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Adding a New Dimension to DNA Melting Curves.

SANTIAGO CUESTA-LOPEZ!(®) | DIMITAR ANGELOV?, AND MICHEL PEYRARD'

L Université de Lyon, Ecole Normale Supérieure de Lyon, Laboratoire de Physiqgue CNRS
UMR 5672, 46 allée d’Italie, 69364 Lyon Cedex 07, France
2 Université de Lyon, Ecole Normale Supérieure de Lyon, Laboratoire de Biologie Molé-

culaire de la Cellule CNRS UMR 5259, 46 allée d’Italie, 69364 Lyon Cedex 7, France

PACS 87.15.Hp — Dynamics and conformational changes
PACS 82.39.Pj — Nucleic acids, DNA and RNA bases
PACS 87.15.Cc — Folding: thermodynamics, statistical mechanics, models, and pathways

Abstract. - Standard DNA melting curves record the separation of the two strands versus tem-
perature, but they do not provide any information on the location of the opening. We introduce an
experimental method which adds a new dimension to the melting curves of short DNA sequences by
allowing us to record the degree of opening in several positions along the molecule all at once. This
adds the spatial dimension to the melting curves and allows a precise investigation of the role of
the base-pair sequence on the fluctuations and denaturation of the DNA double helix. We illustrate
the power of the method by investigating the influence of an AT rich region on the fluctuations of
neighboring domains.

DNA melting, i.e. the separation of the two strands of the double helix, and its reverse
process hybridisation are ubiquitous in biology, in vivo for instance for DNA transcription
in the reading of the genetic code of a gene, as well as in vitro in biological laboratories
for PCR (Polymerase Chain Reaction) or the use of DNA microarrays. This is why DNA
melting has been extensively studied even in the early days of DNA structural studies [1]. An
approximate understanding of the melting curves of long DNA segments, with thousands of
base pairs, can be provided by simple statistical physics models, using empirical parameters
because, at this large scale, the subtle effects of the base pair sequence are smoothed out.
Understanding the fluctuations and melting of short DNA fragments of a few tens of base
pairs with a high degree of heterogeneity is much more challenging. And it is also very
important because this size is the scale at which the genetic code can be resolved. This would
have some significant biological consequences to unravel the processes by which specific
binding sites are recognised by proteins, drugs, mutagens and other molecules. This would
also have a lot of practical importance in the design of the PCR primers which are used
everyday in most of the biological laboratories [2].

The two kind of base pairs which exist in the DNA double helix have different thermal
stability, the AT pair, bound by two hydrogen bonds, being weaker than the GC pair
bound by three hydrogen bonds. This explains why the melting curve of a heterogeneous
DNA sequence, which shows the fraction of open pairs as a function of temperature, can
exhibit complex features. Those curves are easy to record experimentally because the UV
absorbance of a DNA solution increases drastically when the bases are unstacked, which is
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the case in the broken regions of the molecule. But such a curve only provides an integral
information on the open fraction of base pairs. Getting more local information requires
involved methods. Using a clever choice of sequences such that single strands can form
hairpins, and a combination of heating and quenching, Montrichok et al. [3,4] managed to get
some data on the melting process of short DNA sequences, detecting whether they open at
one end or by starting with an open bubble in the centre. The kinetics of proton—deuterium
exchange for the protons involved in the hydrogen bonds within pairs, coupled with NMR
studies to detect the location of the exchanged protons, can also provide partial information
on the spatial aspect of DNA fluctuations, at the expense of heavy experiments [5]. Another
approach relies on special molecular constructs which attach a fluorophore and a quencher
to DNA to detect its local opening at a particular site [6,7]. Only one position can be
monitored, and one cannot exclude local perturbations of the fluctuations by the large
residues attached to the DNA.

Due to their importance, the statistical and dynamical properties of DNA fluctuations
and their relation to biological functions have been the subject of many theoretical stud-
ies [8-10]. These studies raised a debate on the role of statistical properties and dynamical
phenomena in connection to biological function. But the validity of those theoretical ap-
proaches can only be tested if one can compare their predictions to measurements of the
local fluctuations of the molecule. Moreover the study of dynamical and conformational
phenomena in DNA requires a method not only able to give a precise local information, but
also able to provide coupled information of events along the chain. In this letter we present
an original method that can provide a mapping of the strength of the fluctuations of the
double helix as function of their position along the sequence. This adds a new dimension,
space, to the traditional melting curves. Our approach does not require special molecular
constructs like those using dyes or fluorophores. Instead it uses DNA itself to report on its
internal state and gives a snapshot of the opening of DNA at each guanine site at once.
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Fig. 1: Local melting curves for different sections of a DNA sequence (S1). Symbols represent the
thermal evolution of the rate Rppg/Rpip exhibited by two guanines G and G2, used as probes
located along the molecule. This ratio reports on the closing probability of each guanine at a
given temperature. The lines are the fitting curves described in the paper and the insets plot the
derivative of the fitting curve for each probe. They highlight the fine structure of the melting curves
and point out the existence of different local conformational transitions along the DNA sequence.

The method relies on the oxidative chemistry of the guanine bases G, and their propen-

sity to be ionised by a two step resonance excitation [11] from a strong UV laser pulse.
Two guanine modifications, oxazolone and 8-oxo-7,8-dihydro-2-oxoguanine (8-oxodG) have
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Fig. 2: Adding a new dimension to the study of a short DNA fragment melting profile: the figure

displays a 3D view of the spatially resolved ratio Rrpg/Rpip, showing the closing for different
guanine probes placed along a longer DNA sequence S2.

been identified as the major one-electron oxidative DNA lesions. Their formation depends
on the local DNA conformation and on the charge-transfer efficiency, which is affected by
local fluctuations [12-14]. While oxazolone is the unique product resulting from one-electron
oxidation of the free 2’-deoxyguanosine, 8-oxodG appears as soon as the nucleoside is in-
corporated in a helical structure. Hence the measurement of the relative yield of these
photoproducts at each G site (labelled Rppq/Rpip due to the method used for its detec-
tion [15]) tells us whether this G was in an helical structure (closed) or whether it was open
when the molecule was hit by the laser pulse. As the experiment is not performed on a
single molecule but in solution the results are obtained on a statistical ensemble and they
give a signal representative of the probability that each G site is closed at the temperature
of the study. Standard biological methods can be used to measure the relative yield of
the production of oxazolone and 8-oxodG [15]. However, it is important to notice that the
value of Rppg/Rpip should not be considered as a quantitative measure of the local closing
probability because it is also affected by the configuration of the DNA molecule near the
probe, which depends slightly on the sequence and influence the charge transfer. Only the
temperature dependence of this ratio for a given probe can be analysed quantitatively [16].

By splitting the sample into several aliquots, the measurement can be performed at
different temperatures, which allows us to produce a set of melting curves for each guanine in
the sequence. Figure 1 shows the results of a UV laser irradiation analysis for two guanines,
labelled S1-G1 and S1-G2, belonging to a test sequence S1 (details of the sequence are
provided in the figure caption and in Figure 3). It demonstrates how our method reports
two complementary curves at once for the same single DNA sequence, adding a valuable
information of the state of the system. The results that it provides changes the view in
which DNA denaturation can be studied, adding the spatial correlations to the notion of
local conformation (melted or packed helix).

In order to quantitatively analyse the measurements shown in Fig. 1 we have fitted the
experimental curves by the function f(T) = A— B; tanh[C (T —T1)] — Bz tanh[C2(T — T3)],
selected according to the shape of the curves, particularly that of the probe S1-G1. Once the
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optimal parameters are determined, we plot df (T')/dT for each probe (right part of Fig. m),
to highlight the fine structure of each melting curve. Figure [l| clearly shows that, at the
level of probe S1-G1, the melting occurs in two steps, with a precursor at T, = 45.7°C while
the full melting is achieved at 55.0°C. Although a slight precursor effect can be detected for
probe S1-G2 it is very weak and hardly visible on the figure. The fit of the data indicates
that it occurs at Tj = 51.8°C, very close to the full melting detected at T{ = 54.4°C for this
probe. Interestingly these results show that the conformational melting can follow different
paths in various parts of the same short sequence.

For longer sequences such as sequence S2 (Fig. E), the existence of several guanine probes,
located in some interesting domains, allows us to obtain a collection of snapshots for the
local state of the system that can be combined to build a three-dimensional melting profile
like the one shown in Figure 2. This 3D plot shows the ratio Rpps/Rpip for a particular
DNA sequence containing four guanines (S2-G1 to S2-G4) that are monitored as probes.
The study as a function of temperature provides a melting profile for each probe, together
with a view of the spatial correlations along the full sequence.

Buffer)tregion TATA}—(box

e 3 [ 3 ) . 3
S1: 5’-ggegt ataCG ATATCAG, TATATATAT itecgg-3°

Closing segment Closing segment

S2: 5 ggegt 2taCG, AATG JAATG;CACAG,TATATATAT tecgg-3’
3icogeatat GC TTA C TTAC GTGT C ATATATATA aggec:5’

S3 (vorara): 5'iggcet’ tatat CG, ATaTTicegg-13’

3’%ccgca iatataGC TATAA aggeg- 5’

Fig. 3: Sequences of the DNA fragments investigated in this study. S1 and S2, are artificial
sequences containing a large TATA box and guanines on the 5°-3’ strand, used as probes. S3 is a
shorter control sequence that eliminates the TATA motif. All sequences are completed by GC-rich
terminal domains (marked as dotted boxes) to stabilise them and ensure proper closing of these
short DNA helices.

In order to get a more precise insight on the origin of the two-step melting detected
at the level of probe S1-G1, and to relate it to the effect of bubble nucleation in DNA, we
have studied several artificial sequences specially designed and synthesised [17] to investigate
possible non-local effects of the fluctuations. They are shown on Figure 3. Sequences S1
and S2 contain a 10 base-pair-long AT-rich fragment which is analogous to the “TATA-box’,
a motif that exists in the transcription-initiation regions of the genes of various species. As
the AT base pairs bound by only two hydrogen bonds are weaker than the GC pairs, these
segments are expected to exhibit large fluctuations even at biological temperature because
they are closer to their melting temperature.

All sequences S1, S2 and S3 contain different guanines labeled Sn-Gx, where n refers
to the sequence and x to the particular guanine. They are spread along the strand, and
according to the basis of our method, act as probes informing us about the local structural
state at each temperature. As mentioned above the level of the Rpp,/R,ip signal that we
record depends on the structure in the vicinity of the guanine of interest. This is why,
in order to allow a quantitative comparison between different sequences, we have selected
guanines with the same environment. For instance guanines S1-G1, S2-G1, S3-G1 are all
parts of the sequence CGA, and guanines S1-G2 and S2-G2 are part of the sequence AGT.
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The major difference between sequences S1 and S2 lies in the length of the domain that
separates probe G1 from the AT-rich region. This “buffer region”, which is an heterogeneous
domain with AT and GC pairs, has been extended from 7 base pairs in sequence S1 to 13
base pairs in sequence S2. In sequence S3 we have eliminated the large “TATA box” to keep
only short AT-rich domains around probe S3-G1. In all cases these short DNA molecules
are terminated by GC rich domains which act as clamps to prevent large fluctuations of the
free ends of the molecules, and hold the two strands together even when we heat the sample
up to 60°C. [18].

The variation versus temperature of the ratios Rppg/Rpip for all the guanine probes
studied in sequences S1, S2, S3, are summarised in Fig. H The comparison of the various
curves gives some clues to understand the differences between the two melting curves of
probes S1-G1 and S1-G2 discussed above, and points out some interesting features of DNA
fluctuations, which can be revealed by an experimental method able to record local melting
profiles. When they are analysed in the context of the particular sequences that we studied,
the curves suggest three important properties of DNA fluctuations:

i) a large AT-rich domain undergoes very large fluctuations, even at room or biological
temperature, and therefore tends to easily form an “open bubble”.

ii) there is a minimum size of the AT-rich domain that allows the formation of such a
bubble.

iii) the influence of such a bubble does not only affect its immediate vicinity, but extends
to some distance.

Let us see how these statements are supported by our results.

As our method relies on the ionisation of the guanines, we do not directly measure the
opening of the AT pairs but their fluctuations can be inferred from their influence on the
adjacent guanines. Although we stressed that quantitative comparisons cannot be made
between different probes because the signal that we record depends on the local structure of
DNA, the very small value of Rppq/Rpip for probe S1-G2 is nevertheless a strong indication
that the closing probability of this guanine, which lies next to a series of 10 AT pairs is very
low even at room temperature. This can be understood as an effect of the strong tendency
of the large AT rich region to open into transient bubbles, called “premelting phenomena”,
starting at physiological temperatures [19-22], which certainly affects the base pair which
is right next to it. Probe S3-G1 is also surrounded by AT-rich regions, but its closing
probability deduced from the corresponding value of Rppq/Rpip, shown on the top panel of
Fig. E, appears to be much higher that for probe S1-G2. This indicates that the fluctuations
of the five-base-long AT regions which are next to probe S3-G1 are not sufficient to form
open bubbles that would promote the opening of this probe. This is in agreement with the
existence of a minimum size needed to allow the formation of a bubble [3].

The striking point is that the large fluctuations of the TATA box do not only perturb the
adjacent geometry but also induce conformational changes that distort the closed packed
helicoidal structure in regions distant from the bubble nucleation segment, giving rise to pre-
melting intermediate structural states that coexist in consonance with the nucleated bubbles.
This shows up in the two-step denaturation that we observed for probe S1-G1, as discussed
above. Although this probe is 7 base-pairs away from the TATA box, Fig. EI shows that
precursor effects appear well below the full denaturation of this probe. Those precursors are
also visible in Fig. . Note again how the melting at the level of probe S1-G1 differs from
a simple sigmoidal curve, particularly in the temperature range from 37°C to 52°C. It is
tempting to assign them to the influence of the fluctuations of the TATA, which grow when
the temperature is increased and might influence the opening structure and fluctuations of
the double helix even rather far away. But, to confirm such an assignment control experi-
ments are necessary. Their results are shown on the bottom panel of Fig. H which shows the
thermal variation of the ratio Rppq/Rpip for several guanine probes in sequence S2.

In this sequence the TATA box is present, as in sequence S1, but the length of the buffer
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region that separates it from probe S2-G1, which has the same local structure as probe
S1-G1, has been increased. Moreover this buffer region is strengthened because it contains
several GC pairs, including two adjacent ones at the site of probe S2-G3. In this sequence
the existence of the large fluctuations of the TATA box are attested by the very low closing
probability of probe S2-G2, similar to what is observed for probe S1-G2. But, contrary to
what was observed for probe S1-G1, the denaturation of probe S2-G1 does not show any
significant precursor effect. Similar one-step transitions are also observed for probes S2-G3
and S2-G4.

In summary, these experiments clearly suggest that thermal fluctuations, which are
stronger in AT-rich tracks, induce bubble nucleation phenomena and structural changes
that affect not only the local geometry and dynamics of DNA in the breathing portion,
but also to some distance along the helix. How this happens is highly dominated by the
characteristics of the fragment sequence as well as the length of the sections involved.
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Fig. 4: The top panel shows the melting profiles for the probes studied in sequences S1 and S3.
Sigmoidal non-linear fits (dotted lines) have been used to describe the evolution of probes S1-G1
and S3-G1. Both fits have been performed with the same identical functional form. While the
response of S3-G1 agrees with a one step standard melting transition, the result for S1-G1 suggests
a two steps transition, with a premelting region, clearly shown in Fig. . The bottom panel shows
the ratio Rrpg/Rpip for the guanine probes of sequence S2 versus temperature. For probe S2-G1,
the premelting effect has been suppressed due to the existence of a longer more stable intermediate
buffer region.
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Those results are only accessible because we have introduced a method which is able to
provide a spatial information that was not available until now for the study of local melting
in short DNA fragments. Further studies are certainly necessary to confirm and precise the
non-local effect of the fluctuations of large AT-rich regions that we have presented in this
letter. They become possible with the “three-dimensional melting curves” that can now be
measured.

Finally, we would like to emphasise the importance of taking into account the structural
modifications induced by bubble dynamics in terms of DNA-protein binding interactions,
Transcription Factor recognition or DNA-drug binding. Further studies of local fluctuations
in DNA may be of significant importance in the analysis of these biological phenomena.

We would like to thank the program CIBLE of Région Rhone—Alpes which supported
this work.
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