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Midpoints and Exact Points of Some Algebraic
Functions in Floating-Point Arithmetic

Claude-Pierre Jeannerod, Member, IEEE, Nicolas Louvet,
Jean-Michel Muller, Senior Member, IEEE, and Adrien Panhaleux

Abstract—When implementing a function f in floating-point arithmetic, if we wish correct rounding and good performance, it is
important to know if there are input floating-point values x such that fðxÞ is either the middle of two consecutive floating-point numbers

(assuming rounded-to-nearest arithmetic), or a floating-point number (assuming rounded toward #1 or toward 0 arithmetic). In the
first case, we say that fðxÞ is amidpoint, and in the second case, we say that fðxÞ is an exact point. For some usual algebraic functions

and various floating-point formats, we prove whether or not there exist midpoints or exact points. When there exist midpoints or exact
points, we characterize them or list all of them (if there are not too many). The results and the techniques presented in this paper can

be used in particular to deal with both the binary and the decimal formats defined in the IEEE 754-2008 standard for floating-point
arithmetic.

Index Terms—Floating-point arithmetic, correct rounding, algebraic function.

Ç

1 INTRODUCTION

IN a floating-point system that follows the IEEE 754-1985
standard for radix-2 floating-point arithmetic [1], the user

can choose an active rounding mode, also called rounding-
direction attribute in the newly revised IEEE 754-2008
standard [5]: rounding toward $1, rounding toward þ1,
rounding toward 0, and rounding to nearest, which is the
default rounding mode. Given a real number x, we denote,
respectively, by RDðxÞ, RUðxÞ, RZðxÞ, and RNðxÞ these
rounding modes. Let us also recall that correct rounding is
required by the above cited IEEE standards for the four
elementary arithmetic operations (þ, $, &, and ') as well as
for the square root: the result of an operation is said to be
correctly rounded if for any inputs, its result is the infinitely
precise result rounded according to the active rounding
mode. We are interested here in facilitating the delivery of
correctly rounded results for various simple algebraic
functions that are frequently used in numerical analysis or
signal processing.

Let us call midpoint for a floating-point format a number
that is exactly halfway between two consecutive floating-
point numbers of that format. Given a function f : IRd ! IR

and a floating-point vector x, we say that fðxÞ is a midpoint
of f if fðxÞ is a midpoint for that format.

Given f and x, the problem of computing RNðfðxÞÞ is
closely related to the knowledge of the midpoints of the
function f . Then, a common strategy (see [15] and [10,
chapter 10]) for returning RNðfðxÞÞ is as follows:

Let us first compute an approximation f1, of accuracy !1,
to fðxÞ. If there are no midpoints of the considered floating-
point format within distance !1 from f1, then necessarily
RNðfðxÞÞ ¼ RNðf1Þ. If on the contrary, there are such
midpoints within distance !1 from f1, we can progressively
increase the quality of the approximations (that is, comput-
ing an approximation f2 of accuracy !2 < !1, and so on) until
we are able to provide a correctly rounded result. The point
is that this strategy may not terminate if the function f has
midpoints. As a consequence, a correctly rounded imple-
mentation of a given function f can be made more efficient
if we know in advance that f admits no midpoints. If f
admits midpoints, it is also very useful to know how to
characterize them.

If nowwe consider one of the directed rounding modes (RD,
RU, or RZ), the strategy that consists in progressively
refining the approximations will not terminate if fðxÞ is a
floating-point number. In this case,we say that fðxÞ is an exact
point of the function f , and it is also very useful to know a
characterization of these exact points when implementing f .
Moreover, a characterization of the exact points of f can be
used to set the “inexact” flag required by the IEEE standards
[1], [5]. For example, for x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
in radix 2, our study

shows that this flagmust always be raised except when x or y
is zero, which can be detected easily.

In this paper, we present results on the existence of
midpoints and exact points for some algebraic functions:
beyond division, inversion, and square root, we study
functions like the reciprocal square root 1=

ffiffiffi
y

p
, the 2D

euclidean norm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and its reciprocal 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
,
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and the 2D-normalization function x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. A part of

the results presented on division and square root have

been known for some time in binary arithmetic; see, for

instance, the pioneering work by Markstein [9], as well

as studies by Iordache and Matula [6] and Parks [11].

Let us also recall the work by Lauter and Lefèvre [8] on

the function xy, which thus covers integer powers. We

present these results for completeness, and extend some

of them to other radices, in particular to radix 10.
Before going into further details, we introduce some

definitions. A radix-", precision-p floating-point number x
is either 0 or a rational number of the form

x ¼ #X ) "ex$pþ1;

where X is a positive integer such that X < "p. If in
addition "p$1 * X, then x ¼ #X ) "ex$pþ1 is called the
normalized representation of x, and the integers X and ex
are called, respectively, the integral significand and the
exponent of x. We can, in fact, speak of the exponent for any
nonzero real x: in radix ", it is the unique integer ex such
that "ex * jxj < "exþ1. On computing systems conforming to
the IEEE 754-2008 standard [5], the radix " is 2 or 10.
Radix 16 is also sometimes used [12]. The exponent ex is
bounded: emin * ex * emax, where emin and emax are the
extremal exponents of the considered floating-point format.
A nonzero number without a normal representation is said
subnormal: all subnormal numbers have absolute value less
than "emin .

Assuming that we are working with a radix-", preci-
sion-p floating-point arithmetic, a midpoint is a rational
number of the form

z ¼ # Z þ 1=2ð Þ ) "ez$pþ1;

where Z is a nonnegative integer such that

"p$1 * Z < "p; if emin < ez * emax;
0 * Z < "p; if ez ¼ emin:

"

Such a number is exactly halfway between two consecutive
floating-point numbers. The midpoints are the values where
the function x 7! RNðxÞ is discontinuous, as illustrated in
Fig. 1 on a toy floating-point format (" ¼ 2, p ¼ 3, emin ¼ $1,
and emax ¼ 1).

When using the implementation of a mathematical
function in floating-point arithmetic, in most practical cases,
the input and output precisions are the same. However, a
user may, for example, wish to calculate the single-
precision/binary32 number that is closest to the square
root of a double-precision/binary64 floating-point number.
For the sake of simplicity, we assume, in this paper, that the
input and output precisions are the same. Moreover, we
give our results assuming an unbounded exponent range,
that is, under the hypothesis that no underflow nor
overflow occurs. For that purpose, we define IF";p as the
set of the radix-", precision-p floating-point numbers, with
an unbounded exponent range. Similarly, midpoints are
restricted to the set

MM";p ¼
#
# ðZ þ 1=2Þ ) "ez$pþ1 :

Z 2 NN; "p$1 * Z < "p; ez 2 ZZ
$
;

where ZZ denotes the set of integers and NN denotes the set
f0; 1; 2; . . .g of nonnegative integers.

The purpose of this paper is, for the floating-point number
systems and the algebraic functions mentioned above, to
investigatewhether these functions admitmidpoints or exact
points, and to characterize such midpoints and exact points
when they exist. The results we obtain are for " ¼ 2q with q a
positive integer, and for " ¼ 10, but in some cases, we
managed toweaken these assumptions on ". Moreover, most
of the examples proposed are based on the basic formats
defined in the IEEE 754-2008 standard [5] that are briefly
recalled below:

Table 1 summarizes the results presented in the paper. In
this table, “many” indicates that the techniques we used did
not allow us to find a simple characterization of the
midpoints or of the exact points of the function, an
exhaustive enumeration was impractical because of the too
large number of cases to consider, andwe have experimental
evidence that the number ofmidpoints and/or exact points is
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Fig. 1. The RNðxÞ function (radix " ¼ 2 and precision p ¼ 3).

TABLE 1
Summary of the Results Given in This Paper



large. Most of the results displayed here for " ¼ 2 are, in fact,
obtained in amore general setting, namely, for " ¼ 2q, where
q is a positive integer.

Note that since we considered an unbounded exponent
range, subnormal floating-point numbers of the various
IEEE 754-2008 formats can be written in normalized form.
Hence, subnormal numbers are a subset of floating-point
numbers with unbounded exponent range. This implies that
the results presented in Table 1 remain unchanged when the
inputs are subnormal numbers. If there are no exact points or
midpoints for normal floating-point numbers with un-
bounded exponent range for a given function, then mid-
points or exact points cannot occur if the inputs are
subnormals. Similarly, if the exact points and midpoints
are characterized by one of the theorems, assuming that the
inputs are subnormals will only restrict the characterization
of the theorem,without creating new possible exact points or
midpoints.

However, some results presented in Table 1 change when
wewant to know if a given function outputsmidpoints in the
range of subnormal floating-point numbers. In radix 2,
division admitsmidpoints in the subnormal range, as well as
the function x=kyk2, while they have no midpoints in the
normal range. The square root function admits nomidpoints,
even in the subnormal range, for the square root of a floating-
point number cannot be in the subnormal range. Although
the results are not detailed in the paper, the techniques
presented can be used to deal with midpoints in the
subnormal range for the other functions listed in Table 1.

Outline. We start with extensions to radices 2q and 10 of
classical, radix-2 results for square roots (Section 2), recipro-
cal square roots (Section 3), and positive integer powers
(Section 4). In Section 5, we move to the function that maps a
real x and a d-dimensional real vector y ¼ ½yk,1*k*d to x=kyk2.
Here, k ) k2 denotes the euclidean norm of vectors:

kyk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ ) ) ) þ y2d

q
:

The function x=kyk2 is interesting for it covers several
important special cases, each of them being detailed in a
subsequent section: for d ¼ 1, division and reciprocal
(Sections 6 and 7); for d ¼ 2, reciprocal 2D euclidean norm
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and normalization of 2D vectors x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p

(Sections 8 and 9). We comment on the 2D euclidean norm
in Section 10.

Notation. Throughout the paper, the symbols QQ, IR, and
NN>0 denote the rational numbers, the real numbers, and the
positive integers, respectively. We write i for the complex
number whose square is $1, and b)c and d)e for the usual
floor and ceiling functions. Also, for x; y 2 ZZ such that
y 6¼ 0, we use the standard notation x mod y ¼ x$ ybx=yc
(see, for instance, Graham et al. [4, p. 82]).

2 SQUARE ROOT

2.1 Midpoints for Square Root

The following theorem can be viewed as a consequence of a
result of Markstein [9, Theorem 9.4]. It says that the square
root function has no midpoints, whatever the radix " is. A
detailed proof is given here for completeness.

Theorem 1 (Markstein [9]). Let y 2 IF";p be positive. Then,
ffiffiffi
y

p 62 MM";p.

Proof. Let z ¼ ffiffiffi
y

p
and assume that z is in MM";p. Then, there

exist some integers Z and ez such that z ¼ ðZ þ 1=2Þ )
"ez$pþ1 and "p$1 * Z < "p. Using y ¼ z2 and y ¼
Y ) "ey$pþ1, we deduce that

4Y ) "ey$2ezþp$1 ¼ ð2Z þ 1Þ2: ð1Þ

Now, one may check that ez ¼ bey=2c so that

ey $ 2ez ¼ ey mod 2; ð2Þ

which is nonnegative. Thus, for p - 1, the left-hand side
of (1) is an even integer. This contradicts the fact that the
right-hand side is an odd integer. tu

2.2 Exact Points for Square Root

We saw in the previous section that the square root function
has no midpoints. The situation for exact points is just
opposite: for a given input exponent, the number N of
floating-point numbers having this exponent and whose
square root is also a floating-point number grows essen-
tially like "p=2. In this section, we make this claim precise for
" ¼ 2q (q 2 NN>0) and " ¼ 10 by giving an explicit expression
for N in Theorem 2. To establish this counting formula, we
need the following two lemmas:

Lemma 1. For a; b 2 IR such that 0 * a * b, and c 2 NN>0, the
number of integer multiples of c that lie in ½a; bÞ is
db=ce$ da=ce.

Proof. Let uswriteN ðcÞ
a;b for the number of integermultiples of

c lying in ½a; bÞ. Since 0 * a * b, the set ½0; bÞ is the union of
the disjoint sets ½0; aÞ and ½a; bÞ. Hence, N ðcÞ

a;b ¼ NðcÞ
0;b $NðcÞ

0;a

and it remains to check that N ðcÞ
0;a ¼ da=ce. If a 62 NN, it

follows from c 2 NN>0 that NðcÞ
0;a ¼ 1þ ba=cc. If a 2 NN,

either c divides a in which case N ðcÞ
0;a ¼ a=c; otherwise,

N ðcÞ
0;a ¼ 1þ ba=cc. tu

Lemma 2. Let y 2 IF";p be positive. The real number
ffiffiffi
y

p
is also in

IF";p if and only if the integral significand Y of y satisfies
"p$1 * Y < "p and Y ¼ Z2 ) "1$p$ðey mod 2Þ for some integer
Z such that "p$1 * Z < "p.

Proof. Let z ¼ ffiffiffi
y

p
. Assume first that z 2 IF";p. Then, there

exists an integer Z such that z ¼ Z ) "ez$pþ1 and "p$1 *
Z < "p. Using y ¼ z2 and y ¼ Y ) "ey$pþ1, we deduce that

Y ¼ Z2 ) "1$p$ðey$2ezÞ: ð3Þ

The “only if” statement then follows from (2). Con-
versely, using y ¼ Y ) "ey$pþ1, we may rewrite the
equality Y ¼ Z2 ) "1$p$ðey mod 2Þ as

ffiffiffi
y

p ¼ Z ) "ez$pþ1;

where

ez ¼ ðey $ ðey mod 2ÞÞ=2:

By definition, ez is an integer and by assumption, Z is an
integer lying in ½"p$1;"pÞ. Hence,

ffiffiffi
y

p
is in IF";p. tu
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Theorem 2. For a given exponent ey, let N denote the number of
positive values y 2 IF";p such that

ffiffiffi
y

p 2 IF";p, and let
!y ¼ ðey þ p$ 1Þmod 2.

. If " ¼ 2q, q 2 NN>0, then

N ¼
l
2ðqp$!yðq mod 2ÞÞ=2

m
$
l
2ðqðp$1Þ$!yðq mod 2ÞÞ=2

m
:

. If " ¼ 10, then N ¼
%
10ðp$!yÞ=2

&
$
%
10ðp$1$!yÞ=2

&
.

Proof. Let # ¼ p$ 1þ ðey mod 2Þ. From Lemma 2, N is the
number of integers Y in ½"p$1;"pÞ and of the form Z2 )
"$# for some integer Z such that "p$1 * Z < "p.

Rewriting Y ¼ Z2 ) "$# as Y ) "!y ) "#$!y ¼ Z2, we see
that "#$!y divides Z2. Since !y ¼ # mod 2, we know that
# $ !y is even and for p - 1, nonnegative. Using, for
instance, the factorizations of "ð#$!yÞ=2 and Z into primes,
we deduce that "ð#$!yÞ=2 divides Z. Consequently, there
exists an integer X such that

Y ) "!y ¼ X2 and Z ¼ X ) "ð#$!yÞ=2:

Now, the assumption "p$1 * Y < "p is equivalent to

"ðp$1þ!yÞ=2 * X < "ðpþ!yÞ=2; ð4Þ

while the same assumption on Z is equivalent to
"p$1$ð#$!yÞ=2 * X < "p$ð#$!yÞ=2. The latter interval contains
the former because p$ 1 * $ * p. Hence, N is the
number of integers X satisfying (4) and whose square
is an integer multiple of "!y . We distinguish between the
two cases !y ¼ 0 and !y ¼ 1.

If !y ¼ 0, then N is the number of integers X satisfying
(4). Consequently, N ¼ d"p=2e$ d"ðp$1Þ=2e (using either
Lemma 1 with c ¼ 1, or [4, (3.12)]).

If !y ¼ 1, then X2 is a multiple of ": When " has linear
factors only (like " ¼ 2 or " ¼ 10 ¼ 2 ) 5), this implies that
X is amultiple of". In this case,N is thenumber of integers
X that are multiples of " and satisfy "p=2 * X < "ðpþ1Þ=2.
Hence, using Lemma 1, N ¼ d"ðp$1Þ=2e$ d"ðp$2Þ=2e. As-
sume now that " ¼ 2q for some positive integer q. If q is
even, then 2q dividesX2 implies 2q=2 dividesX so that we
take the number of Xs being an integer multiple of 2q=2.
Lemma 1 thus gives N ¼ d2qp=2e$ d2qðp$1Þ=2e. If q is odd,
then Y ) 2 ¼ ðX ) 2$bq=2cÞ2, which means that X ) 2$bq=2c is
even.Hence,wekeepall theXs that are an integermultiple
of 21þbq=2c. Using Lemma 1, this gives N ¼ d2ðqp$1Þ=2e $
d2ðqðp$1Þ$1Þ=2e. tu

For a fixed ey, using Theorem 2, one can count the
number of input floating-point numbers y whose square
root is an exact point. We give below the number N of exact
points for the basic formats of the IEEE 754-2008 standard.

Also, for a fixed exponent ey, one can see from Theorem 2
that the number of exact points for the square root function is
!ð"p=2Þ, when the radix " is either 2q or 10 (it is said that
uðpÞ ¼ !ðvðpÞÞ if there exist positive constants c1, c2, and p0

such that 0 * c1vðpÞ * uðpÞ * c2vðpÞ for all p - p0, see, for
instance, Graham et al. [4, p. 448] for more details on the
! notation). Except for small precisions, Theorem 2 implies,
therefore, that it can be regarded as impractical to enumerate
the exact points for the square root. It also shows that when
computing the square root of a floating-point number, the
probability of that square root being an exact point is very
small (it vanishes as p increases). This property may be taken
into account when tuning a square root algorithm.

3 RECIPROCAL SQUARE ROOT

3.1 Midpoints for Reciprocal Square Root

Theorem 3. Let y 2 IF";p be positive and let $y denote ey mod 2.
If " ¼ 2q (q 2 NN>0), then 1=

ffiffiffi
y

p 62 MM";p. If " ¼ 10, one has
1=

ffiffiffi
y

p 2 MM";p if and only if the integral significand Y of y has
the form

Y ¼ 23p$$yþ1 ) 53p$2‘$$y$1;

with ‘ 2 NN such that ‘ * ð3p$ $y $ 1Þ=2 and

2 ) 10p$1 < 5‘ < 2 ) 10p$1=2; if ey is odd;
2 ) 10p$1=2 < 5‘ < 2 ) 10p; if ey is even:

"
ð5Þ

Proof. Let z ¼ 1=
ffiffiffi
y

p
and assume z 2 MM";p. Let y ¼

Y ) "ey$pþ1 and z ¼ ðZ þ 1=2Þ ) "ez$pþ1 be the normalized
representations of y and z. From yz2 ¼ 1, we deduce that

Y ð2Z þ 1Þ2 ¼ 4 ) "$ey$2ezþ3p$3: ð6Þ

Since z is a midpoint, one has "ez < z < "ezþ1, and so,
"$2ez$2 < y < "$2ez . From this, one may check that

$ ey $ 2ez ¼ 2$ $y; $y ¼ ey mod 2: ð7Þ

Hence, we obtain from (6) and (7):

Y ð2Z þ 1Þ2 ¼ 4 ) "3p$$y$1: ð8Þ

When " ¼ 2q, (8) has no solution, since the right-hand
side of the equality is a power of two, while the left-hand
side has an odd factor ð2Z þ 1Þ2.

Let us nowconsider the casewhere" ¼ 10. Equation (8)
then becomes

Y ð2Z þ 1Þ2 ¼ 23p$$yþ1 ) 53p$$y$1: ð9Þ

Since 2Z þ 1 is odd, we deduce from (9) that 2Z þ 1 ¼ 5‘

for some ‘ 2 NN. Hence,

Y ¼ 23p$$yþ1 ) 53p$2‘$$y$1;

and it remains to prove the bounds on ‘. Since Y is an
integer, we have 3p$ 2‘$ $y $ 1 - 0, and the first bound
‘ * ð3p$ $y $ 1Þ=2 follows. To prove the bounds in (5),
note first that 10ey * y < 10eyþ1 and (7) gives 10ezþð1$$yÞ=2 <
z ¼ 1=

ffiffiffi
y

p * 10ezþ1$$y=2. Then, using

z ¼ ðZ þ 1=2Þ ) 10ez$pþ1;
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we obtain

2 ) 10p$ð$yþ1Þ=2 < 2Z þ 1 ¼ 5‘ * 2 ) 10p$$y=2:

In fact, the upper bound is strict, for 5‘ is an odd integer,
while 2 ) 10p$$y=2 is either an even integer ($y ¼ 0) or an
irrational number ($y ¼ 1). Conversely, let

Y ¼ 23p$$yþ1 ) 53p$2‘$$y$1;

with ‘ as in (5), and let z ¼ 1=
ffiffiffi
y

p
. From (8), we deduce

that y ¼ 22p$2ez ) 52p$2‘$2ez$2 and

z ¼ ðð5‘ $ 1Þ=2þ 1=2Þ ) 101$pþez :

Now 2 ) 10p$1 < 5‘ < 2 ) 10p implies 10p$1 * ð5‘ $ 1Þ=2 <
10p, and thus, z 2 MM10;p. tu
To find in radix 10 the significands Y of all the inputs y

such that 1=
ffiffiffi
y

p
is a midpoint, it suffices to find the at most

two ‘ 2 NN such that 2 ) 10p$1 < 5‘ < 2 ) 10p, and to deter-
mine from the bounds (5) whether ey is even or odd. Table 2
gives the integral significands Y and the parity of the
exponent ey such that z ¼ 1=

ffiffiffi
y

p
is a midpoint in the basic

decimal formats of IEEE 754-2008.
Note that for radices different from 10 or a power of two,

we do not have general results (which is in contrast with
square root; see Section 2.1). Equation (8) may have
solutions; for example, in radix 3 with p ¼ 6, one may
check that ðY ; Z; $yÞ ¼ ð324; 364; 1Þ satisfies (8) and gives a
midpoint for the reciprocal square root.

3.2 Exact Points for Reciprocal Square Root

The following theorem gives a characterization of the exact
points of the square root reciprocal when the radix is a
prime number (which includes the most frequent case
" ¼ 2) and also when the radix is a positive integer power of
two. The case " ¼ 10 is treated separately in Theorem 5.

Theorem 4. Let y 2 IF";p be positive. Then,

. for " a prime number, one has 1=
ffiffiffi
y

p 2 IF";p if and
only if y ¼ "2k with k 2 ZZ;

. for " ¼ 2q (q 2 NN>0), one has 1=
ffiffiffi
y

p 2 IF";p if and
only if y ¼ 22k with k 2 ZZ.

Proof. Taking z ¼ 1=
ffiffiffi
y

p
, note first that (7) still holds. Now

assume that z 2 IF";p and let Y and Z be the integral
significands of y and z. From yz2 ¼ 1 and (7), we deduce

Y Z2 ¼ "3p$$y$1: ð10Þ

If " is prime, we deduce from (10) that Z ¼ "‘ for
some ‘ 2 NN. Hence, Y ¼ "3p$$y$1$2‘ and using (7), y ¼
"2ðp$1$ez$‘Þ is indeed an even power of ". Conversely, if
y ¼ "2k, then z ¼ "$k is in IF";p.

If " ¼ 2q with q 2 NN>0, we deduce from (10) that Z ¼
2‘ for some ‘ 2 ZZ, and similarly to the previous case, we
find y ¼ 22ðqðp$1$ezÞ$‘Þ, which is an even power of two.
Conversely, if y ¼ 22k, then z ¼ 2$k. Since any integral
power of two is representable in IF2q ;p, we conclude that z
is an exact point. tu
All the floating-point numbers y such that 1=

ffiffiffi
y

p
is an

exact point can be deduced from the ones lying in the
interval ½1;"2Þ. In radix 2q, Theorem 4 implies that at most
q values of y in ½1; 22qÞ suffice to characterize the exact points
for the reciprocal square root. In radix 16 ¼ 24, for instance,
the only exact points for input values y 2 ½1; 256Þ are:

Theorem 5. Let y 2 IF10;p be positive and let $y denote ey mod 2.
One has 1=

ffiffiffi
y

p 2 IF10;p if and only if either y ¼ 10$2ez or the
integral significand Y of y differs from 10p$1 and has the form

Y ¼ 23p$1$$y$2k ) 53p$1$$y$2‘;

with k; ‘ 2 NN such that 0 * k; ‘ * ð3p$ 1$ $yÞ=2.
Proof. Let z ¼ 1=

ffiffiffi
y

p
and assume z 2 IF10;p. If z ¼ 10ez , then

obviously, y ¼ 10$2ez . On the other hand, z must differ
from the irrational number 10ezþ1=2. Hence, we now
assume that z 2 ð10ez ; 10ezþ1=2Þ [ ð10ezþ1=2; 10ezþ1Þ. This
implies that y 2 ð10$2ez$2; 10$2ez$1Þ [ ð10$2ez$1; 10$2ezÞ.
Therefore, y is not a power of 10 and its normalized
representation y ¼ Y ) 10ey$pþ1 is such that Y 6¼ 10p$1.
Note now that (7) and (10) still hold here so that yz2 ¼ 1
implies that Y Z2 ¼ 103p$1$$y . In particular, Z must have
the form Z ¼ 2k ) 5‘ for some k; ‘ in NN. Thus,

Y ¼ 23p$1$$y$2k ) 53p$1$$y$2‘;

where since Y is an integer, 0 * k; ‘ * ð3p$ 1$ $yÞ=2.
Conversely, the case y ¼ 10$2ez being straightforward,

let Y ¼ 23p$1$$y$2k ) 53p$1$$y$2‘ be the integral significand
of y such that 10p$1 < Y < 10p, and let z ¼ 1=

ffiffiffi
y

p
. Using (7)

further leads to z ¼ 2k ) 5‘ ) 10ez$pþ1. One has 2k ) 5‘ 2 NN
and from 10p$1 < Y < 10p, we get 10p$ð1þ$yÞ=2 < 2k ) 5‘ <
10p$$y=2. Hence, z 2 IF10;p. tu
Enumerating the integral significands Y ¼ 23p$1$$y$2k )

53p$1$$y$2‘ with k; ‘ 2 NN such that 0 * k; ‘ * ð3p$ 1$ $yÞ=2
and 10p$1 < Y < 10p is easily done by a simple program.
Table 3 gives all the integral significands Y of y, and the
parity of the exponent ey, such that 1=

ffiffiffi
y

p
is a floating-point

number too, in the decimal32 format (see also Table 8 in the
Appendix for the decimal64 format).

For the basic decimal formats of the IEEE 754-2008, the
table below gives the number of significands Y such that
1=

ffiffiffi
y

p
is an exact point, with respect to the parity $y of the

exponent of y.
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TABLE 2
Integral Significands Y of y 2 IF10;p Such That 1=

ffiffiffi
y

p 2 MM10;p

for the Decimal Formats of the IEEE 754-2008 Standard [5]



4 POSITIVE INTEGER POWERS

We consider here the function ðx; kÞ 7! xk with x 2 IR and
k 2 NN>0, assuming that each prime factor appears only
once in the prime decomposition of ", which is the case
for " ¼ 2 and " ¼ 10. We provide a sufficient condition
for the nonexistence of midpoints in such radices. In the
particular case " ¼ 2, the results given in this section can
be deduced from Lauter and Lefèvre’s study of the power
function ðx; yÞ 7! xy [8], which shows how to check
quickly if xy is a midpoint or an exact point in double
precision (binary64 format).

Definition 1. A number fits in n digits exactly in radix " if it is
a precision-n floating-point number that cannot be exactly
represented in precision n$ 1. More precisely, it is a number
of the form x ¼ X ) "ex , where ex;X 2 ZZ, "n$1 < jXj < "n,
and X is not a multiple of ".

Lemma 3. Let k 2 NN>0 be given. If each factor of " appears only
once in its prime number decomposition (which is true for "
equal to 2 or 10), and if x fits in n digits exactly, then xk fits in
m digits exactly, with m 2 NN such that kðn$ 1Þ < m * kn.

Proof. Let x ¼ X ) "ex be a number that fits in n digits exactly.
From "n$1 < jXj < "n, it follows that "kðn$1Þ < jXkj < "kn.
Consequently, there exists m 2 NN such that kðn$ 1Þ <
m * kn and "m$1 < jXkj < "m. Moreover, the assumption
on the prime factor decomposition of " and the fact that "
does not divideX imply thatXk is not a multiple of ". tu

An immediate consequence of the previous lemma is the
following result:

Theorem 6. Assume that the radix " is such that each factor
appears only once in its prime number decomposition, and let p
be the precision. If x fits in n digits exactly, then xk cannot be a
midpoint as soon as kðn$ 1Þ > p, and it cannot be an exact
point as soon as kðn$ 1Þ þ 1 > p.

Theorem 6 is not helpful when k is small. For large
values of k, however, it allows to quickly determine the
possible midpoints and exact points. For instance, in the
binary64 format (" ¼ 2 and p ¼ 53), the only floating-point
numbers x such that x10 can be an exact point are those that

fit in n bits exactly, where n * 6. For a given value of the
exponent, there are at most 26 ¼ 64 such points: it, therefore,
suffices to check these 64 values to know all the exact
points. By accurately computing x10 for these 64 points, we
easily find that the exact points for function x10 in the
binary64 format correspond to the input values of the form
x ¼ X ) 2ex , where X is an integer between 0 and 40.

5 THE FUNCTION ðx; yÞ 7! x = kyk2
Givend 2 NN>0, thenumber of exact points of the function that
maps ðx; yÞ 2 IR& ðIRdnf0gÞ to x=kyk2 ¼ x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
1*k*d y

2
k

q
is

huge. Indeed, all the exact points for the division operation,
whose number is huge as we will see later in Section 6.2, are
exact points for the function x=kyk2 as well. Therefore, we

shall focushere exclusively onmidpoints: our aim is todecide
whether there exist floating-point inputs x; y1; . . . ; yd 2 IF";p

such thatx=kyk2 2 MM";p.Westartwith the following theorem,

which says that midpoints cannot exist in radix 2.

Theorem 7. Let x 2 IF";p and for d 2 NN>0, let y be a nonzero,
d-dimensional vector of elements of IF";p. If " ¼ 2, then
x=kyk2 62 MM";p.

Proof. Because of the symmetries of the function that maps
ðx; yÞ to x=kyk2, we can restrict to the case where x and
all the entries of y ¼ ½yk, are positive. Hence, x ¼
X ) "ex$pþ1 and yk ¼ Yk ) "eyk$pþ1 for some integers X
and Yk such that "p$1 * X;Yk < "p. Let z ¼ x=kyk2 and
assume that z is a midpoint, that is, z ¼ ðZ þ 1=2Þ )
"ez$pþ1 for some integer Z in the same range asX and the
Yk above. The identity x2 ¼ kyk22 z2 thus becomes:

4X2 ) "2ðex$ezþp$1Þ ¼
X

k

Y 2
k ) "2eyk

 !

ð2Z þ 1Þ2: ð11Þ

In order to have integers on both sides, it suffices to
multiply (11) by "$2e. , where e. ¼ minkeyk . This gives

4X2 ) "2ðex$ez$e.þp$1Þ ¼
X

k

Y 2
k ) "2ðeyk$e.Þ

 !
ð2Z þ 1Þ2: ð12Þ

Now, the power of " involved in the left-hand side of
(12) is itself an integer. This is due to the fact that the
integer ex $ ez $ e. is nonnegative, which can be seen as
follows: Since d - 1 and yk - "e. for k ¼ 1; . . . ; d, one has
z * x="e. . Using x < "exþ1 and "ez * z (in fact, this lower
bound is strict, for z is a midpoint), we deduce that
"ez < "ex$e.þ1. The exponents on both sides of the latter
inequality being integers, we conclude that ez * ex $ e..
When " ¼ 2, (12) becomes

X2 ) 22ðex$ez$e.þpÞ ¼
X

k

Y 2
k ) 22ðeyk$e.Þ

 !
ð2Z þ 1Þ2: ð13Þ

The left-hand side of (13) is a multiple of the odd integer
ð2Z þ 1Þ2. Since ex $ ez $ e. is nonnegative, this implies
that X is a multiple of 2Z þ 1, and thus, X - 2Z þ 1.
However, recalling that 2p$1 * X;Z < 2p, we have

X < 2Z þ 1: ð14Þ

Hence, a contradiction, which concludes the proof. tu
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TABLE 3
Integral Significands Y of y 2 IF10;7 Such That 1=

ffiffiffi
y

p 2 IF10;7



Theorem 7 implies the nonexistence of midpoints in

radix " ¼ 2 for a number of important special cases:

division x=y (see Corollary 1), and thus, reciprocal 1=y as

well; reciprocal 2D euclidean norm 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and

2D-vector normalization x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.

However, when " > 2, the function x=kyk2 does have
midpoints and some examples will be given in Section 6.1 for
" 2 f3; 4; 10g. Thus, rather than trying to characterize all the
midpoints of that general function,we focus from Section 6 to
Section 9 on the four special cases just mentioned.

6 DIVISION

6.1 Midpoints for Division

Concerning midpoints for division, Theorem 7 gives an
answer for the far most frequent case in practice: the radix is
two, the input precision equals the output precision, and the
results are above the underflow threshold. Indeed, choosing
d ¼ 1 in Theorem 7, we obtain the following corollary:

Corollary 1. In binary arithmetic, the quotient of two floating-
point numbers cannot be a midpoint in the same precision.

In radix-2 floating-point arithmetic, Corollary 1 can be
seen as a consequence of a result presented by Markstein in
[9, Theorem 8.4, p. 114]. Note that this result only holdswhen
" ¼ 2 and when the input precision is less than or equal to
the output precision. Nevertheless, it is sometimes believed
that it holds in prime radices: the first example given below
shows that this is not the case. The following examples also
illustrate the existence of midpoints when " > 2.

. In radix 3, with precision p ¼ 4,

2810
5610

¼ 10013
20023

¼ 0:11113 þ
1

2
) 3$4:

. In radix 4, with p ¼ 4,

12910
12810

¼ 20014
20004

¼ 1:0004 þ
1

2
) 4$3:

. In radix 10, midpoint quotients are quite frequent.
For instance, when p ¼ 2, there are 181 midpoints
for X=Y with 10 * X;Y * 99 (that is, 10=16 ¼ 0:625)
and when p ¼ 3, there are 2,633 cases with
100 * X;Y * 999.

We now briefly discuss the case of different input (pi)
and output (po) precisions. If pi > po, many quotients can be
midpoints, even in radix-2 arithmetic: If x is in precision
pi > po, x can be a midpoint in precision po, which is then
the case for the quotient x=1. It is also possible to find less
trivial cases. For example, if x and y are binary64 numbers
(pi ¼ 53) with

x ¼1:000000000000000000000000

1111111111111111111110100000;

y ¼1:1111111111111111111111

000000000000000000000000000000;

then one has

x=y ¼ 0: 100000000000000000000001|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
po¼24

1;

which is a midpoint in the binary32 floating-point
format (po ¼ 24).

6.2 Exact Points for Division

Let x and y be two numbers in IF";p, and assume that the
quotient z ¼ x=y is also in IF";p. Using the normalized
representations x ¼ X ) "ex$pþ1 and y ¼ Y ) "ey$pþ1, then z
can be written z ¼ Z ) "ex$eyþ$$p, with $ 2 f0; 1g. Hence,
from x ¼ yz, it follows that

"p$$X ¼ Y Z; ð15Þ

with $ 2 f0; 1g. In other words, if z is an exact point, then
(15) must be satisfied. For any radix ", (15) has many
solutions: for each value of X, there is at least the
straightforward solution ðX;Y Þ ¼ ðZ;"p$1Þ, which corre-
sponds to x="ey . As a consequence, the number of exact
points of the function ðx; yÞ 7! x=y grows at least like
"p$1ð" $ 1Þ for any given exponents ex; ey. This is too large
to enumerate all the exact points of division in practice.

7 RECIPROCAL

As we have seen above, except in radix 2, division admits
many midpoints. Moreover, whatever the radix is, division
also admits a lot of exact points. Consequently, we now
focus on a special case, the reciprocal function y 7! 1=y, for
which more useful results can be obtained.

7.1 Midpoints for Reciprocal

Theorem 8. Let y 2 IF";p be nonzero. If " ¼ 2q (q 2 NN>0), then
1=y 62 MM";p. If " ¼ 10, one has 1=y 2 MM";p if and only if the
integral significand Y of y has the form

Y ¼ 22p ) 52p$1$‘; ð16Þ

with ‘ 2 NN such that 2 ) 10p$1 < 5‘ < 2 ) 10p.
Proof. Without loss of generality, we assume that y > 0. Let

z ¼ 1=y. First, one may check that

ez ¼ $ey $ 1: ð17Þ

Now, if z 2 MM";p, then z ¼ ðZ þ 1=2Þ ) "ez$pþ1 for some
integer Z such that "p$1 * Z < "p. Using yz ¼ 1 thus
gives

Y ð2Z þ 1Þ ¼ 2 ) "2p$1: ð18Þ

When " ¼ 2q, (18) has no solution, since the right-
hand side of the equality is a power of two, while the
left-hand side has an odd factor 2Z þ 1. When " ¼ 10,
(18) becomes

Y ð2Z þ 1Þ ¼ 22p ) 52p$1: ð19Þ

As 2Z þ 1 is odd, we deduce from (19) that 2Z þ 1 is a
power of five. Also, since 2 ) 10p$1 < 2Z þ 1 < 2 ) 10p,
there are at most two such powers of 5. Hence, y is
necessarily as in (16). Conversely, if y ¼ Y ) 10ey$pþ1 with
Y as in (16), then using (17), y ¼ 5$‘$1 ) 10$ezþp. It follows
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that z can be written z ¼ ðð5‘ $ 1Þ=2þ 1=2Þ ) 10ez$pþ1.
Since ð5‘ $ 1Þ=2 is an integer, and by hypothesis
10p$1 * ð5‘ $ 1Þ=2 < 10p, we deduce that z 2 MM10;p,
which concludes the proof. tu
In radix 10, there are at most two values of ‘ 2 NN such

that 2 ) 10p$1 < 5‘ < 2 ) 10p. Therefore, to determine all
inputs y that give a midpoint 1=y for a fixed exponent ey,
it suffices to find the at most two ‘ such that 2 ) 10p$1 <
5‘ < 2 ) 10p. This is easily done, even when the precision p is
large. Table 4 gives the integral significands Y of the
floating-point numbers y such that 1=y is a midpoint, for the
decimal formats of the IEEE 754-2008 standard [5].

7.2 Exact Points for Reciprocal

For radices either 10 or a positive power of two, the exact
points of the reciprocal function can all be enumerated
according to the following theorem:

Theorem 9. Let y 2 IF";p be nonzero. One has 1=y 2 IF";p if
and only if the integral significand Y of y satisfies "p$1 *
Y < "p and

Y ¼ 2k; 0 * k * qð2p$ 1Þ; if " ¼ 2q; q 2 NN>0;
2k ) 5‘; 0 * k; ‘ * 2p$ 1; if " ¼ 10:

"

Proof. For the “only if” statement, let y > 0 in IF";p be given,
let z ¼ 1=y, and assume that z 2 IF";p. First, one may
check that the exponent of z satisfies ez ¼ $ey $ $ with
$ 2 f0; 1g. Then, using the identity yz ¼ 1 together with
the normalized representations y ¼ Y ) "ey$pþ1 and
z ¼ Z ) "ez$pþ1, we get

Y Z ¼ "2p$2þ$; "p$1 * Y ; Z < "p: ð20Þ

If " ¼ 2q for some integer q - 1, then (20) implies that
Y ¼ 2k for some integer k such that 0 * k * qð2p$ 1Þ. If
" ¼ 10, then (20) implies that Y ¼ 2k ) 5‘ for some
integers k and ‘ such that 0 * k; ‘ * 2p$ 1.

Let us now prove the “if” statement. If Y ¼ "p$1, then
y is a power of the radix, and thus, 1=y belongs to IF";p. If
"p$1 < Y < "p, then defining Z ¼ Y $1 ) "2p$1, we obtain

1=y ¼ Z ) "$ey$p; "p$1 < Z < "p: ð21Þ

To conclude that 1=y belongs to IF";p it remains to show
that Z is an integer: If " ¼ 2q and Y ¼ 2k, one has
Z ¼ 2qð2p$1Þ$k, which is an integer for k * qð2p$ 1Þ; If
" ¼ 10 and Y ¼ 2k ) 5‘, then Z ¼ 22p$1$k ) 52p$1$‘, which
is an integer for k; ‘ * 2p$ 1. Hence, Z is an integer in
both cases, showing that 1=y is indeed an exact point.
This concludes the proof. tu

In radix 16 ¼ 24, for instance, the exact points 1=y with y
in the interval ½1; 16Þ are listed below.

In radix 10, all the integers Y ¼ 2k ) 5‘ with 0 * k; ‘ *
2p$ 1 and 10p$1 * Y < 10p can be enumerated by a simple
program, and each one of them gives an exact point. Table 5
gives the 21 integral significands Y such that 1=y is an exact
point, in the case of the decimal32 format (see also Table 7
in the Appendix for the decimal64 format).

Furthermore, given an input exponent, the result below
provides an explicit formula for the number N of floating-
point inputs having this exponent and whose reciprocal is a
floating-point number.

Theorem 10. For a given exponent ey, the number N of positive
values y 2 IF";p such that 1=y 2 IF";p is

N ¼ q; if " ¼ 2q; q 2 NN>0;
2
(
p log5ð10Þ

)
þ 1; if " ¼ 10:

"

Proof. When " ¼ 2q, Theorem 9 says that each exact point
corresponds to an integer k such that 2qðp$1Þ * 2k < 2qp

and 0 * k * qð2p$ 1Þ. The former condition is equiva-
lent to qðp$ 1Þ * k < qp, and thus, implies the latter.
From this, we deduce that the number of possible values
of k is q when " ¼ 2q.

When " ¼ 10, Theorem 9 says that each exact point
corresponds to a pair of integers ðk; ‘Þ such that

10p$1 * 2k ) 5‘ < 10p and 0 * k; ‘ * 2p$ 1:

The value of N is the number of points ðk; ‘Þ 2 ZZ2 that
satisfy those two sets of constraints. Let % ¼ log5ð2Þ ¼
0:4306765581 . . . The first set of constraints is equivalent to

ðp$ 1Þð1þ %Þ * %kþ ‘ < pð1þ %Þ: ð22Þ
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It implies in particular that ðp$ 1Þð1þ %Þ * ‘ < pð1þ %Þ,
which is stronger than 0 * ‘ * 2p$ 1 for p - 2, since
1þ % / 1:43. Hence, N ¼

P
0*k<2p Nk, where Nk is the

number of integers ‘ satisfying (22) for a given k.
Recalling that half-open real intervals ½a; bÞ such that

a * b contain exactly dbe$ dae integers [4, p. 74], we
deduce that for 0 * k < 2p,

Nk ¼
%
pð1þ %Þ $ %k

&
$
%
ðp$ 1Þð1þ %Þ $ %k

&

¼
%
ðp$ kÞ%

&
$
%
ðp$ k$ 1Þ%

&
þ 1:

Consequently, the sum
P

0*k<2p Nk telescopes to
2pþ bp%cþ dp%e. Since the integer p is nonzero and % is
irrational, p% cannot be an integer.Hence, dp%e ¼ bp%cþ 1,
which leads to N ¼ 2

(
pð1þ %Þ

)
þ 1. tu

According to Theorem 10, when " ¼ 2q, the number N of
different integral significands leading to an exact point is q.
In radix 10, we have N ¼ !ðpÞ, which confirms the fact that
the midpoints for the reciprocal can be easily enumerated,
even when the precision p is large. This is in contrast with
the exact points of square root in radix 10 or 2q, whose
number is exponential in p (see Section 2.2). For the decimal
formats of IEEE 754-2008, the corresponding values ofN are
listed below.

8 RECIPROCAL 2D EUCLIDEAN NORM

Given a d-dimensional vector y with entries in IF2;p, we
know from Theorem 7 that z ¼ 1=kyk2 cannot be a midpoint
in radix 2. In this section, we focus on the 2D case, studying
the midpoints and the exact points of the reciprocal 2D
euclidean norm, in radices 2q and 10. In radix 10, our study
relies on the representation of products of the form 2r ) 5s as
sums of two squares a2 þ b2, where a; b 2 NN. Thus, we first
explain in Section 8.1 the method we used for enumerating
all the representations of such a product as the sum of two
integer squares. Then, midpoints and exact points are
studied in Sections 8.2 and 8.3, respectively.

8.1 Decomposing 2r ) 5s into Sums of Two Squares

Decomposing an integer into sums of two squares is a well-
studied problem in the mathematical literature (see, for
instance, Wagon [13] and the references therein). In our
particular case of interest, we deduce the following theorem
that allows us to compute all the decompositions of 2r ) 5s as
sums of two squares. The proof of Theorem 11 relies on the
uniqueness of the decomposition of a number into prime
factors in the ring of Gaussian integers1 ZZ½i, (see, for instance,
Everest and Ward [3, chap. 2] for more details on this topic).

Theorem 11. Let r; s 2 NN be given, and assume k 2 NN. All the
unordered pairs fa; bg with a; b 2 NN and a2 þ b2 ¼ 2r ) 5s are
given by a ¼ j<ðcÞj and b ¼ j=ðcÞj with

c ¼ 2br=2cð1þ iÞr mod2ð2þ iÞkð2$ iÞs$k; 0 * k < dðsþ 1Þ=2e:

In particular, there are exactly dðsþ 1Þ=2e different decom-
positions of 2r ) 5s as the sum of two squares.

Proof. Let us assume that 2r ) 5s ¼ a2 þ b2. Since the decom-
position of 2r ) 5s into prime factors in ZZ½i, is unique apart
from multiplications by #1 or #i, one has 2r ) 5s ¼
$0ð1þ iÞrð1$ iÞrð2þ iÞsð2$ iÞs with $0 2 f#1;#ig. On
the other hand, one has a2 þ b2 ¼ ðaþ ibÞða$ ibÞ; hence,
by uniqueness of the decomposition into prime factors, it
follows that aþ ib ¼ $1ð1þ iÞk1ð1$ iÞk2ð2þ iÞk3ð2$ iÞk4
for some k1; k2; k3; k4 2 NN and $1 2 f#1;#ig. Then, one has

a2 þ b2

¼ $1$1ð1þ iÞk1þk2ð1$ iÞk1þk2ð2þ iÞk3þk4ð2$ iÞk3þk4 ;

and from 2r ) 5s ¼ a2 þ b2, we deduce that k1 þ k2 ¼ r
and k3 þ k4 ¼ s. Moreover, distinguishing two cases
corresponding to the parity of r, it can be checked that

ð1þ iÞk1ð1$ iÞk2 ¼ $2 ) 2br=2cð1þ iÞr mod 2;

with $2 2 f#1;#ig. Hence, we obtain

aþ ib ¼ $ ) 2br=2cð1þ iÞr mod 2ð2þ iÞkð2$ iÞs$k;

for some $ 2 f#1;#ig and k 2 NN such that 0 * k * s.
Since a; b - 0, we deduce that necessarily a ¼ j<ðcÞj and
b ¼ j=ðcÞj wi t h c ¼ 2br=2cð1þ iÞr mod 2ð2þ iÞkð2$ iÞs$k.
However, since both c and c ¼ 2br=2cð1$ iÞr mod 2ð2$
iÞkð2þ iÞs$k lead to the same unordered pair fa; bg, there
are at most dðsþ 1Þ=2e such unordered pairs fa; bg. This
implies that we only need the assumption 0 * k <
dðsþ 1Þ=2e for k.

Conversely, if a ¼ j<ðcÞj and b ¼ j=ðcÞj with c ¼
2br=2cð1þ iÞr mod 2ð2þ iÞkð2$ iÞs$k, then

aþ ib ¼ $2br=2cð1þ iÞr mod 2ð2þ iÞkð2$ iÞs$k

with $ 2 f#1;#ig. Then, one can check that a2 þ b2 ¼
ðaþ ibÞða$ ibÞ ¼ 2r ) 5s.

By uniqueness of the factorization into primes in ZZ½i,,
it can be shown that if we take k1 6¼ k2 with 0 * k1,
k2 < dðsþ 1Þ=2e, then the corresponding unordered pairs
fa1; b1g and fa2; b2g are necessarily different. Hence,
there are exactly dðsþ 1Þ=2e unordered pairs fa; bg. tu

For later use, we also state the following corollary of
Theorem 11:

Corollary 2. Given r 2 NN, the unique decomposition of 2r as a
sum of two integer squares is

2r ¼ 02 þ ð2r=2Þ2; if r is even;
ð2ðr$1Þ=2Þ2 þ ð2ðr$1Þ=2Þ2; if r is odd:

"

8.2 Midpoints for Reciprocal 2D Norm

Theorem 12 below can be used to determine all the
midpoints of the reciprocal 2D-norm function with expo-
nent ez.

Theorem 12. Let x; y 2 IF";p be such that ðx; yÞ 6¼ ð0; 0Þ, and let
z ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. If " ¼ 2q (q 2 NN>0), then z 62 MM";p. If

" ¼ 10, one has z 2 MM";p if and only if z has the form
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1. ZZ½i, is the set of the numbers of the form aþ ib, where a and b are
integers.



5‘ $ 1

2
þ 1

2

* +
) 10ez$pþ1;

with ez 2 ZZ and ‘ 2 NN such that 2 ) 10p$1 < 5‘ < 2 ) 10p.
Proof. Let z ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
be a midpoint, with x; y 2 IF";p.

Without loss of generality, we assume that z is in ½1;"Þ,
and since z is a midpoint, then one has 1 < z < ". Let us
also assume that x - y - 0, which implies

1ffiffiffi
2

p
x
* 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p * 1

x
: ð23Þ

Denoting by ex and ey the exponents of x and y,
respectively, from (23), it follows that "$ex$2 < z * "$ex ,
and since 1 < z < ", necessarily ex 2 f$1;$2g. Writing
z ¼ ðZ þ 1=2Þ ) "$pþ1, with Z 2 NN such that "p$1 *
Z < "p, from ðx2 þ y2Þz2 ¼ 1, we deduce

X2 ) "2ex$2ey þ Y 2
, -

ð2Z þ 1Þ2 ¼ 4 ) "4p$2ey$4: ð24Þ

Note that x - y implies that ex - ey, so that the left-hand
side of (24) is indeed in NN. When " ¼ 2q, (24) has no
solution, since the right-hand side of the equality is a
power of two, while the left-hand side has an odd factor.
When " ¼ 10, (24) becomes

X2 ) 102ex$2ey þ Y 2
, -

ð2Z þ 1Þ2 ¼ 24p$2ey$2 ) 54p$2ey$4: ð25Þ

Then, one has necessarily 2Z þ 1 ¼ 5‘ with ‘ 2 NN. The
bounds on 5‘ follow from 10p$1 * Z * 10p $ 1. Conver-
sely, if z has the form given in Theorem 12, it is clearly a
midpoint. tu
For instance, in the decimal32 format of IEEE 754-2008

(p ¼ 7), function 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
has only onemidpoint in ½1; 10Þ,

namely, z ¼ 4:8828125. This midpoint corresponds to
510 ¼ 9765625, which is the only power of five in the interval
ð2 ) 106; 2 ) 107Þ. All the other midpoints of the function are
obtainedbymultiplying 4.8828125 by an integral power of 10.

Theorem 12 can only be used to determine the
midpoints of the reciprocal norm function. Given such a
midpoint z, let us now show how to find x and y in IF10;p

such that z ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. For this, we shall use the

following trivial lemma:

Lemma 4. Let a be in QQ. One has a2 2 NN if and only if a 2 ZZ.

As in the proof of Theorem 12, let us assume that 1 <
z < 10 and x - y - 0, which implies that ex 2 f$1;$2g.
We denote by X and Y the integral significands of x and
y, respectively. From (25), we can deduce that X and Y
must satisfy

24pþ2 ) 54p$2‘ ¼ X ) 10exþ2
, -2þ Y ) 10eyþ2

, -2
: ð26Þ

From 2 ) 10p$1 < 5‘ < 2 ) 10p, one has 54p$2‘ 2 NN. Since,
moreover, ex 2 f$1;$2g, necessarily X ) 10exþ2 2 NN, and
Y 2 ) 102ðeyþ2Þ is also in NN. Since Y ) 10eyþ2 is a nonnegative
rational number whose square is a natural integer, it follows
from Lemma 4 that Y ) 10eyþ2 2 NN. Hence, we know that
X ) 10exþ2 and Y ) 10eyþ2 both necessarily belong to NN.

As a consequence, to find all inputs ðX;Y Þ that give a
midpoint for the function 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, we know from (26)

that we need to find all the decompositions of the at most

two integers 24pþ2 ) 54p$2‘ as the sum of two squares. We
used Theorem 11 to build all values x and y, x - y, such that
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is a midpoint, for the decimal formats of the

IEEE 754-2008 standard. For the decimal32 format, all the
pairs of floating-point numbers ðx; yÞ for which 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p

is a midpoint can be deduced from the pairs listed in
Table 6 by either exchanging x and y or by multiplying
them by the same power of 10 (results for the decimal64
format are listed in Table 9 in the Appendix, and those for
the decimal128 format are available at http://prunel.
ccsd.cnrs.fr/ensl-00409366/fr/).

The following table gives the number Nz of midpoints
z in a decade (i.e., with a fixed exponent ez), with respect
to the decimal format considered. The table also gives the
number N of pairs of integral significand ðX;Y Þ with
X - Y that give these midpoints. In decimal64 arithmetic,
for instance, the function ðx; yÞ7!1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
has two

midpoints z1 < z2 in the decade ½1; 10Þ: the number of
pairs ðX;Y Þ that give z1 is 10, and nine pairs give z2.

8.3 Exact Points for Reciprocal 2D Norm

Theorem 13. Let x; y 2 IF";p be such that ðx; yÞ 6¼ ð0; 0Þ. Let
X;Y denote the integral significands of x; y, and let also z

denote 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.

. For " ¼ 2q (q 2 NN>0), the real z is also in IF2q ;p if and
only if fx; yg ¼ f0;#2kg for some k 2 ZZ.

. For " ¼ 10, the number z is in IF10;p if and only if its
integral significand Z satisfies Z ¼ 2k ) 5‘, with
10p$1 * 2k ) 5‘ < 10p and k; ‘ 2 NN. In this case, one
has 28p$2k ) 58p$2‘ 2 NN and ðX;Y Þ must satisfy

ðX ) 10mÞ2 þ ðY ) 10nÞ2 ¼ 28p$2k ) 58p$2‘;

wherem;n 2 ZZ such thatX ) 10m andY ) 10n are inNN.
Proof. Without loss of generality, we assume that 1 * z < "

and 0 * y * x. Reasoning as in the proof of Theorem 12,
one may check that necessarily ex 2 f$2;$1; 0g. Using as
usual the normalized representations of x, y, and z, from
ðx2 þ y2Þz ¼ 1, we deduce

Z2ðX2 ) "2ex$2ey þ Y 2Þ ¼ "4p$4$2ey : ð27Þ

If " ¼ 2q for some q 2 NN>0, then (27) implies that Z ¼
2‘ for some ‘ 2 ZZ. From (27), we then deduce
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TABLE 6
Floating-Point Numbers x; y 2 IF10;7 with X - Y Such That

z ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Is a Midpoint, with 10$8 * z < 10$7



X ) 2qðexþ2Þ
. /2

þ Y ) 2qðeyþ2Þ
. /2

¼ 24qp$2‘: ð28Þ

Since 2qðp$1Þ * Z < 2qp, we deduce that qðp$ 1Þ * ‘ < qp;
hence, 24qp$2‘ is in NN. Since both 24qp$2‘ andX ) 2qðexþ2Þ are
in NN, it follows that ðY ) 2qðeyþ2ÞÞ2 is also in NN, and from
Lemma 4, we deduce that Y ) 2qðeyþ2Þ 2 NN. Then, Corol-
lary 2 implies that the only possible decomposition of
24qp$2‘ as the sum of two squares is 24qp$2‘ ¼ 02 þ ð22qp$‘Þ2
so that fX;Y g ¼ f0; 22qp$‘g. Conversely, if fx; yg ¼
f0;#2kg, then 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ 2$k belongs to IF2q ;p.

Now, let us assume that " ¼ 10. Then, (27) becomes

Z2 X2 ) 102ex$2ey þ Y 2
, -

¼ 104p$4$2ey : ð29Þ

Since 104p$4$2ey is a multiple of Z, necessarily Z ¼ 2k ) 5‘
with k; ‘ 2 NN such that 10p$1 * 2k ) 5‘ < 10p, which
implies that ‘ * 2p and k * 4p. Moreover, from (29) with
Z ¼ 2k ) 5‘, we have

X ) 102pþexþ2
, -2þ Y ) 102pþeyþ2

, -2¼ 28p$2k ) 58p$2‘: ð30Þ

Since ðX ) 102pþexþ2Þ2 and 28p$2k ) 58p$2‘ are both in NN,
then Y ) 102pþeyþ2 also belongs to NN, which concludes
the proof. tu
In radix 2q, the pairs ðx; yÞ such that 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is a

midpoint are characterized by Theorem 13. In radix 10, for
each Z ¼ 2k ) 5‘ with k; ‘ 2 NN such that 10p$1 * 2k ) 5‘ < 10p,
we are reduced to find all decompositions of 28p$2k ) 58p$2‘

as sums of two squares. This is done as explained in
Section 8.1. For each basic decimal format of the IEEE 754-
2008 standard, the following table gives the number Nz of
midpoints with a fixed exponent ez, together with the
number N of pairs of significands ðX;Y Þ with X - Y such
that 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is in IF10;p.

9 NORMALIZATION OF 2D VECTORS

Theorem 7 shows that x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
cannot be a midpoint

in radix 2. Here, we first extend this result to radices 2q

and 10. Then, we characterize the exact points of the 2D-
normalization function in radix 2q.

9.1 Midpoints for 2D Normalization

Theorem 14. Let x; y 2 IF";p such that ðx; yÞ 6¼ ð0; 0Þ. If " ¼ 2q

(q 2 NN>0) or " ¼ 10, then x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
62 MM";p.

Proof. Without loss of generality, let us assume that x; y > 0,
and assume that z ¼ x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is a midpoint. Hence, we

write as usual z ¼ ðZ þ 1=2Þ ) 10ez$pþ1 with ez 2 ZZ andZ 2
NN such that "p$1 * Z < "p. From x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
* 1, we

deduce that z * 1; hence, ez * 0. Using x2ð1$ z2Þ ¼ y2z2

and the normalized representations of x and y gives

X2ð4 ) "2p$2$2ez $ ð2Z þ 1Þ2Þ ¼ Y 2ð2Z þ 1Þ2 ) "2ey$2ex : ð31Þ

From ez * 0, the left-hand side of (31) is in NN, and
thus, using Lemma 4, Y ð2Z þ 1Þ ) "ey$ex 2 NN. Since
Y 2ð2Z þ 1Þ2 ) "2ey$2ez is a multiple of X2, it follows that

Y ð2Z þ 1Þ ) "ey$ex ¼ JX for some J in NN>0. Equation
(31) then becomes

ð2 ) "p$1$ezÞ2 ¼ J2 þ ð2Z þ 1Þ2; ð32Þ

which expresses ð2 ) "p$1$ezÞ2 as a sum of two integer
squares.

If " ¼ 2q, then ð2 ) "p$1$ezÞ2 is an even power of two,
and Corollary 2 then implies that it has only one possible
decomposition, which is 02 þ ð2qðp$1$ezÞþ1Þ2. However,
this contradicts the fact that both J and 2Z þ 1 are
positive integers.

With " ¼ 10, (32) becomes

22p$2ez ) 52p$2$2ez ¼ J2 þ ð2Z þ 1Þ2: ð33Þ

Since 2p$ 2ez is even, according to Theorem 11, one has

22p$2ez ) 52p$2$2ez ¼ j<ðcÞj2 þ j=ðcÞj2;

with c ¼ 2p$ezð2þ iÞkð2$ iÞ2p$2$2ez$k for some k 2 NN, and
one may check that both j<ðcÞj and j=ðcÞj are even. Hence,
the two squares in the right-hand side of (33) must be
even, which is a contradiction since 2Z þ 1 is odd. tu

9.2 Exact Points for 2D Normalization

The next theorem provides a characterization of the exact
points of the 2D-normalization function in radix 2q.

Theorem 15. Let q 2 NN>0 and let x; y 2 IF2q ;p be such that
ðx; yÞ 6¼ ð0; 0Þ. One has z ¼ x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
2 IF2q ;p if and only

if x ¼ 0 or y ¼ 0.

Proof. The “if” statement is obvious. Conversely, assume
that z 2 IF2q ;p and both x and y are nonzero. We can
restrict to x; y > 0 with no loss of generality. Let
z ¼ x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Since z * 1, necessarily ez * 0. Then,

using x2ð1$ z2Þ ¼ y2z2 and the normalized representa-
tions of x and y,

X2ð"2p$2ez$2 $ Z2Þ ¼ Y 2Z2 ) "2ey$2ex : ð34Þ

From ez * 0, it follows that the left-hand side of (34) is in
NN and, due to Lemma 4, so is Y Z ) "ey$ey . Now, since
Z2Y 2 ) "2ey$2ex is a multiple of X2, we have ZY ) "ey$ex ¼
JX for some J 2 NN>0. Then, we obtain from (34)

ð"ez$pþ1Þ2 ¼ J2 þ Z2: ð35Þ

When " ¼ 2q, Corollary 2 implies that either J or Z is
zero, a contradiction. tu
In radix 10, we do not have simple results to characterize

the exact points of the 2D-normalization function. But they
can, of course, be enumerated using (35) at least for some
small precisions. Using Theorem 11, we enumerate all the
pairs ðZ; JÞ for a fixed ez such that (35) holds. Without loss of
generality, we fix ex ¼ 0. The inputs x and y can then be
found by searching the points ðX;Y ) 10eyÞ on the line
Y Z ) 10ey ¼ JX, with 10p$1 * X < 10p and X 2 NN. For some
small precisions, the following table gives the number of
pairs of inputs ðX;Y Þ such that x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is an exact point.
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This experiment suggests that the number of pairs ðx; yÞ
such that x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is an exact point grows very rapidly

with p, and no useful enumeration can be performed.

10 2D EUCLIDEAN NORM

Let x and y be two numbers in IF";p, and assume that z ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is a midpoint. We use the normalized representa-

tions of x and y, and write as usual z ¼ ðZ þ 1=2Þ ) "ez$pþ1.
Without loss of generality, we assume that x - y, which
implies that ez - ex - ey. Then, from x2 þ y2 ¼ z2, it follows
that

4ðY 2 þX2 ) "2ex$2eyÞ ¼ ð2Z þ 1Þ2 ) "2ez$2ey : ð36Þ

When " is odd, the right-hand side of (36) is odd, while the
left-hand side is always even. Hence, if the radix " is odd,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

cannot be a midpoint, and this observation can be
generalized to the euclidean norm in higher dimensions.
Nevertheless, this not a very useful result since it does not
hold for binary, decimal, nor hexadecimal arithmetic.

For even radices, we do not have general results.
Equation (36) has solutions, and exhaustive enumeration
can be performed at least for small precisions. In radices 2
and 10, and for some small precisions p, the following two
tables display the number N of input pairs ðx; yÞ, with
x - y, such that z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is a midpoint in ½1;"Þ.

These experiments suggest that the number of midpoints
for the function ðx; yÞ7!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
grows very rapidly with p.

On the other hand, in one dimension, the euclidean norm
reduces to the absolute value, which suffices to see that it
admits only exact points.

11 CONCLUSION

We have shown that for several simple algebraic functions
(

ffiffiffi
y

p
, 1=

ffiffiffi
y

p
, xk for k 2 NN>0, x=kyk2, x=y, 1=y, 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
,

x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
), we can obtain useful information on the

existence of midpoints and exact points. This information
can be used for simplifying or improving the performance
of programs that evaluate these functions.

Finding midpoints and exact points would also be of
interest for the most common transcendental functions
(sine, cosine, exponential, logarithm,. . . ). Providing these
functions with correct rounding is a difficult problem,
known as the Table-Maker’s Dilemma [7], [10]. For the most
simple transcendental functions, these built from the
complex exponential and logarithm, one can deduce the
nonexistence of midpoints from the following corollary of
Lindemann’s theorem (see, for example, [2, p. 6]):

Theorem 16 (Lindemann). ez is transcendental for every
nonzero algebraic complex number z.

Since floating-point numbers as well as midpoints are
algebraic numbers, Theorem 16 allows us to deduce that for
any radix and precision, if x is a floating-point number,
then lnðxÞ, expðxÞ, sinðxÞ, cosðxÞ, tanðxÞ, arctanðxÞ, arcsinðxÞ,
and arccosðxÞ cannot be midpoints. Furthermore, the only
exact points are lnð1Þ ¼ 0, expð0Þ ¼ 1, sinð0Þ ¼ 0, cosð0Þ ¼ 1,
tanð0Þ ¼ 0, arctanð0Þ ¼ 0, arcsinð0Þ ¼ 0, and arccosð1Þ ¼ 0.

The case of radix-2 and radix-10 exponentials and
logarithms has to be treated more carefully. But one can
prove that the radix-2 or 10 logarithm of a rational number
is either an integer or an irrational number. This gives the
following result. Assume that the exponent size is less than
the precision (which is true in any reasonable floating-point
system) and x is a floating-point number. Then, we have the
following:

. log2ðxÞ cannot be a midpoint. It can be an exact point
only when x ¼ 2k, where k is an integer;
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TABLE 7
List of the 45 Integral Significands Y Such That 1=y

Is an Exact Point in the Case of the Decimal64 Format



. log10ðxÞ cannot be a midpoint. It can be an exact
point only when x ¼ 10k, where k is an integer.

It is always possible to build ad hoc transcendental
functions for which something can be said about midpoints
or exact points. Unfortunately, for the many common
nonelementary transcendental functions useful in scientific
applications (physics, statistics, etc.), almost nothing is
known about their midpoints or exact points in floating-
point arithmetic.

Consider, for instance, the Gamma function. We know
that if n is a nonnegative integer, then "ðnÞ ¼ ðn$ 1Þ! is an
integer too (which implies the existence of midpoints in
some cases, e.g., in radix-2 arithmetic with p ¼ 3, the
number 610 ¼ 1102 is a floating-point number, and "ð6Þ ¼
5! ¼ 12010 ¼ 11110002 is a midpoint). Although we have no
proof of that, it is extremely unlikely that Gamma of a
noninteger floating-point number could be a midpoint or an
exact point. To our knowledge (see, for example, [14]), the
only result that can be used to deal with a very few cases is
that "ðxÞ is shown to be irrational if x modulo 1 belongs to
f1=6; 1=4; 1=3; 1=2; 2=3; 3=4; 5=6g.

APPENDIX

EXACT POINTS FOR RECIPROCAL, SQUARE ROOT

RECIPROCAL, AND 2D-NORM RECIPROCAL

See Tables 7, 8, and 9.
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TABLE 8
All Integral Significands Y of y, and the Parity
of the Exponent ey, Such That z ¼ 1=

ffiffiffi
y

p
Is a

Floating-Point Number Too, in Decimal64 Format

TABLE 9
In Decimal64 Arithmetic, the Function 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Has

Two Midpoints in the Range ½10$16; 10$15Þ, Denoted by
z1 and z2: The Pairs of Floating-Point Numbers x and y
Such That 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Equals z1 or z2 Are Listed Below
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