
HAL Id: ensl-00408713
https://ens-lyon.hal.science/ensl-00408713v1

Preprint submitted on 31 Jul 2009 (v1), last revised 7 Dec 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A hitting set construction, with application to
arithmetic circuit lower bounds

Pascal Koiran

To cite this version:
Pascal Koiran. A hitting set construction, with application to arithmetic circuit lower bounds. 2009.
�ensl-00408713v1�

https://ens-lyon.hal.science/ensl-00408713v1
https://hal.archives-ouvertes.fr


A Hitting Set Construction, with Applications

to Arithmetic Circuit Lower Bounds

Pascal Koiran

July 31, 2009
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Abstract. A polynomial identity testing algorithm must determine
whether a given input polynomial is identically equal to 0. We give a
deterministic black-box identity testing algorithm for polynomials of the
form

Pt

j=0
cjX

αj (a+bX)βj , and from there we derive a lower bound for
representations of univariate polynomials under this form. This shows
that the “hardness from derandomization” approach to lower bounds is
feasible for a restricted class of arithmetic circuits.

1 Introduction

The large body of work on hardness versus randomness tradeoffs shows
that the two tasks of proving lower bounds and derandomizing algorithms
are roughly equivalent. This equivalence holds both in the boolean and
arithmetic world. We focus here on the arithmetic world [9]. The equiv-
alence between lower bounds and derandomization suggests a new ap-
proach to lower bounds (see e.g. [9,2]): let us derandomize algorithms first,
and much-coveted lower bounds will follow. This “hardness from deran-
domization” approach is very appealing, but apparently has not yet led to
many new lower bound results. There have been some recent advances in
derandomization, however, especially for identity testing of small-depth
arithmetic circuits, e.g. [19,12] and for the more difficult problem of black-
box circuit reconstruction [13]. Also techniques have been developed for
obtaining simultaneously lower bounds and identity tests [18], thereby re-
inforcing the intuition that these two problems are intimately connected.

In this paper we use the “hardness from derandomization” approach
to obtain lower bounds for a certain class of arithmetic circuits. More
precisely, we prove lower bounds for representations of univariate poly-
nomials under the form

t∑

j=0

cjX
αj (a+ bX)βj , (1)
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where the cj, a and b are rational numbers. Obviously, any univariate
polynomial can be expressed under this form by expanding it as a sum of
monomials (the resulting βj are all 0). Representation (1) can potentially
be much more compact than the “sum of monomials” representation, how-
ever, due to the presence of the possibly large exponents αj and βj (note
that Xαj can be computed in about logαj multiplications by repeated
squaring; the same trick applies of course to (a+ bX)βj ). The presence of
possibly large exponents makes lower bounds and deterministic identity
testing nontrivial.

1.1 Lower Bound Statement

A simple version of our lower bound result is as follows.

Theorem 1. Consider a family of polynomials (Pn) of the form

Pn =

Nn∏

i=1

(Xi − 1). (2)

Assume that Pn can be expressed under form (1) with t polynomially
bounded in n and the bit sizes of the cj, αj and βj polynomially bounded
in n. Then Nn must be polynomially bounded in n as well.

Here we define the bit size of cj as the sum of the bit sizes of its numera-
tor and denominator. Note that there is no restriction on the size of the
coefficients a and b in this theorem (they may grow arbitrarily fast as
a function of n). Note also that the “obvious” arguments such as degree
comparison between (1) and (2) only show that Nn must be exponentially
bounded in n. Theorem 1 should therefore be viewed as an exponential
lower bound. Here we have expressed our result as a function of a single
parameter n for the sake of clarity. We give in Theorem 4 a more precise
(and slightly more general) lower bound where the dependency on each
parameter is worked out carefully. In particular, we work with the projec-
tive height H(c) of the tuple c = (cj). This is a more appropriate notion
of “size” of c than the naive bit size used in Theorem 1. The projective
height is defined in Section 2.2.

We note that the polynomials Pn were suggested by Agrawal as good
candidates for proving lower bounds. As observed by Agrawal [1], if it
could be shown that Pn is hard to compute by general arithmetic circuits,
it would follow that the permanent is hard to compute by arithmetic
circuits. This also follows from a general result (Theorem 5 of [14], see
also [6]) which roughly speaking shows the following: if the permanent



has polynomial size arithmetic circuits then exponential-size products of
easy-to-compute polynomials are themselves easy to compute.

Note also that there is a formal similarity between (2) and the well-
known Pochhammer-Wilkinson polynomial

∏n
i=1

(X − i) where roots of
unity are replaced by integers. The Pochhammer-Wilkinson polynomial
seems to be hard to compute [17,20,5,6], but apparently no lower bound
is available even for a restricted class of arithmetic circuits.

1.2 Main Ideas and Connections to Previous Work

Our lower bound is based on the construction of hitting sets for polynomi-
als of the form (1). Recall that a hitting set H for a set F of polynomials
is a (finite) set of points such that there exists for any non-identically zero
polynomial f ∈ F at least one point a ∈ H such that f(a) 6= 0. Hitting
sets are sometimes called “correct test sequences” [7]. By a natural abuse
of notation, we will sometimes say that H is a hitting set for a polynomial
f if it a hitting set for the singleton {f}.

The existence of polynomial size hitting sets for general arithmetic
circuits follows from standard probabilistic arguments. A much more dif-
ficult problem is to give explicit (deterministic) constructions of “small”
hitting sets. It is easy to see that this problem is equivalent to black-
box deterministic identity testing: any hitting set for H yields an obvious
black-box identity testing algorithm (declare that f ≡ 0 iff f evaluates to
0 on all the points of H); conversely, assuming that F contains the identi-
cally zero polynomial, the set of points queried by a black box algorithm
on the input f ≡ 0 must be a hitting set for F .

There is a general connection between lower bounds and derandom-
ization of polynomial identity testing [9]. This connection is especially
apparent in the case of black-box derandomization. Namely, let H be a
hitting set for F . The polynomial P =

∏
a∈H(X − a) cannot belong to

F since it is nonzero and vanishes on H. The same remark applies to all
nonzero multiples of P . If F is viewed as some kind of “complexity class”,
we have therefore obtained a lower bound against F by exhibiting a poly-
nomial P which does not belong to F . It seems that this approach to
arithmetic lower bounds has not been pursued intensively, probably be-
cause constructing hitting sets is usually difficult.1 We have pointed out
in Section 1.1 that a lower bound for Pn against general arithmetic cir-
cuits would imply a lower bound for the permanent. For the same reason

1 As already observed in [7], hitting sets may be difficult to construct precisely because
they yield lower bounds. A related approach based on pseudorandom generators for
arithmetic circuits is proposed in [2].



(Theorem 5 of [14]), a hitting set construction against general arithmetic
circuits would imply a lower bound for the permanent.

Our hitting set construction builds on work from [10,11]. In [10] we
designed a deterministic identity testing algorithm for expressions of the
form (1) as an intermediate step toward an algorithm for the factoriza-
tion of “supersparse” bivariate polynomials. Our identity testing algo-
rithm was not black-box. Rather, it was based on a structure theorem (a
so-called “gap theorem”) which makes it possible to recognize easily iden-
tically zero expressions. Here we build on this work to construct hitting
sets. These sets turn out to be made of roots of unity, explaining why we
obtain a lower bound for polynomials of the form (2).

In terms of the class of arithmetic circuits studied, the work which
seems closest to ours is by Saxena [18]. He gives lower bounds and iden-
tity testing algorithms for “diagonal circuits”, i.e., sums of powers of
(multivariate) linear functions, and more generally for sums of products
of a small number of powers of linear functions. Our circuits fall in this
category since they compute sums of products of two powers of linear
functions. Our results and methods are quite different, however. He uses
non-black-box methods, whereas we use black-box methods. Moreover,
his lower bounds break down for powers of high degree whereas we can
handle high degree powers (indeed, for univariate polynomials the only
challenge is to prove lower bounds for polynomials of high degree since
any low degree polynomial can be represented efficiently as a sum of
monomials, assuming that field constants are given for free).

1.3 Organization of the paper

As in [10,11] we use number-theoretic techniques and in particular prop-
erties of the height of algebraic numbers. Some background on the height
function is provided in Section 2. Section 3 is technical: we obtain a height
lower bound which we use in Section 4 to construct our hitting sets. From
there, the lower bound theorem of Section 5 follows easily from the ap-
proach outlined in Section 1.2. Finally, we suggest some possible exten-
sions of our results in Section 6.

2 Number Theory Background

In this section we provide some background on the height function, first
for algebraic numbers and then more generally for points in projective
space.



2.1 Heights of Algebraic Numbers

For any prime number p, the p-adic absolute value on Q is characterized
by the following properties: |p|p = 1/p, and |q|p = 1 if q is a prime
number different from p. For any x ∈ Q \ {0}, |x|p can be computed as
follows: write x = pαy where p is relatively prime to the numerator and
denominator of y, and α ∈ Z. Then |x|p = 1/pα (and of course |0|p = 0).
We denote by MQ the union of the set of p-adic absolute values and of
the usual (archimedean) absolute value on Q.

Let d, e ∈ Z be two non-zero relatively prime integers. By defi-
nition, the height of the rational number d/e is max(|d|, |e|). There
is an equivalent definition in terms of absolute values: for x ∈ Q,
H(x) =

∏
ν∈MQ

max(1, |x|ν). Note in particular that H(0) = 1.

More generally, let K be a number field (an extension of Q of finite
degree). The set MK of normalized absolute values is the set of absolute
values on K which extend an absolute value of MQ. For ν ∈MK , we write
ν|∞ if ν extends the usual absolute value, and ν|p if ν extends the p-adic
absolute value. One defines a “relative height” HK on K by the formula

HK(x) =
∏

ν∈MK

max(1, |x|ν)dν . (3)

Here dν is the so-called “local degree”. For every p (either prime or in-
finite),

∑
ν|p dν = [K : Q]. Sometimes, instead of (3) one just writes

HK(x) =
∏

ν max(1, |x|ν) if it is understood that each absolute value
may occur several times (in fact, dν times) in the product. The absolute
height H(x) of x is HK(x)1/n, where n = [K : Q]. It is independent of the
choice of K. The above material is standard in algebraic number theory.
More details can be found for instance in [15] or [22]. We will also need a
special case of a result due Amoroso and Zannier and already used in [11].

Lemma 1. Let θ be a root of unity and a, b ∈ Q such that α = a + bθ
is not a root of unity. If α 6= 0 we have H(α) ≥ C where C > 1 is an
absolute constant.

Proof. This follows from Theorem 1.1 of [3] since the cyclotomic extension
LQ(θ) is Abelian over Q (see for instance [21], Section 8.4).�



2.2 Projective Height

One can define a notion of height for a point c = (c0, . . . , ct) ∈ Kt+1 by
the formula

H(c) =
∏

ν∈MK

|c|dν
ν ,

where |c|ν = max0≤j≤t |cj |ν . This is the classical notion of height for a
point in projective space ([8], section B.2). As a projective notion, H(c)
should be invariant by scalar multiplication. Indeed, for λ ∈ K \ {0} we
have H(λc) = H(c). This follows from the product formula:

∏

ν∈MK

|λ|dν
ν = 1

for any ν ∈ K \ {0}. Note also that the height of an algebraic number x
is equal to the projective height of the point (1, x) ∈ K2.

In this paper we will need the projective height for tuples of rational
numbers only, and more precisely for the tuple c = (cj) in (1). As we shall
see now, the projective height (or more precisely its logarithm) provides
an appropriate notion of “bit size” for c. For simplicity we work in Theo-
rem 1 with the naive bit size of the cj instead of the height, but the height
appears in the statement of our main lower bound theorem (Theorem 4).

To compute the height of rational tuples, we first note that H(c) =
maxj |cj | if the cj are relatively prime integers. The general case cj ∈ Q

is therefore quite easy: reduce to the same denominator to obtain integer
coefficients, divide by their gcd and take the maximum of the absolute
values of the resulting integers (so in particular H(c) ∈ N for any c ∈
Qt+1).

3 A Height Lower Bound

The goal of this section is to establish the following lower bound.

Proposition 1. Let (a, b) be a pair of rational numbers different from
the five “excluded pairs” (0, 0), (±1, 0) and (0,±1).

There is a universal constant C > 1 such that the inequality

H(a+ bθ) ≥ C (4)

holds for any root of unity θ which is not a 6th root of unity.



The inequality H(a + bθ) ≥ C implies in particular that a + bθ is not a
root of unity, since roots of unity are of height 1.

The main tool in the proof of Proposition 1 is the height lower bound
of Lemma 1. In light of this lemma, to complete the proof of Proposition 1
we need to understand when a+ bθ can be a root of unity.

Lemma 2. Let θ be a root of unity and (a, b) a pair of rational numbers
different from the five excluded pairs (0, 0), (±1, 0) and (0,±1). If θ is
not a 6th root of unity then α = a + bθ is nonzero, and is not a root of
unity.

Proof. We will need some properties of cyclotomic polynomials. Recall
that if θ is a root of unity of order n, its minimal polynomial is the
cyclotomic polynomials ψn. By definition, the conjugates of θ are the
other roots of its minimal polynomial. The roots of ψn are exactly the
roots of unity of order n. There are φ(n) such roots, where φ(n) is Euler’s
totient function. It is known that φ(n) ≥ √

n for n > 6. We therefore
have φ(n) ≥ 3 for n > 6. From this it follows that φ(n) ≥ 3 except for
n = 1, 2, 3, 4 or 6.

The conclusion of the lemma clearly holds true in the case b = 0. We
therefore assume in the remainder of the proof that b 6= 0.

The only rational roots of unity are +1 and −1, which are 6th roots of
unity, hence α 6= 0. If both θ and a+ bθ happen to be roots of unity then
θ lies at the intersection of the unit circle of the complex plane, and of the
circle defined by the condition |a+ bz| = 1. By excluding the 5 excluded
pairs, we have made sure that these two circles are distinct. They have
therefore at most 2 intersection points. If θ′ is a conjugate of θ, the point
a+ bθ′ is also a root of unity and must therefore lie at the intersection of
the two circles. Since there are at most two intersection points, θ has at
most one conjugate. This happens only when θ is a root of a cyclotomic
polynomial ψn of degree φ(n) ≤ 2, and we have seen that there are only
5 possible values for n. The two roots of order 4, ±i, can be ruled out
since a± bi is a root of unity only when (a, b) is equal to one of the two
excluded pairs (0,±1). We are left with the roots of unity of order 1, 2, 3
or 6, that is, with the 6th roots of unity. ⊓⊔

Remark 1. If θ6 = 1, a+ bθ can be a root of unity for appropriate values
of a and b. For instance, if θ = eiπ/3 then 1 − θ = e−iπ/3. If θ = e2iπ/3

then 1 + θ = eiπ/3.

Remark 2. In the remainder of this paper we will apply (4) only to p-th
roots of unity where p is prime.



4 Hitting Set Construction

Hitting sets for sparse polynomials can be constructed thanks to an ele-
mentary lemma from [4].

Lemma 3. Let K be a field of characteristic 0 and f ∈ K[X] a nonzero
univariate polynomial of degree at most d with at most m nonzero mono-
mials. Then there are less than m log d prime numbers p for which f(X)
is identically zero modulo Xp − 1.

Here we restrict to fields of characteristic 0 but this lemma is stated in [4]
for arbitrary integral domains. A multivariate version can be found in
Lemma 5 of [11]. Lemma 3 can be immediately restated in the language
of hitting sets:

Lemma 4. Let K be a field of characteristic 0, P a set of at least m log d
prime numbers and H the set of all p-th roots of unity (in the algebraic
closure of K) for all p ∈ P.

Then H is a hitting set for the set of all polynomials f ∈ K[X] of
degree at most d with at most m nonzero monomials.

In the next proposition and theorems, the projective height comes into
play. Recall that this notion is defined in Section 2; in particular, we ex-
plain at the end of that section how to compute H(c) when the cj are
rational (which is the case in Theorem 2). For a rational tuple, the loga-
rithm of the projective height gives a more appropriate notion of “size”
than the naive bit size. In the next proposition, we use the projective
height for tuples of algebraic numbers. Namely, following Lenstra [16] we
define the height H(p) of a polynomial p =

∑t
j=0

cjX
j ∈ Q[X] as the

projective height H(c).

Proposition 2. Let p ∈ Q[X] be a polynomial with at most t + 1 non-
zero terms. Assume that p can be written as the sum of two polynomials q
and r where each monomial of q has degree at most β and each monomial
of r has degree at least γ. Let x ∈ Q

∗
be a root of p that is not a root of

unity. If γ − β > log(tH(p))/ logH(x) then x is a common root of q and
r.

The proof of Proposition 2 can be found in [11]. It is essentially the same
as the proof of Proposition 2.3 of [16].

Theorem 2 (Gap Theorem for Hitting Sets). Let f ∈ Q[X] be a
polynomial of the form (1), with (a, b) different from the five excluded



pairs of Proposition 1. Assume without loss of generality that the sequence
(βj) is nondecreasing, and assume also there exists l such that

βl+1 − βl > log(t(t+ 1)H(c))/ log C (5)

where C is the constant of Proposition 1, and H(c) is the projective height
of the tuple c = (cj).

Let H be a set of roots of unity with θ6 6= 1 for all θ ∈ H.
Let g =

∑l
j=0

cjX
αj (a + bX)βj and h =

∑t
j=l+1

cjX
αj (a + bX)βj . If

H is a hitting set for g and h, H is also a hitting set for f = g + h.

Proof. We need to show that f(θ) = 0 for all θ ∈ H implies f = 0. If
θ ∈ H is a root of f then a + bθ is a root of the univariate polynomial
p(X) =

∑t
j=0

cjθ
αjXβj . The height of p satisfies the inequality H(p) ≤

(t + 1)H(c). The factor t + 1 is due to the fact that each monomial of
p “comes” from at most t + 1 terms of (1); see [11], Lemma 3 for a
proof. Since θ6 6= 1 we have H(a + bθ) ≥ C > 1 by Proposition 1. We
can therefore apply Proposition 2, and it follows that x = a + bθ is a
common root of the two univariate polynomials q =

∑l
j=0

cjθ
αjXβj and

r =
∑t

j=l+1
cjθ

αjXβj . This means exactly that g(θ) = h(θ) = 0.
If these two equalities apply to every θ ∈ H we have g = h = 0 since

H is supposed to be a hitting set for both g and h. Hence f = g+h = 0.�

We are now ready to state our main hitting set theorem. The bound will
depend on 3 parameters:

(i) the parameter t in (1).
(ii) d, the maximal value of the αj.
iii) an upper bound M on the projective height H(c) of the tuple c.

Given t, d and M we define

δ = log(t(t+ 1)M)/ log C. (6)

Notice that this is essentially the gap bound in (5).

Theorem 3 (Hitting Set Construction). Let P be a set of at least
(t+ 1)(δt + 1) log(d+ tδ) prime numbers, with δ as in (6) and p ≥ 5 for
all p ∈ P.

Let H be the set of all p-th roots of unity for all p ∈ P. Then H
is a hitting set for the set of polynomials that can be represented under
form (1) with αj ≤ d for all j, the rational tuple c of projective height
H(c) ≤M , and (a, b) different from the two pairs (0,±1).



Proof. We proceed by reduction to Lemma 4. As in Theorem 2, we will
assume without loss of generality that the sequence (βj) is nondecreasing.
We can of course assume that (a, b) 6= (0, 0) since the corresponding
polynomial in (1) would be identically zero. We will also assume that
(a, b) 6= (±1, 0). In that case, f can be written as a sum of t+1 monomials
of degree at most d and we can apply Lemma 4: H is a hitting set for f
since |P| ≥ (t+1) log d (the same argument could of course be applied to
any pair (a, b) with b = 0).

The remainder of the proof is divided in two cases. We first consider
the case where there is no gap in f in the sense of Theorem 2, that is,
βl+1−βl ≤ δ for all l. In this case, factoring out the polynomial (a+bX)β0

if necessary, we assume without loss of generality that β0 = 0. This is
legitimate since the nonzero polynomial (a+bX)β0 does not vanish at any
point of H (recall that the elements of H are irrational numbers). From
the relations β0 = 0 and βl+1 − βl ≤ δ we find that βt = maxl βl ≤ δt.
Expanding each factor (a + bX)βj in (1) as a sum of monomials, we see
that f can be written as a sum of at most (t+1)(δt+1) monomials, each
of degree at most d + tδ. Lemma 4 therefore implies that H is a hitting
set for f .

We finally consider the case where there are gaps in f . By “breaking f
at the gaps”, we write f =

∑s
i=1

fi where each fi is a sum of consecutive
terms cjX

αj (a+ bX)βj from (1). More precisely, we make sure that there
is no gap inside each fi in the sense that the difference between two
consecutive exponents βj in fi is bounded by δ, and there is a gap between
fi and fi+1 in the sense that the difference between the smallest exponent
βj in fi+1 and the biggest one in fi is greater than δ.

We have seen that H is a hitting set for each of the fi. Applying
Theorem 4 repeatedly (s − 1 times), we see that H is a hitting set for f
as well.�

Remark 3. The pair (a, b) = (0,±1) is excluded from Theorem 3. This
case can easily be handled with Lemma 4: f is a sum of t+ 1 monomials
of degree at most d + d′, where d′ = maxj βj . We can therefore replace
the set P in Theorem 3 by a set of prime numbers of cardinality at least
(t+ 1) log(d+ d′). By contrast, the bound in Theorem 3 does not depend
on d′. Also, we can construct a single hitting set which covers uniformly
the two cases (a, b) 6= (0,±1) and (a, b) = (0,±1) by replacing the bound
(t + 1)(δt + 1) log(d + tδ) in Theorem 3 by the maximum of this bound
and (t+ 1) log(d+ d′).



5 Lower Bound Theorem

As explained in Section 1.2, it is straightforward to obtain a lower from
our hitting set construction.

Theorem 4 (Main Lower Bound). Let P be a set of prime numbers
with p ≥ 5 for all p ∈ P,

|P| ≥ (t+ 1)max(log(d+ d′), (δt + 1) log(d+ tδ)) (7)

and δ as in (6). The polynomial

P =
∏

i∈P

(Xpi − 1)

cannot be expressed under form (1) if αj ≤ d and βj ≤ d′ for all j, and
if the rational tuple c is of projective height H(c) ≤ M . The same lower
bound applies to all nonzero multiples of P .

Proof. Let f be a polynomial which can be expressed under form (1) with
αj ≤ d and βj ≤ d′ for all j, and H(c) ≤M . Let Q be a multiple of P . By
Theorem 3 and the remark following it, the set of roots of Q is a hitting
set for f . Hence we cannot have f = Q, unless Q = 0.�

Theorem 1 follows from Theorem 4 since there are Ω(N/ logN) prime
numbers in the interval [2, N ].

6 Further Remarks

We have shown that the “hardness from derandomization” approach to
lower bounds is feasible for a restricted class of arithmetic circuits. One
can try to extend this result in various directions. We suggest two possible
directions below.

1. Consider expressions of the form

t∑

j=0

cjX
αj (aj + bjX)βj .

In (1) we have aj = a and bj = b for all j. Is deterministic identity test-
ing feasible, either in a black-box or non-black-box way ? Is it possible
to derive lower bounds for this form of polynomial representation ?



2. Consider now expressions of the form

t∑

j=0

cj(a+ bX)αj (c+ dX)βj .

This case looks deceptively simple: assuming that b 6= 0, the change of
variable Y = a+ bX brings us back to (1) and we can use the black-
box algorithm of the present paper or the non-black-box algorithm
of [10] to perform deterministic identity testing. Unfortunately, the
change of variable Y = a+ bX is non-black-box and as a result we do
not have a hitting set or a lower bound.

The case b = 0 can be handled separately as follows: we have polyno-
mials of the form

t∑

j=0

c′j(c+ dX)βj ,

where c′j = cja
αj . The change of variable Y = c + dX shows that by

Descarte’s rule of signs, such a polynomial can have at most 2t + 1
real roots. We can therefore construct a hitting set (any set of 2t+ 2
real numbers will do) and derive a good lower bound.

In the case b 6= 0, we can derive an ersatz of solution if we assume
that a can take its value in a known set A ⊆ Q, and b in a known set
B ⊆ Q\{0}. Indeed, letting H denote a hitting set for the polynomials
obtained after the change of variable Y = a+bX, we can observe that
H′ = {(h− a)/b; h ∈ H, a ∈ A, b ∈ B} is a hitting set for the original
polynomial. The corresponding lower bound is for polynomials of the
form ∏

a∈A,b∈B

P (a+ bX),

where P is as in Theorem 4. This works fine if the sets A and B are
“small”. However, one would typically like to allow numbers a and b
of polynomial bit size, and the resulting sets A,B are of exponential
size.
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