σ(n,N):

Īj,σ(n,N) :=
⋃

α∈Ij,σ(n,N)

(

α− π, α+ π
]

.

It is an easy remark that in the polychromatic case (σ non-constant), we have
for any α ∈ Ij,σ(n,N)

Ij,σ(n,N) ⊆ (α− 2π, α+ 2π)

(because two arms of different colors cannot cross), so that Īj,σ(n,N) is an
interval of length at most 4π. In the monochromatic case (σ constant), no such
bound applies (and actually it is not obvious that Īj,σ(n,N) is an interval —
this is proved as Proposition 7 below).

In the case of a polychromatic arm configuration, considering successive
annuli of a given modulus as independent, one would expect a central limit
theorem to hold on the angles, or at least fluctuations of order

√
logN . On

the other hand, for a monochromatic configuration, performing surgery using
circuits in successive annuli should imply that every time one multiplies the
outer radius by a constant, the expected largest available angle would increase
by a constant, so that one would guess that, by a careful choice of arms, the
total angle can be made of order ± logN .

Fix ε > 0, and let Aε
1,B (resp. Aε

1,W , resp. Aε
j,σ) be the event that there

exists a black arm (resp. a white arm, resp. j arms with colors given by σ) with
angle larger than ε logN between radii n0 and N . Applying inequality (2.6)
with A = Aj−1,B...B and B = Aε

1,B, if the above intuition was correct, this
would imply:

P (Aj,B...BB) ≍ P (A ◦B)

6 P (Aj−1,B...B ∩Aε
1,W )

= P (Aε
j,B...BW ),

and we could expect

P (Aε
j,B...BW ) 6 N−ε′

P (Aj,B...BW )

by a large-deviation principle. However, proving this LDP seems to be difficult,
and we propose here an alternative proof that relies on the same ideas, but
bypasses some of the difficulties.

Proof of Theorem 5. Step 1. First, note that it suffices to prove that the ratio

P (Aj,B...BB(n,N))

P (Aj,B...BW (n,N))

can be made arbitrarily small as N/n → ∞, uniformly in n: Indeed, assuming
that this is the case, then for any δ > 0, there exists R > 0 such that this
ratio is less than δ as soon as N/n > R. Then, as a direct consequence of the
quasi-multiplicativity property (item 2. above), we have

P (Aj,B...BB(n,R
kn))

6 Ck−1
2 P (Aj,B...BB(n,Rn)) · · · P (Aj,B...BB(R

k−1n,Rkn))

6 Ck−1
2 δk P (Aj,B...BW (n,Rn)) · · · P (Aj,B...BW (Rk−1n,Rkn))

6 Ck−1
2 δk(C−1

1 )k−1
P (Aj,B...BW (n,Rkn)),
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Figure 2: When they encounter this configuration, the arms (here in solid lines) can be
modified, detouring via the dashed lines, to make an extra turn.

and for δ = 1/(2C2C
−1
1 ) this gives

P (Aj,B...BB(n,R
kn)) 6 2−k

P (Aj,B...BW (n,Rkn)), (3.1)

which immediately implies that for some C, ε > 0,

P (Aj,B...BB(n,N)) 6 C

(

N

n

)−ε

P (Aj,B...BW (n,N)).

In particular, applying this for n = n0 (and N large enough) leads to the
inequality that we need.

Step 2. The key step of the proof is as follows. Given a configuration with
j arms in an annulus of large modulus, we use RSW-type estimates to prove
the existence of a large number of disjoint sub-annuli of it, in each of which
one can find black paths topologically equivalent to those in Figure 2 (in the
case j = 2) or its reflection. Every time this configuration appears, one has
the possibility to replace the original arms (in solid lines on the figure) with
modified — and still disjoint — arms, obtained by using one of the dashed
spirals in each of them. The new arms then land at the same points on the
outer circle, but with a winding angle differing by 2π. This allows us to show
that, with high probability, the set of angles Ī(n,N) contains an interval of
length at least ε log(N/n), for some ε > 0 (which can be written in terms of the
RSW estimates). We now proceed to make the construction in detail.

Let j > 2, and let m be a positive integer. Define a j-spiral between radii m
and 4m as the configuration pictured in Figure 3. More precisely, a j-spiral is
the union of 4 families of j black paths in a percolation configuration, namely:
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• j disjoint rays between radii m and 4m;

• j disjoint “spiraling paths” contained in the annulus S2m,3m, each connect-
ing two points of one of the rays and making one additional turn around
the origin;

• j disjoint circuits around the origin, contained in the annulus Sm,2m;

• j disjoint circuits around the origin, contained in the annulus S3m,4m.

RSW-type estimates directly show that, uniformly as m → ∞, the probability
of observing a j-spiral between radii m and 4m is bounded below by a positive
constant (depending only on j). In addition, with each such spiral we associate
two families of j active points : For each of the j rays, oriented starting at
radius m, its last intersection with the circle of radius 2m is called an inner
active point, and its first intersection with the circle of radius 3m after it, an
outer active point — in particular, the section of the ray between its two active
points remains within the annulus S2m,3m.

One can always assume that the different pieces of a j-spiral remain well-
separated whenever they are not forced to intersect by topological constraints;
whenever two pieces intersect, they can do so multiple times, but one can assume
that all intersection points remain close to each other and it is easy to check
that this is not a problem in the proof.

The presence of j-spirals in disjoint annuli are independent events, each
with positive probability, so that, for some ε > 0, the probability of the event

E
(ε)
j (n,N) of having at least ε log(N/n) + 2 disjoint j-spirals between radii

n and N goes to 1 as N/n goes to infinity. The presence of j-spirals being
an increasing event, the FKG inequality ensures the conditional probability of

E
(ε)
j (n,N), given the existence of j black arms between radii n and N , still goes

to 1 as N/n goes to infinity.

We now explain how to use j-spirals to perform surgery on black arms. As-
sume that between radii n and N , there are a certain number s > 3 of disjoint
spiral configurations; let (mi)16i6s be the corresponding values ofm. Assume in
addition that there are j disjoint arms between radii n andN . The first remark is
the following: For every i ∈ {1, . . . , s−1}, the event Aj,B...BB(3mi, 2mi+1) is re-
alized, and one can choose j disjoint arms (γi,k)16k6j in the annulus S3mi,2mi+1

accordingly. The main part of the argument then consists in proving that, within
the union of all those arms together with the spirals, it is always possible to find
2s−2 j-arm configurations between radii n and N , spanning winding angles in
an interval of length 2(s− 2)π.

First, consider the union Γ1 of the j arms (γ1,k) (crossing the annulus
S3m1,2m2

) with the spiral Σ2 of associated radius m2. It is easy to check that,
whenever one marks (j − 1) points on Γ1, there still exists a path completely
contained in Γ1 and avoiding the marked points, which connects the circle of
radius 3m1 to one of the inner active points of Σ2 on the circle of radius 2m2.
Indeed, at least one of the arms, one of the circuits and one of the rays contain
no marked point. Menger’s theorem (see [5]) then ensures that Γ1 contains j
disjoint arms, each connecting Sn to one of the inner active points of Σ2. In
other words, one can always assume that the j arms land on the circle of radius
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2m2 on the inner active points. The same construction can be made outwards
between radii 3m2 and 2m3.

It is then apparent that there are two ways of connecting the inner active
points of Σ2 to its outer active points pairwise using vertices from Σ2, and
that these lead to two j-arms configurations between radii 3m1 and 2m3 with
winding angles differing by exactly 2π (note however that it may be the case
that the angles of these two configurations are both different from the angle of
the initial configuration).

Since the construction above can be performed inside all the above annuli
for which 2 6 i 6 k − 1, one arrives to the following fact: Whenever there are

j arms between radii n and N , and the event E
(ε)
j (n,N) is realized, the set

Ī(n,N) contains an interval of length at least 2πε log(N/n) — and this occurs
with conditional probability going to 1 as N/n goes to infinity.

Figure 3: Generalization of Figure 2 in the case of j > 3 arms. The additional circuits (in
solid lines) are needed to apply Menger’s theorem; the circles of radii m and 4m (resp. 2m
and 3m) are drawn in heavy (resp. dotted) lines, the spiraling paths in dashed lines and the
active points are marked with a black square.

Step 3. We now use the BK inequality to control the probability, given the
presence of j arms between radii n and N , that there is a choice of arms with
a very large winding angle. Let Rm,m′ be the intersection of the annulus Sm,m′

with the cone C := {z ∈ C : |arg(z)| < π/10} (using the standard identification
of the plane R2 with the complex plane). We will consider two families of
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“rectangles:” the Rek,ek+2 (which we call the long ones), and the Rek,ek+1 (the
wide ones). It is easy to see that any curve connecting two points of the plane
of arguments −π/10 and +π/10 while staying within the cone C has to cross at
least one of these rectangles between two opposite sides.

Now, assume that there exist j arms between radii n and N , and that their
winding angle is at least equal to 2πK log(N/n) + 4π (where K is a positive
constant which will be chosen later). Each of these arms has to cross the cone C
at least (the integer part of) K log(N/n) times, so if lk (resp. l′k) is the number
of disjoint crossings of the k-th long (resp. wide) rectangle, one has

∑

k

(lk + l′k) > jK log
N

n
.

On the other hand, the probability that a rectangle of a given shape is crossed by
at least l disjoint paths is bounded above by (1− δ)l for some δ > 0 (combining
RSW estimates and the BK inequality); besides, all these individual crossings
can be chosen so as to be disjoint.

Therefore, one obtains that the probability that there are j arms winding of
at least an angle of 2πK log(N/n) + 4π is bounded above by

S :=
∑

(lk,l′k)

∏

k

(1− δ)lk+l′k

where the sum is taken over all log(N/n)-tuples of (lk, l
′

k) having a sum equal to
jK log(N/n). The number of such tuples is the same as the number of choices
of 2 log(N/n) − 1 disjoint elements out of (jK + 2) log(N/n)− 1, so we obtain
that

S 6 (1− δ)jK log(N/n)

(

(jK + 2) log(N/n)− 1

2 log(N/n)− 1

)

.

It is then a straightforward application of Stirling’s formula to obtain that

S 6 C exp
[

(−cK + C logK) log(N/n)
]

,

where the constants c and C do not depend on the value of K. Choosing K
large enough, one then obtains that

S 6 C
( n

N

)βj+1

(where βj is the same as in (2.4)).

Step 4. We are now in a position to conclude. If we take αmin such that

P
(

Aj,B...BW (n,N) ∩ {αmin ∈ Ī(n,N)}
)

is minimal among all αmin ∈ iε(n,N) ∩ (4πZ), then

P (Aj,B...BW (n,N) ∩ {αmin ∈ Ī(n,N)}) 6 4π
ε
2 log(N/n)

P (Aj,B...BW (n,N))

since, as we noted earlier, whenever there are arms of different colors, 4πZ
cannot contain more than one element of Ī(n,N). On the other hand, we know
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from the previous step that

P (Aj,B...BB(n,N) ∩ {αmin ∈ Ī(n,N)})
> P (Aj,B...BB(n,N) ∩ {iε(n,N) ⊆ Ī(n,N)})
> C′

P (Aj,B...BB(n,N)).

If we apply inequality (2.6) to A = Aj−1,B...B(n,N)∩{αmin ∈ Īj−1,B...B(n,N)}
and B = A1,B(n,N), we obtain that

C′
P (Aj,B...BB(n,N)) 6 P (Aj,B...BB(n,N) ∩ {αmin ∈ Īj,B...B(n,N)})

= P (A ◦B)

6 P (A ∩ B̄)

= P (Aj,B...BW (n,N) ∩ {αmin ∈ Īj−1,B...B(n,N)})
6 P (Aj,B...BW (n,N) ∩ {αmin ∈ Īj,B...BW (n,N)})

6
4π

ε
2 log(N/n)

P (Aj,B...BW (n,N)),

which concludes the proof.

3.2 The density of the set of angles

In this section, we further describe the set of angles I(n,N) — which happened
to be a key tool in the previous proof — in the monochromatic case. We
prove that (conditionally on the existence of j disjoint black arms) Ī(n,N) is
always an interval, as in the polychromatic case. For that, we use the following
deterministic statement that I(n,N) does not have large “holes”:

Proposition 7. Let j > 1 and σ = B . . . BB of length j. Let α, α′ ∈ Ij,σ(n,N)
with α < α′; then there exists a sequence (αi)06i6r of elements of Ij,σ(n,N),
satisfying the following two properties:

• α = α0 < α1 < · · · < αr = α′;

• for every i ∈ {0, . . . , r − 1}, αi+1 − αi < 2π.

This result directly implies that Ī(n,N) is an interval, and the construction
of the previous sub-section, creating extra turns (step 2 of the proof), gives a
lower bound on the diameter of Ī(n,N): We hence get that for σ constant,
there exists some ε > 0 (depending only on j) such that Ī(n,N) is an interval
of length at least ε log(N/n) with probability tending to 1 as N/n gets large.

The main step in the proof of the density result is the following topological
lemma:

Lemma 8. Let j > 1, and let γ1, . . . , γj be j disjoint Jordan curves contained
in the (closed) annulus {n 6 |z| 6 N}, ordered cyclically and each having its
starting point on the circle of radius n and its endpoint on the circle of radius
N . For each k ∈ {1, . . . , j}, let αk be the winding angle of γk (as defined above)
and let δk be the ray [ne2iπk/j , Ne2iπk/j ]. Assume that, for each pair (k, k′), the
intersection of γk and δk′ is finite. Then, provided all the αk are larger than
2π(1 + 2/j), the union of all the paths γk and δk contains j disjoint paths δ̃1,
. . . , δ̃j, all having angle 2π/j and sharing the same endpoints as the δk.
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In other words: starting from two collections of paths, if their angles differ
enough, one can “correct” the one with the smaller angle in such a way as to
make it turn a little bit more.

Proof. We shall construct the paths δ̃k explicitly. The first step is to reduce the
situation to one of lower combinatorial complexity, namely to the case where
the starting points of the γk are separated by those of the δk. For each k 6 j,
let τk = inf{t : γk(t) ∈ [neiπ(2k−1)/j , Neiπ(2k−1)/j ]} (which is always finite by
our hypotheses), and let

Γ :=

j
⋃

k=1

{γk(t) : 0 6 t 6 τk}.

Γ intersects each of the δk finitely many times, so each of the δk \ Γ has finitely
many connected components: let ∆ be the union of those components that do
not intersect the circle of radius N , and let

Ω0 := {n 6 |z| 6 N} \ (Γ ∪∆).

Let Ω be the connected component of Ω0 having the circle of radius N as
a boundary component. Ω is homeomorphic to an annulus, and for each k,
the point γk(τk) is on its boundary; by construction, the γk(τk) are intertwined
with the (remaining portions of the) rays of angles 2πk/j. We will perform our
construction of the δ̃k inside Ω; continuing them with the δk outside Ω then
produces j disjoint paths satisfying the conditions we need.

Up to homeomorphism, we can now assume without loss of generality that
for each k, γk(0) = neiπ(2k−1)/j . The only thing we lose in the above reduction
is the assumption on the angles of the γk; but since it takes at most one turn
for each of the γk to reach the appropriate argument, we can still assume that
the remaining angles are all larger than 4π/j. In particular, each of the γk will
cross the wedge between angles 2πk/j and 2π(k+1)/j in the positive direction
before hitting the circle of radius N .

For every k 6 j, let θk(t) be the continuous determination of the argument
of γk(t) satisfying θk(0) = (2k − 1)π/j, and let

Tk :=

{

t > 0 :
2πk

j
< θk(t) <

2π(k + 1)

j

}

and Γ̃k = {γk(t) : t ∈ Tk}.

We now describe informally the construction of δ̃k. Start from the point
ne2πik/j , and start following δk outwards, until the first intersection of δk with
Γ̃k. Then, follow the corresponding connected component of Γ̃k, until intersect-
ing either δk or δk+1; follow that one outwards until it intersects either Γ̃k or
the circle of radius N ; iterating the construction, one finally obtains a Jordan
path joining ne2πik/j to Ne2πi(k+1)/j , and contained in the union of δk, δk+1

and Γ̃k (see Figure 4).
All that remains is to prove that the δ̃k are indeed disjoint; by symmetry, it

is enough to do so for δ̃1 and δ̃2. Besides, because the γk are themselves disjoint,
any intersection point between δ̃1 and δ̃2 has to occur on δ2 (at least in the case
j > 2 — but the case j = 2, where they could also intersect along δ1, again
follows by symmetry).
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Figure 4: The construction of the δ̃k (in the case j = 5). The dotted lines are the paths γk ,
and the heavy lines are the δ̃k obtained at the end of the construction.

The intersection of δ̃1 with δ2 consists in a finite collection (Im) of compact
intervals; besides, the points of the intersection are visited by δ̃1 in order of
increasing distance to the origin. Similarly, the intersection of δ̃2 with δ2 consists
in a finite collection (Jl) of compact intervals, which are also visited in order of
increasing distance to the origin.

Suppose that
⋃

Ip and
⋃

Jp have a non-empty intersection; and let z0 be
the intersection point lying closest to the origin. Let p0 and q0 be such that
z0 ∈ Ip0

∩ Jq0 ; notice that z0 is the endpoint closest to the origin of either Ip0

or Jq0 . According to the order in which γ1 (resp. γ2) visits the endpoints of Ip0

(resp. Jq0), this gives rise to eight possible configurations; it is straightforward
in all cases to apply Jordan’s theorem to prove that γ1 and γ2 then have to
intersect, thus leading to a contradiction.

For the purpose of the proof of Proposition 7, we will need a slight variation of
the lemma, where the hypothesis of finiteness of the intersections between paths
is replaced with the assumption that the paths considered are all polygonal lines.
The proof is exactly the same though, and does not even require any additional
notation: whenever two paths, say γk and δk′ , coincide along a line segment, the
definition of Γk amounts to considering some of the endpoints of this segment as
intersections, which in other words is equivalent to shifting γk by an infinitesimal
amount towards the exterior of the wedge used to define Tk in order to recover
finiteness.

Proof of Proposition 7. The previous Lemma is stated with particular curves
on which a surgery can be done, but it can obviously be applied to more general
cases through a homeomorphism of the annulus. The general statement is then
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the following (roughly speaking): Assuming the existence of two families of
j arms with different enough winding angles, it is possible to produce a third
family using the same endpoints as the first one but with a slightly larger winding
angle.

We are now ready to prove Proposition 7. Consider a configuration in which
one can find two families of crossings, say (λk) and (λ′

k), in such a way that
for every k, the difference between the winding angles of λk and λ′

k is at least
2π. Let α0 be the minimal angle in the first family, and apply the topological
lemma with δk = λk and γk = λ′

k: One obtains a new family of pairwise disjoint
paths (λ1

k), which share the same family of endpoints as the (λk), the endpoint
of λ1

k being that of λk+1 (with the obvious convention that j + 1 = 1).
One can then iterate the procedure, applying the topological lemma with

this time δk = λ1
k, and still letting γk = λ′

k; one gets a new family (λ2
k) with the

endpoints again shifted amongst the paths in the same direction. Continuing as
long as the winding angle difference is at least 2π, this construction produces a
sequence (λi

k) of j-tuples of disjoint paths, the winding angles of which vary by
less than 2π at each step. Besides, the construction ends in finitely many steps,
for after j steps, each of the winding angles has increased by exactly 2π. This
readily implies our claim.

Remark 9. Notice that, as early as the second step of the procedure, (λn
k ) and

(λ′

k) will always coincide on a positive fraction of their length, which is why we
needed the above extension of the lemma.

4 Existence of the monochromatic arm expo-

nents

We now prove Theorem 4, stating the existence of the monochromatic expo-
nents α′

j . For that, we use a rather common argument, presented e.g. in [16]:
since the quasi-multiplicativity property holds (item 2. above), it is actually
enough to check that there exists a function fj (which will automatically be
sub-multiplicative itself — one can take C2 = 1 in the quasi-multiplicativity
property) such that, for every R > 1,

P (Aj,B...BB(n,Rn)) → fj(R) (4.1)

as n → ∞. Notice that RSW-type estimates provide both the fact that the
left-hand term in bounded above and below by constants for fixed R as n → ∞,
and a priori estimates on any (potentially subsequential) limit, of the form

R−1/εj 6 fj(R) 6 R−εj

where εj depends only on j.
By Menger’s theorem (see [5]), the complement of the event Aj,B...BB(n,N)

can be written as

Dj(n,N) = {There exists a circuit in Sn,N that surrounds ∂iSn

and contains at most j − 1 black sites}.

This makes it possible to express the event Aj,B...BB(n,N) in terms of the
collection of all cluster interfaces (or “loops”): It is just the event that there

16



does not exist a “necklace” of at most (j− 1) loops, with white vertices on their
inner boundary and black ones on their outer boundary, forming a chain around
∂iSn and such that two consecutive loops are separated by only one black site.

Standard arguments show that the probability that two interfaces touch in
the scaling limit is exactly the asymptotic probability that they “almost touch”
(in the sense that they are separated by exactly one vertex) on discrete lattices
— it is e.g. a simple consequence of the fact that the polychromatic 6-arm
exponent is strictly larger than 2, which in turn is a consequence of RSW-type
estimates (the fact that the polychromatic 5-arm exponent is equal to 2 being
true on any lattice on which RSW holds – at least for colors BWBWW ).

What this means, is that to show convergence of the probability in Equa-
tion (4.1), it is enough to know the probability of the corresponding continuous
event. While we do not know the exact value of the limit, it is nevertheless easy
to check that the event itself is measurable with respect to the full scaling limit
of percolation, as constructed by Camia and Newman in [4], and that is enough
for our purpose. Notice that the measurability of the event in terms of the full
scaling limit is ensured by the exploration procedure described in that paper:
It is proved there that for every ε > 0, all loops of diameter at least ε (with the
proper orientation) are discovered after finitely many steps of the exploration
procedure.

Remark 10. Proving the existence of the exponents only requires the existence
of the function fj, but it is easily seen that in fact the value of α′

j describes the
power law decay of fj(R) as R goes to infinity. However, deriving the value
of the exponent directly from the full scaling limit seems to be difficult, and we
were not able to do it.
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