
HAL Id: ensl-00404206
https://ens-lyon.hal.science/ensl-00404206

Preprint submitted on 15 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static Worksharing Strategies for Heterogeneous
Computers with Unrecoverable Failures

Anne Benoit, Yves Robert, Arnold Rosenberg, Frédéric Vivien

To cite this version:
Anne Benoit, Yves Robert, Arnold Rosenberg, Frédéric Vivien. Static Worksharing Strategies for
Heterogeneous Computers with Unrecoverable Failures. 2009. �ensl-00404206�

https://ens-lyon.hal.science/ensl-00404206
https://hal.archives-ouvertes.fr


Static Worksharing Strategies

for Heterogeneous Computers with Unrecoverable Failures

Anne Benoit1,2, Yves Robert1,2,3, Arnold Rosenberg4, and Frédéric Vivien1,2,5

1 Ecole Normale Supérieure de Lyon, France
{Anne.Benoit,Yves.Robert,Frederic.Vivien}@ens-lyon.fr

2 Colorado State University, Fort Collins, USA
rsnbrg@cs.umass.edu

LIP Research Report RR-2009-23

Abstract. One has a large workload that is “divisible” (its constituent work’s granularity can be
adjusted arbitrarily) and one has access to p remote computers that can assist in computing the
workload. How can one best utilize the computers? Two features complicate this question. First, the
remote computers may differ from one another in speed. Second, each remote computer is subject
to interruptions of known likelihood that kill all work in progress on it. One wishes to orchestrate
sharing the workload with the remote computers in a way that maximizes the expected amount of
work completed.
We deal with three distinct problem instances. The simplest problem ignores communication costs, but
considers a heterogeneous set of resources that may differ in speed. The other two problems account
for communication costs, first with identical remote computers, and then with computers that may
differ in speed. We provide exact expressions for the optimal work expectation for all three problems.
For the first two problems we provide explicit, closed-form expressions; for the last (and most general)
problem, we provide a recurrence for computing this optimal value.

A short version of this report appears in HeteroPar 2009, the International Conference on Heterogeneous
Computing, jointly published with Euro’Par 2009, LNCS Springer Verlag.

Acknowledgments. A. Benoit, Y. Robert, and F. Vivien are with Université de Lyon, France. Y. Robert is
with the Institut Universitaire de France. F. Vivien is with INRIA, France. The work of A. Benoit and
Y. Robert was supported in part by the ANR StochaGrid project. The work of A. Rosenberg was supported
in part by US NSF Grant CNS-0842578.



1 Introduction

This paper extends classic results from divisible load theory [10] concerning master-slave computing plat-
forms. Our goal is to optimally distribute a given workload to p remote “slave” computers that may differ
in speeds. The remote computers are connected to the “master” via a bus or network, and the master sends
serially a fraction of the load to each one. The problem is to determine what fraction of the load should be
sent to each remote computer, and in which order. This problem has received considerable attention in the
recent past, and closed-form formulas have been derived to compute these load fractions [6, 4].

We revisit this problem in the context of remote computers that are subject to unrecoverable failures [5],
and we aim to maximize the expected amount of total work that will be completed. For intuition: An
unrecoverable failure may correspond to a hardware crash, an event more and more likely to occur with the
advent of massively parallel grid platforms [1, 2]. But an unrecoverable failure may also happen with the
sudden return of the user/owner in a cycle-stealing episode [3, 9, 11]. Consider the following scenario: on
Friday evening, a PhD student has a large set of simulations to run. S/he has access to a set of computers
from the lab, but each computer can be reclaimed at any instant by its owner. In any case, everybody will
be back to work on Monday 8am. What is the student’s best strategy? How much simulation data should
s/he send to, and execute on, each accessible computer?

We cleave to the preceding scenario and assume that the remote computers are subject to a known risk that
grows with time. More precisely: the probability that a computer will be interrupted increases linearly with
the time the computer has been available. Other failure probability distributions could be envisioned, but the
linear distribution is very natural in the absence of further information. Also, the linear risk function turns
out to be tractable, in the sense that we have succeeded in deriving optimality results for this distribution.
The major achievement of this paper is to provide the optimal distribution strategy to maximize the expected
total amount of work done.

The paper is organized as follows. First we describe the formal framework in detail, in Section 2. Then we
address three optimization problems. The simplest problem ignores communication costs, but considers a
heterogeneous set of resources that may differ in speed (Section 3). The other two problems account for
communication costs, first with identical remote computers (Section 4) and then with computers that may
differ in speed (Section 5). We provide exact expressions for the optimal work expectation for all three
problems. For the first two problems we provide explicit, closed-form expressions; for the last (and most
general) problem, we have to resort to a complicated recurrence formula that provides the optimal solution
in linear time. Then we provide a brief overview of related work in Section 6; in particular, we compare our
approach and results with those of our previous work [5]. Finally, we give some conclusions and perspectives
in Section 7.

2 Framework

We have W units of divisible work to execute on p remote computers. Each of these p computers is susceptible
to unrecoverable interruptions that “kill” all work in progress (on that resource). All remote computers share
the same perfectly known instantaneous probability of being interrupted, and this probability increases with
the amount of time the computer has been operating (whether working or not). Within our model, all
computers share the same risk function, i.e., the same instantaneous probability, Pr(T ), of having been
interrupted by the end of the first T time units.

The risk function that is the focus of our study is the linear function Pr(w) = κw. It is the most natural
model in the absence of further information: the risk of interruption grows linearly with the time that the
computer has been available, or equivalently with the amount of work it could have done. The density

2



function is then dPr = κdt for t ∈ [0, 1/κ] and 0 otherwise, so that

Pr(T ) = min

{

1,

∫ T

0

κdt

}

= min{1, κT}.

We suppose that all p computing remote computers obey the same probability failure distribution. For
instance in the above cycle-stealing scenario, the remote computers are computers from the CS department
that can be loaned during the week-end, so they have the same probability of having their owner returning.
With more information about the owners, we could refine the scenario and assume different laws for, say,
students and staff.

The speed of computer Pi is speedi. The computers are interconnected by a bus or homogeneous network
of bandwidth bw. Each computer will receive a single message from the master that contains all the data
necessary to execute its fraction of work: this is a single-round distribution strategy with the terminology
of [6]. Communications are done sequentially to each receiving computer, as in the classical divisible load
model of [6]. This corresponds to a (somewhat pessimistic) one-port model [8], with single-threaded execution
and blocking send/receive MPI primitives [12].

We introduce two important notations:

– z = κ
bw

, the failure-rate per unit-load communication from the master to any computer;
– xi = κ

speedi
, the failure-rate per unit-load computation by computer Pi.

These notations are used as follows. Suppose for example that we send a load w1 to computer P1, and then
a load w2 to computer P2. The expected amount of work executed by P1 is

E1 = w1 (1 − (z + x1)w1) .

To understand this formula, simply observe that P1 is communicating during the first w1/bw time-units and
computing during the next w1/speed1 time-units. Its risk of being interrupted linearly increases with elapsed
time, regardless of whether it is communicating or computing. Similarly, we derive that the expected amount
of work executed by P2 is

E2 = w2 (1 − z(w1 + w2) − x2w2) .

Indeed, P2 has started computing only after both communications from the master to P1 and P2 have
completed, which takes (w1 + w2)/bw time-steps; then it computes during w2/speed2 additional time-steps.
Again, its risk of being interrupted linearly increases with elapsed time, regardless of whether it is waiting
(while the master communicates to P1), or communicating, or computing. If we had only these two remote
computers (p = 2), we would aim at maximizing E1 + E2, the expected total amount of work done.

Finally, we make a technical assumption and assume that the total load is small enough so that we distribute
it entirely to the p computers. Indeed, if the total load is too large, all computers will fail with probability
one before completing their chunk. In the following we assume that the p chunks received by the computers
form a partition of the original load, and that there is a non zero probability that the last computer does
not fail before or during its computation. A sufficient condition for this latter condition to hold is

W ≤
1

z + xmax
,

where xmax = κ
min1≤i≤p speedi

is the failure-rate per unit-load computation of the slowest computer. To see this,

simply note that the last computer, say Pi, can always start computing at time-step Y/bw, where Y ≤ W is
the total load sent to all preceding computers: introducing idle times in the communication cannot improve
the solution, as the failure risk grows with time. Then Pi needs V/speedi time-steps to execute its own chunk
of size V , where Y + V ≤ W , hence the claim.

We can now formally state the optimization problem:

3



Definition 1. We let Distrib(p) denote the problem to compute Eopt(W, p), the optimal value of the expected
total amount of work done when distributing the entire workload W ≤ 1

z+xmax
to the p remote computers.

In the following, we first deal with the case where z = 0, i.e., when communication costs can be neglected.
Then we tackle the case with communication costs and identical remote computers (xi = x for 1 ≤ i ≤ p)
before moving to the general case with communication costs and different-speed remote computers.

3 Heterogeneous remote computers, no communication costs

In this section we deal with the Distrib problem when we have p different-speed remote computers but do
not pay any communication cost. This models the case where computations are prevailing in the application.
We need to introduce symmetric functions to state the result:

Definition 2. Given n ≥ 1, for 0 ≤ i ≤ n, σ
(n)
i denotes the i-th symmetric function of x1, x2, . . . , xn:

σ
(n)
i =

∑

1≤j1<j2<···<ji≤n

i
∏

k=1

xjk
.

By convention σ
(n)
0 = 1.

For instance with n = 3, σ
(3)
1 = x1 + x2 + x3, σ

(3)
2 = x1x2 + x1x3 + x2x3 and σ

(3)
3 = x1x2x3.

Theorem 1. When z = 0 the optimal solution to Distrib(p) is obtained when the chunk sent to Pi is of

size
Q

k 6=i
xk

σ
(p)
p−1

W , leading to

Eopt(W, p) = W −
σ

(p)
p

σ
(p)
p−1

W 2.

Proof. Let αi,p =
Q

k 6=i
xk

σ
(p)
p−1

W and fp =
σ(p)

p

σ
(p)
p−1

. We show the result by induction. Note that it holds for p = 1,

because α1,1 = 1 and f1 = x1.

To help the reader follow the derivation, we prove the result for p = 2 before dealing with the general case.
Assume that the size of the chunk sent to P1 is Y . The size of the chunk sent to P2 is thus W − Y . Both
chunks are sent in parallel, as no cost is assessed for communications. The expected amount of work done is

E(Y ) = Y (1 − x1Y ) + (W − Y ) (1 − x2(W − Y )) .

We rewrite
E(Y ) = W − x2W

2 − (x1 + x2)Y
2 + 2x2WY.

The optimal value is Y (opt) = x2
x1+x2

W = α1,2W as desired (and W −Y (opt) = x1
x1+x2

W = α2,2W ). Reporting

the value of Y (opt) into the expression of E(Y ), we derive that

Eopt(W, 2) = E(Y (opt)) = W − f2W
2,

where

f2 = x2 −
x2
2

x1 + x2
=

x1x2

x1 + x2
=

σ
(2)
2

σ
(2)
1

.

4



This proves the claim for p = 2.

Assume now that the results holds up to n computers. Consider the case of n + 1 computers, and assume
that the size of the chunk sent to Pn+1 is W − Y . By induction, the optimal expected amount of work done
by the first n computers is Eopt(Y, n) = Y (1 − fnY ), and this is achieved by sending a chunk of size αi,nY
to Pi for 1 ≤ i ≤ n. The expected amount of work done is then

E(Y ) = Y (1 − fnY ) + (W − Y ) (1 − xn+1(W − Y )) .

We proceed just as above. The optimal value is Y (opt) = xn+1

fn+xn+1
W and we derive Eopt(W, n + 1) =

E(Y (opt)) = W − fn+1W
2 where

fn+1 = xn+1 −
x2
n+1

fn + xn+1
.

We recognize that

σ(n)
n + xn+1σ

(n)
n−1 = σ(n+1)

n

so that fn + xn+1 =
σ(n+1)

n

σ
(n)
n−1

and

fn+1 = xn+1 −
x2
n+1σ

(n)
n−1

σ
(n+1)
n

=
xn+1

(

σ
(n+1)
n − xn+1σ

(n)
n−1

)

σ
(n+1)
n

=
xn+1σ

(n)
n

σ
(n+1)
n

=
σ

(n+1)
n+1

σ
(n+1)
n

as desired.

Also, Y (opt) = xn+1

fn+xn+1
W =

xn+1σ
(n)
n−1

σ
(n+1)
n

W . By induction, for 1 ≤ i ≤ n, we get

αi,n+1 = αi,n

xn+1σ
(n)
n−1

σ
(n+1)
n

=
xn+1σ

(n)
n−1

∏

1≤k≤n,k 6=i xk

σ
(n)
n−1σ

(n+1)
n

=
xn+1

∏

1≤k≤n,k 6=i xk

σ
(n+1)
n

=

∏

1≤k≤n+1,k 6=i xk

σ
(n+1)
n

as desired. It remains to check the value of

αn+1,n+1 = 1 −
xn+1σ

(n)
n−1

σ
(n+1)
n

=
σ

(n+1)
n − xn+1σ

(n)
n−1

σ
(n+1)
n

=

∏

1≤k≤n xk

σ
(n+1)
n

which concludes the proof. �

We see that the optimal solution is symmetric: the contribution of each computer is a (somewhat complicated
but) symmetric function of all computer speeds.

4 Homogeneous remote computers, with communication costs

We now move to the case with communication costs. Before dealing with the general case of heterogeneous
remote computers, which turns out to be difficult, we address the problem with identical remote computers:

Theorem 2. When xi = x (identical speeds), the optimal solution to Distrib(p) is obtained with same size
chunks (hence of size W

p
). The optimal expected total amount of work done is

Eopt(W, p) = W −
(p + 1)z + 2x

2p
W 2.

5



Proof. The proof is similar to that of Theorem 1. Let fp = (p+1)z+2x

2p
. We show the result by induction. Note

that it holds for p = 1, because f1 = z + x.

Assume that the result holds for up to n computers. Consider the case of n + 1 computers, and assume that
the size of the chunk sent to Pn+1 is W − Y . By induction, the optimal expected amount of work done by
the fist n computers is Eopt(Y, n) = Y (1 − fnY ), and this is achieved by sending a chunk of size Y

n
to each

Pi, 1 ≤ i ≤ n. The expected amount of work done is then

E(Y ) = Y (1 − fnY ) + (W − Y ) (1 − zW − x(W − Y )) .

To understand the value of the contribution of Pn+1 to E(Y ), simply note that it has to wait for the whole
workload to be distributed (accounted for by the term zW ) before it can start computing its own chunk
(accounted for by the term x(W − Y )). We rewrite E(Y ) as

E(Y ) = W − (z + x)W 2 − (fn + x)Y 2 + (z + 2x)WY.

The optimal value is Y (opt) = z+2x
2(fn+x)W and we derive that Eopt(W, n + 1) = E(Y (opt)) = W − fn+1W

2,

where

fn+1 = z + x −
(z + 2x)2

4(fn + x)
.

Using the induction hypothesis, we get fn + x = (n+1)z+2x

2n
+ x = (n+1)(z+2x)

2n
, so that

fn+1 = z + x −
n(z + 2x)

2(n + 1)
=

(n + 2)z + 2x

2(n + 1)

as expected. We also obtain Y (opt) = n
n+1W , so that each Pi (with i ≤ n) receives a chunk of size Y (opt)

n
= W

n+1 .

We deduce that Pn+1 receives a chunk of that same size (or we can directly check that W − Y (opt) = W
n+1 ).

This concludes the proof. �

Interestingly, the optimal solution involves to send same-size chunks to all computers. In contrast, in the
classical divisible load setting, when we aim at minimizing the total time needed to execute a certain amount
of load, all computers terminate their computations simultaneously [6], so that the first computers served
by the master receive longer chunks.

5 Heterogeneous remote computers, with communication costs

We are now ready for the general case, with communication costs and different-speed computers. We need a
few notations before stating the main result of this paper:

Definition 3. We define the following sequence: λ0 = λ1 = 4 and for n ≥ 2, λn = λn−1 − 1
4λn−2. For

convenience we also let λ−1 = 0.

Note that we can compute that λn = 4(1+n)
2n for all n ≥ 0. The sequence λ is used to characterize the optimal

solution:

Theorem 3. In the general case, the optimal solution to Distrib(p) does not depend upon the ordering
of the communications from the master. When using the ordering P1, P2, . . . , Pp, the optimal solution is
obtained when the chunk sent to Pi is of size αi,pW , leading to the optimal expected amount of work done

Eopt(W, p) = W − fpW
2,

where

6



– fp =

∑p

i=0 λiσ
(p)
p−iz

i

∑p−1
i=0 λiσ

(p)
p−i−1z

i
for p ≥ 1;

– αp,p =
2fp−1 − z

2(fp−1 + xp)
for p ≥ 2 and α1,1 = 1;

– αi,p =
z + 2xi−1

2(fi−1 + xi)
(1 − αi+1,p) for p − 1 ≥ i ≥ 2;

– α1,p = 1 − α2,p for p ≥ 2.

Proof. The proof is similar to that of Theorems 1 and 2, but it is more involved. We show the result by
induction. Note that it holds for p = 1, because f1 = λ0x1+λ1z

λ0
= z + x1.

To give intuition for the result, in particular why the ordering of the communications is not important,
consider the case with two computers, P1 and P2, and assume that they are served in this order (first P1,
then P2). If we send a chunk of size Y to P1 and one of size W − Y to P2 we derive that the expectation of
the amount of work done is

E(Y ) = Y (1 − f1Y ) + (W − Y ) (1 − (zW + x2(W − Y )) .

As before, to understand this equation, we note that P2 is waiting for the first chunk to be sent to P1; then it
is receiving its own chunk; both steps account for the term zW in the right hand side. Finally, P2 computes
its chunk, whence the term x2(W − Y ). We rewrite

E(Y ) = W − (z + x2)W
2 − (f1 + x2)Y

2 + (z + 2x2)WY.

The optimal value is Y (opt) = z+2x2
2(f1+x2)

W = α2,2W and we derive that

Eopt(W, 2) = W − f2W
2

where

f2 = z + x2 −
(z + 2x2)

2

4(f1 + x2)

which after some easy manipulation becomes

f2 =
4x1x2 + 4(x1 + x2)z + 3z2

4(x1 + x2 + z)
,

as desired. We see that the formula is symmetric in x1 and x2, thereby showing that the ordering of the
communications has no significance.

Assume now that the result is true up to n computers, and consider n + 1 computers that are served in the
order P1, . . . , Pn+1. Suppose that we send a chunk of size W − Y to Pn+1. We know by induction that the
best way to distribute the remaining Y units of work to the first n computers is independent of the ordering,
and that the optimal expectation Eopt(W, n) is given by Eopt(W, n) = W − fnW 2.

The total expectation E(Y ) for the n + 1 computers is obtained as previously:

E(Y ) = W − (z + xn+1)W
2 − (fn + xn+1)Y

2 + (z + 2xn+1)WY.

The optimal value is Y (opt) = z+2xn+1

2(fn+xn+1)
W and we derive that

fn+1 = z + xn+1 −
(z + 2xn+1)

2

4(fn + xn+1)
.

7



We know by induction that fn = an

bn
, where an =

∑n

i=0 λiσ
(n)
n−iz

i and bn =
∑n−1

i=0 λiσ
(n)
n−i−1z

i. We have

fn + xn+1 = an+xn+1bn

bn
and

an + xn+1bn =

n−1
∑

i=0

λi

(

σ
(n)
n−i + xn+1σ

(n)
n−i−1

)

zi + λnzn.

But we recognize that for 0 ≤ i ≤ n − 1, we have

σ
(n)
n−i + xn+1σ

(n)
n−i−1 = σ

(n+1)
n−i . (1)

We also have σ
(n)
0 = σ

(n+1)
0 = 1, so that

bn+1 = an + xn+1bn =

n
∑

i=0

λiσ
(n+1)
n−i zi.

Now we report this result into the expression of fn+1 and we obtain fn+1 = an+1

bn+1
, where

an+1 = bn+1(z + xn+1) −
1

4
(z + 2xn+1)

2bn

=

(

n
∑

i=0

λiσ
(n+1)
n−i zi

)

(z + xn+1) − (
z2

4
+ xn+1z + x2

n+1)

(

n−1
∑

i=0

λiσ
(n)
n−i−1z

i

)

= zn+1(λn −
λn−1

4
) +

n
∑

i=1

zi(Ai + Bi − Ci − Di − Ei) + λ0(σ
(n+1)
n xn+1 − σ

(n)
n−1x

2
n+1)

where we have
Ai = λiσ

(n+1)
n−i xn+1 for 1 ≤ i ≤ n

Bi = λi−1σ
(n+1)
n−i+1 for 1 ≤ i ≤ n

Ci = λi−2

4 σ
(n)
n−i+1 for 2 ≤ i ≤ n, and C1 = 0

Di = λi−1σ
(n)
n−ixn+1 for 1 ≤ i ≤ n

Ei = λiσ
(n)
n−i−1x

2
n+1 for 1 ≤ i ≤ n − 1, and En = 0.

Next we use Equation (1) to derive Ai − Ei = λiσ
(n)
n−ixn+1, Bi − Di = λi−1σ

(n)
n−i+1, then Bi − Di − Ci =

(

λi−1 −
λi−2

4

)

σ
(n)
n−i+1 = λiσ

(n)
n−i+1, and finally Ai + Bi − Ci − Di − Ei = λiσ

(n+1)
n−i+1. As for the first and last

terms, we get λn − λn−1

4 = λn+1 = λn+1σ
(n+1)
0 and λ0(σ

(n+1)
n xn+1 − σ

(n)
n−1x

2
n+1) = λ0σ

(n)
n xn+1 = λ0σ

(n+1)
n+1 .

Altogether, we do obtain

an+1 =

n+1
∑

i=0

λiσ
(n+1)
n+1−iz

i,

which establishes the inductive formula. Also, because the formula is symmetric, we see that the ordering of
the communications has no impact. This concludes the proof of the theorem for the value of Eopt(W, p).

As for the size of the chunks, we have found that Y (opt) = z+2xn+1

2(fn+xn+1)
W , hence with p computers,

αp,p = 1 −
z + 2xp

2(fp−1 + xp)
=

2fp−1 − z

2(fp−1 + xp)

as desired. We proceed by induction to determine the value of αi,p for i = p − 1 down to i = 2, and then
i = 1. With p = 2, we check that α2,2 = z+2x1

2(z+x1+x2)
(remember that f1 = z + x1) and then α1,2 = z+2x2

2(z+x1+x2)
.

�

The interested reader can check that we retrieve the values of fp and αi,p given in Theorem 1 when z = 0,
and those given in Theorem 2 when xi = x.

8



6 Related work

The divisible-load model is a reasonable abstraction of an application made up of a large number of identical,
fine-grained parallel computations. Such applications are found in many scientific areas, and we refer the
reader to the survey paper [10] and the journal special issue [7] for detailed examples. Also, the divisible-load
approach has been applied successfully to a variety of computing platforms, such as bus-shaped, star-shaped,
and even tree-shaped platforms. Despite the extensive literature on the divisible-load model, to the best of
our knowledge, the current study is the first to consider the divisible-load problem on master-slave platforms
whose computers are subject to unrecoverable failures/interruptions.

Our earlier work [5], and its predecessors [3, 9, 11], also consider computers with unrecoverable failures/inter-
ruptions, but with major differences in the models. In this paper, we allow heterogeneous computers and
communication costs, while [5] focuses only on identical computers without communication costs. To “com-
pensate” for the additional complexity in the model we study here, we have restricted ourselves in this
paper to scenarios where the entire workload is distributed to the remote computers, a strategy that is often
suboptimal, even when scheduling a single remote computer [5]. Furthermore, we have not considered here
the possible benefits of replicating the execution of some work units on several remote computers, a key
tool for enhancing expected work production in [5]. Obviously, it would be highly desirable to combine the
sophisticated platforms of the current study with the sophisticated algorithmics of [5]. We hope to do so in
future work, in order to deal with the most general master-slave problem instances—instances that allow
heterogeneous computing resources and communication costs, that do not insist that all work be distributed,
and that give the scheduler the option of replicating work on multiple remote computers.

7 Conclusion

In this paper we have revisited the well-known master-slave paradigm for divisible-load applications, adding
the hypothesis that the computers are subject to unrecoverable failures/interruptions. In this novel context,
the natural objective of a schedule is to maximize the expected amount of work that gets completed. We have
succeeded in providing either closed-form formulas or linear recurrences to characterize optimal solutions,
thereby providing a nice counterpart to existing results in the classical context of makespan minimization. In
particular, our demonstration that the ordering of communications has no impact on the optimal solution is
a very interesting (and somewhat unexpected) result, as it shows that the scheduling problem has polynomial
complexity: there is no need to explore the combinatorial space of all possible orderings.

As discussed in Section 6, we have adopted certain simplifications to the general problem we ultimately
aspire to. We have insisted on distributing the entire workload to the remote computers, without replication
of work. Our not allowing work replication is particularly unfortunate when contemplating environments
that have access to abundant computing resources. This, then, is the first projected avenue for extending
the current work. Several other extensions of this work would be desirable also, for instance: (i) including
a start-up overhead-cost each time a computer executes a piece of work (e.g., to account for the cost of
initiating a communication or a checkpointing); (ii) studying computers that obey not only linear, but
also different risk functions (e.g., when several user categories have different probabilities of returning to
reclaim their computers); (iii) studying risk functions that are no longer linear (e.g., standard exponential
or, importantly, heavy-tailed distributions); and (iv) analyzing multi-round strategies, wherein each remote
computer receives its share of work in several rounds. Altogether, there are many challenging algorithmic
problems to address!

9



References

[1] J. Abawajy. Fault-tolerant scheduling policy for grid computing systems. In International Parallel and Dis-

tributed Processing Symposium IPDPS’2004. IEEE Computer Society Press, 2004.
[2] S. Albers and G. Schmidt. Scheduling with unexpected machine breakdowns. Discrete Applied Mathematics,

110(2-3):85–99, 2001.
[3] B. Awerbuch, Y. Azar, A. Fiat, and F. T. Leighton. Making commitments in the face of uncertainty: How to

pick a winner almost every time. In 28th ACM SToC, pages 519–530, 1996.
[4] O. Beaumont, H. Casanova, A. Legrand, Y. Robert, and Y. Yang. Scheduling divisible loads on star and tree

networks: results and open problems. IEEE Trans. Parallel Distributed Systems, 16(3):207–218, 2005.
[5] A. Benoit, Y. Robert, A. Rosenberg, and F. Vivien. Static strategies for worksharing with unrecoverable inter-

ruptions. In IPDPS’2009, the 23rd IEEE International Parallel and Distributed Processing Symposium. IEEE
Computer Society Press, 2009.

[6] V. Bharadwaj, D. Ghose, V. Mani, and T. Robertazzi. Scheduling Divisible Loads in Parallel and Distributed

Systems. IEEE Computer Society Press, 1996.
[7] V. Bharadwaj, D. Ghose, and T. Robertazzi. Divisible load theory: a new paradigm for load scheduling in

distributed systems. Cluster Computing, 6(1):7–17, 2003.
[8] P. Bhat, C. Raghavendra, and V. Prasanna. Efficient collective communication in distributed heterogeneous

systems. Journal of Parallel and Distributed Computing, 63:251–263, 2003.
[9] S. Bhatt, F. Chung, F. Leighton, and A. Rosenberg. On optimal strategies for cycle-stealing in networks of

workstations. IEEE Trans. Computers, 46(5):545–557, 1997.
[10] T. Robertazzi. Ten reasons to use divisible load theory. IEEE Computer, 36(5):63–68, 2003.
[11] A. L. Rosenberg. Optimal schedules for cycle-stealing in a network of workstations with a bag-of-tasks workload.

IEEE Trans. Parallel Distrib. Syst., 13(2):179–191, 2002.
[12] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI the complete reference. The MIT

Press, 1996.

10


