
HAL Id: ensl-00397749
https://ens-lyon.hal.science/ensl-00397749

Submitted on 23 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generating function approximations at compile time
Jean-Michel Muller

To cite this version:
Jean-Michel Muller. Generating function approximations at compile time. 40th Asilomar Conference
on signals, systems and computers, USA, Oct 2006, Pacific Grove, California, France. pp.328-331.
�ensl-00397749�

https://ens-lyon.hal.science/ensl-00397749
https://hal.archives-ouvertes.fr

Generating function approximations at compile time
Jean-Michel Muller

CNRS - Laboratoire LIP (CNRS, ENS Lyon, INRIA, Université Claude Bernard)

Ecole Normale Supérieure de Lyon

46 alle d’Italie

69364 Lyon cédex 07

FRANCE

Abstract— Usually, the mathematical functions used in a
numerical programs are decomposed into elementary functions
(such as sine, cosine, exponential, logarithm...), and for each
of these functions, we use a program from a library. This
may have some drawbacks: first in frequent cases, it is a
compound function (e.g. log(1 + exp(−x))) that is needed, so
that directly building a polynomial or rational approximation
for that function (instead of decomposing it) would result in a
faster and/or more accurate calculation. Also, at compile-time,
we might have some information (e.g., on the range of the input
value) that could help to simplify the program. We investigate
the possibility of directly building accurate approximations at
compile-time.

I. INTRODUCTION

There are several solutions for implementing the elemen-

tary and special functions in software as well as in hardware:

polynomial or rational approximations, table look-up, shift-

and-add CORDIC-like algorithms, etc.

The solution that is most used is the use of polynomial ap-

proximations, because of its versatility. In this paper, we will

focus on this solution only. The basic algorithm for computing

“minimax” polynomial approximations to functions in a given

interval is the Remez algorithm [10], [11].

In the 70’s and the beginning of the 80’s, computing such

approximations was a difficult and rather long task. Hence, the

approximations used to be designed using big machines, then

published in textbooks(famous references were Hart et al [8],

or Cody and Waite [3]). The elementary function libraries

would then be carefully written using these approximations.

Now, thanks to some algorithmic progress (especially the

availability of fast and reasonably reliable multiple-precision

arithmetic) and, even more, thanks to the huge increase

in terms of available computing power (speed as well as

memory) in the last 3 decades, such approximations can be

computed in a few seconds on any PC, for instance using

tools such as Maple or Mathematica.

And yet, this drastic change does not show much for the

end user: even if the libraries can be designed more efficiently

and quickly, even if they are significantly more accurate, we

still basically do the same thing: we decompose the functions

we wish to evaluate into elementary functions, that are called

from libraries.

The goal of this paper is to investigate an alternate solution:

could we design the approximations at compile time, so

that we can use possible contextual information (on range,

rounding mode, desired accuracy. . .) and directly approximate

a compound function ? This is a long-term project, and this

paper just presents the initial ideas.

Of course, minimax approximations are not the whole

thing, and there is much human expertise in the libraries.

We will try to see how we can – at least partially – replace

it.

The usual steps when designing a function are:

• range reduction: we must find an adequate compromize

between the domain of the reduced argument and degree

of the approximation;

• we start from the minimax polynomial given by the

Remez algorithm;

• we tune the coefficients (so that they are exactly repre-

sentable in single or double precision, so that the very

first ones coincide with those of the Taylor series...);

• we find an evaluation scheme (Horner, Estrin, in-

between) for the generated polynomial. This depends

much on target architecture (depth of the pipelines, etc.);

• we evaluate a bound (as tight as possible) on the roundoff

error.

. . . and we restart from scratch if the global error (approxi-

mation+roundoff) is too large.

There are several reasons for trying to generate approxi-

mations at compile-time:

• what we frequently need is compound functions: for

instance, we could directly generate an approximation

to log (1 + e−x) instead of calling exp and log (hence

using 2 consecutive approximations). This might result

in faster and smaller code, and might also sometimes

improve the accuracy;

• we can try to specialize programs: at compile time,

some special cases (infinities, NaNs) may be known

not to happen, the input domain of the function (or

3281424407850/06/$20.00

a bound on that domain) may be known (which is

important, the smaller the domain in which we need a

polynomial approximation, the lower the degree of that

approximation for a given accuracy). The rounding mode

and the desired final accuracy may also sometimes be

known at compile time.

II. CLASSICAL RESULTS ON POLYNOMIAL

APPROXIMATION

The basic result on minimax approximation is the following

theorem, due to Chebyshev.

Theorem 1 (Chebyshev): p∗ is the minimax degree-n ap-

proximation to f on [a, b] if and only if there exist at least

n + 2 values

a ≤ x0 < x1 < · · · < xn+1 ≤ b

such that:
p∗(xi)− f(xi)

= (−1)i [p∗(x0)− f(x0)]

= ±||f − p∗||∞.

Remez’s algorithm [11] consists in iteratively building the

set of points x0, x1, . . . , xn+1 of Chebyshev’s theorem. Al-

though making sure that it almost always work is complicated,

the rough sketch is simple:

1) Start from an initial set x0, x1, . . . , xn+1 in [a, b].
2) Consider the linear system of equations
�����
����

p0 + p1x0 + p2x
2
0 + · · · + pnxn

0 − f(x0) = +ε
p0 + p1x1 + p2x

2
1 + · · · + pnxn

1 − f(x1) = −ε
p0 + p1x2 + p2x

2
2 + · · · + pnxn

2 − f(x2) = +ε
· · · · · ·
p0 + · · · + pnxn

n+1 − f(xn+1) = (−1)n+1ε.

we have n + 2 equations, with n + 2 unknowns (p0,

. . . , pn, ε) thus, in non-degenerated cases, we have

one solution (p0, p1, . . . , pn, ε) only. Solving the linear

system gives a polynomial P (x) = p0 + p1x + · · · +
pnxn.

3) Compute the points yi in [a, b] where P − f has its

extremes, and start again (step 2), replacing the x′is by

the yi’s.

This algorithm exhibits a quadratic convergence [12],

hence in general a few iterations only are necessary (but one

iteration requires solving a linear system and computing the

extremes of P − f). It is now available on PCs in tools

such as Maple. For instance, on a DELL810 laptop with

a 1.86GHz processor and 2 Gbytes of RAM, the degree-5
minimax approximation to log(1 + e−x) in [0, 1] is found in

less than 1.2 seconds.

And yet, the obtained approximations are not fully satisfy-

ing:

• the coefficients are “exact” coefficients, that are not

exactly representable in floating-point (FP) arithmetic.

One can round them to the nearest FP number, but it

very unlikely that by doing that we will get the best

approximation among the ones with FP coefficients;

• the approximation error given by most tools is only an

estimate. They sometimes overestimate the actual error

and sometimes underestimate it.

When designing a library dedicated to a given function, these

problems are easily overcome by human expertise. When

trying to automatically generate the approximations this is

more difficult. Also, how can we certify that the obtained

result will be satisfactory?

III. VARIOUS TOOLS DESIGNED BY THE ARENAIRE TEAM

The Arenaire group research of LIP laboratory et ENS Lyon

http://www.ens-lyon.fr/LIP/Arenaire/ has de-

signed several tools that may help to solve these problems:

• a Remez algorithm and a validated infnorm in C (Chevil-

lard, Lauter) that uses multiple precision interval arith-

metic and returns certain and tight bounds on

max
[a,b]

|p(x)− f(x)|

• a tool that computes the best or the nearly best poly-

nomial among the ones that satisfy constraints on the

size of the coefficients (Brisebarre, Chevillard, Muller,

Tisserand, Torres). To do that, we use two approaches,

based on the reduction of our initial problem to

– enumerating integer points in a polytope [2];

– using the LLL algorithm (lattice reduction) [?].

• Gappa (Melquiond): a tool that computes error bounds

on FP calculations, and generates formal proofs of these

bounds [9];

These tools have been heavily used for building our CR-

LIBM library of correctly-rounded elementary functions [4],

[6], [7].

A. Polynomial generation

Let us illustrate what can the polynomial generation tool do

with an example used in CRLIBM, and obtained by Sylvain

Chevillard and Christoph Lauter. To evaluate function arcsin
near 1 with correct rounding, after a change of variables we

actually have to compute

g(z) =
arcsin(1− (z + m))− π

2√
2 · (z + m)

where

0xBFBC28F800009107 ≤ z ≤ 0x3FBC28F7FFFF6EF1

(roughly speaking −0.110 ≤ z ≤ 0.110) and m =
0x3FBC28F80000910F � 0.110. We want to generate a

329

degree-21 polynomial approximation. If we round to nearest

the coefficients of the Remez polynomial, we get the error

curve given in Figure 1. If we use our tool (with the LLL

algorithm), we get the error curve given in Figure 2.

-8e-32

-7e-32

-6e-32

-5e-32

-4e-32

-3e-32

-2e-32

-1e-32

 0

 1e-32

-0.1 -0.05 0 0.05 0.1

re
la

tiv
e

er
ro

r

z

"plot.dat" using 1:2

Fig. 1. Difference between g(z) and the polynomial obtained by rounding
to the nearest the coefficients of the Remez polynomial.

-1e-36

-8e-37

-6e-37

-4e-37

-2e-37

 0

 2e-37

 4e-37

 6e-37

 8e-37

 1e-36

-0.1 -0.05 0 0.05 0.1

re
la

tiv
e

er
ro

r

z

"plot.dat" using 1:2

Fig. 2. Difference between g(z) and the polynomial obtained by our tool.

That is, the generated polynomial is almost 10000 times

more accurate than the naive rounded Remez polynomial.

B. Evaluation and validation

Once we have generated a polynomial, we have to de-

sign an evaluation scheme (using Horner’s scheme, Estrin’s

scheme or something in-between). This will depend much

on the target architecture (depth of the pipeline, availability

of one or several FPU, availability of a fused multiply-add

instruction. . .).

Once the evaluation scheme is known, we must com-

pute a tight bound on the evaluation error. We will

start from Melquiond’s Gappa tool [5], [9] (available

at http://lipforge.ens-lyon.fr/www/gappa/).

Gappa bounds values and rounding errors of a straight-line

program, and generates a formal proof of these bounds that

can be checked using tools such as Coq or PVS. Gappa is

an interactive tool (it needs hints from the user). And yet, in

the very particular case of our applications (we only evaluate

polynomials), we should be able to automate it.

IV. AN EXAMPLE

Consider function log2(1+2−x), for x ∈ [0, 1]. We look for

a polynomial approximation of degree 6, with single precision

coefficients.

• the approximation error of the minimax polynomial (with

real coefficients) is 8.34× 10−10;

• if we round to the nearest single-precision number the

coefficients of the minimax polynomial, we get an ap-

proximation error equal to 1.19× 10−8;

• using our method, we get the following polynomial,

whose coefficients are single-precision numbers:

P (x) =

5750871
137438953472 × x6 + 13462391

549755813888 × x5

− 7528339
4294967296 × x4 + 14577171

2199023255552 × x3

+ 5814467
67108864 × x2 − 8388607

16777216 × x + 1;

the approximation error is less than 1.024× 10−9.

• assuming log2 and 2x are correctly-rounded functions,

the maximum error obtained by evaluating log2(1+2−x)
usually on 10000 samples is 8.6× 10−8.

• using our polynomial with Horner’s scheme, the maxi-

mum error is 7.3× 10−8;

In that case, we get a slightly more accurate, and certainly

much faster and smaller code.

V. CONCLUSION, AND GENERAL METHOD

In cooperation with a compiler group of ST Microelectron-

ics, we are going to investigate the possibility of generating

function approximations at compile-time, for some specific

signal processing applications. The general sketch of the

method will be:

1) determinate which functions might be interesting to

directly approximate;

2) determinate, as sharply as possible, the input domains,

using:

• interval arithmetic;

• “annotations” by the programmer;

• possibly, questions to the programmer;

3) run the Remez algorithm to find the minimax approxi-

mations. If they are not interesting, give up, otherwise:

4) run our algorithms to find “real world” approximations;

5) choose the polynomial evaluation algorithm (Horner,

Estrin. . .). The compiler is “aware” that it evaluates

a polynomial → must be used to find a good Estrin

scheme;

330

6) run Gappa to evaluate a bound on the error (approxi-

mation+rounding errors). Gappa needs interaction, but

if we restrict to polynomials, should be automated.

ACKNOWLEDGEMENTS

Nicolas Brisebarre, Sylvain Chevillard and Christoph

Lauter provided some of the examples presented here, and

did a great work on polynomial approximation generation. I

owe them many thanks.

REFERENCES

[1] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions
with formulas, graphs and mathematical tables. Applied Math. Series
55. National Bureau of Standards, Washington, D.C., 1964.

[2] Nicolas Brisebarre, Jean-Michel Muller, and Arnaud Tisserand. Com-
puting machine-efficient polynomial approximations. ACM Transac-
tions on Mathematical Software, 32(2):236–256, June 2006.

[3] W. Cody and W. Waite. Software Manual for the Elementary Functions.
Prentice-Hall, Englewood Cliffs, NJ, 1980.

[4] Catherine Daramy, David Defour, Florent de Dinechin, and Jean-Michel
Muller. CR-LIBM, a correctly rounded elementary function library. In
SPIE 48th Annual Meeting International Symposium on Optical Science
and Technology, August 2003.

[5] M. Daumas and G. Melquiond. Generating formally certified bounds
on values and round-off errors. In 6th Conference on Real Numbers
and Computers, pages 55–70, Schloss Dagstuhl, Germany, November
2004.

[6] F. de Dinechin, D. Defour, and C. Lauter. Fast correct rounding
of elementary functions in double precision using double-extended
arithmetic. Research report 5137, INRIA, March 2004. Submitted
to TOMS.

[7] Florent de Dinechin, Christof Lauter, and Jean-Michel Muller. Fast
and correctly rounded logarithms in double-precision. Theoretical
Informatics and Applications (to appear), 2006.

[8] J. F. Hart, E. W. Cheney, C. L. Lawson, H. J. Maehly, C. K. Mesztenyi,
J. R. Rice, H. G. Thacher, and C. Witzgall. Computer Approximations.
Wiley, New York, 1968.

[9] G. Melquiond. De l’arithmétique d’intervalles à la certification
de programmes. PhD thesis, Ecole Normale Supérieure de Lyon,
November 2006. Available at http://www.ens-lyon.fr/LIP/
Pub/PhD2006.php.

[10] Jean-Michel Muller. Elementary Functions, Algorithms and Implemen-
tation. Birkhäuser Boston, 2nd edition, 2006.

[11] E. Remez. Sur un procédé convergent d’approximations successives
pour déterminer les polynômes d’approximation. C.R. Académie des
Sciences, Paris, 198:2063–2065, 1934.

[12] L. Veidinger. On the numerical determination of the best approxi-
mations in the Chebyshev sense. Numerische Mathematik, 2:99–105,
1960.

331

