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Abstract. Numerical linear algebra and combinatorial optimization are
vast subjects; as is their interaction. In virtually all cases there should
be a notion of sparsity for a combinatorial problem to arise. Sparse ma-
trices therefore form the basis of the interaction of these two seemingly
disparate subjects. As the core of many of today’s numerical linear alge-
bra computations consists of the solution of sparse linear system by direct
or iterative methods, we survey some combinatorial problems, ideas, and
algorithms relating to these computations. On the direct methods side,
we discuss issues such as matrix ordering; bipartite matching and matrix
scaling for better pivoting; task assignment and scheduling for parallel
multifrontal solvers. On the iterative method side, we discuss precon-
ditioning techniques including incomplete factorization preconditioners,
support graph preconditioners, and algebraic multigrid. In a separate
part, we discuss the block triangular form of sparse matrices.

Keywords. Combinatorial scientific computing, graph theory, combi-
natorial optimization, sparse matrices, linear system solution

1 Introduction

In this short review paper, we examine the interplay between the solution of
sparse linear systems and combinatorics. Most of this strong association comes
from the identification of sparse matrices with graphs so that most algorithms
dealing with sparse matrices have a close or exact analogue to an algorithm on
a graph. We examine these analogues both in the case of the direct solution
of sparse linear equations and their solution by iterative methods, particularly
focusing on preconditioning.
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Two surveys on combinatorial scientific computing have already been carried
out. Hendrickson and Pothen [128] focus on the enabling role of combinatorial al-
gorithms in scientific computing, highlighting a broad range of applications: par-
allel computing; mesh generation; sparse linear system solution; automatic dif-
ferentiation for optimization; statistical physics; computational chemistry; bioin-
formatics; information processing. Bollhöfer and Schenk [29] give an overview of
combinatorial aspects of LU factorization. In a spirit similar to the two preced-
ing surveys, Heath, Ng, and Peyton [123] survey parallel algorithms for sparse
Cholesky factorization by discussing issues related to the parallelization of the
major steps of direct solvers. A recent book by Brualdi and Cvetković [36] cov-
ers standard matrix computations where the combinatorial tools are brought
to the forefront, and graphs are used to explain standard matrix computations.
The contents include matrix powers and their description using directed graphs;
graph-theoretical definition of the determinant of a matrix; and the interpreta-
tion of matrix inverses and linear system solution. Brualdi and Ryser [37] and
Brualdi [34,35] include a higher level of combinatorial analysis and many linear
algebraic concepts beyond the solution of linear systems.

We cover linear system solution with both direct and iterative methods. We
try to keep the discussion simple and provide details of some fundamental prob-
lems and methods; there are a great many beautiful results on combinatorial
problems in linear algebra and reviewing them all would fill a book rather than
a short survey paper. Often we review or cite the paper or papers that are at
the origin of a particular method. The field has evolved in many ways and many
developments have taken place since this original research. We try to provide
newer references and software which define the current state-of-the-art. In some
cases, survey papers of the highest quality are available, and we list some of these
as pointers for readers who wish to explore these areas more fully. All the papers
in our reference list are cited and almost all of them are commented on in the
text of the paper. In fact we feel that the extensive bibliography is a very useful
feature of this review and suggest that the reader may look at these references
for further enlightenment on topics of particular interest.

We have intentionally avoided covering subareas that are addressed by other
papers in this volume, for example graph partitioning, sparse matrix-vector mul-
tiplication, colouring problems, automatic differentiation.

In Section 2, we provide basic definitions from graph theory that are used
throughout the paper. Some further definitions are deferred to the relevant sec-
tions. We start discussing combinatorial problems in direct solvers by a gentle
introduction to the elimination process and its relationship to a suitably defined
graph in Section 3. This section is structured around the main techniques that
constitute the essential components of modern direct solvers. Section 4 covers
some other combinatorial problems which arise in iterative methods. In this sec-
tion, we mainly discuss the issues that arise due to the use of preconditioning
techniques. Section 4.4 covers a special permutation of sparse matrices, known
as the block triangular form, which reformulates the solution of a large linear
system in terms of the solution on smaller subsystems thus giving us benefits if
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the solution scheme is superlinear in the order of the system which is usually
the case. We finish with some concluding remarks in Section 5.

2 Basics

In this section, we collect some elementary terms and definitions in graph theory
to be used later. Most classical use of these terms and definitions in direct meth-
ods can be found in in [67,97,50]. For a more algorithmic treatment of graph
theory, we refer the reader to [48].

A graph G is a pair (V,E), where V is a finite set, called the vertex or node
set, and E is a binary relation on V , called the edge set. There are three standard
graph models that are widely used in combinatorial scientific computing. In an
undirected graph G = (V,E) the edges are unordered pairs of vertices, {u, v} ∈ E
for u, v ∈ V and u 6= v. In a directed graph G = (V,E), the edges are ordered
pair of vertices, that is, (u, v) and (v, u) are two different edges. A bipartite graph
G = (U ∪ V,E) consists of two disjoint vertex sets U and V where for each edge
(u, v) ∈ E we have u ∈ U and v ∈ V .

An edge (u, v) is said to be incident on the vertices u and v. For any vertex
u, the vertices in the set adj(u) = {v : (u, v) ∈ E} are called the neighbours of u.
The degree of a vertex is the number of edges incident on it. A path p of length
k is a sequence of vertices 〈v0, v1, . . . , vk〉 where (vi−1, vi) ∈ E for i = 1, . . . , k.
A cycle is a path that starts and ends at the same vertex. The two end points
v0 and vk are said to be connected by the path p, and the vertex vk is said to be
reachable from v0. An undirected graph is said to be connected if every pair of
vertices is connected by a path. A directed graph is said to be strongly connected
if every pair of vertices are reachable from each other. The subgraph H = (W,F )
of a given graph G = (V,E) is a graph such that W ⊆ V and F ⊆W ×W ∩E.
Such an H is called an induced subgraph, if F = W ×W ∩ E and a spanning
subgraph if W = V . A tree is a connected graph without cycles. A spanning tree
of a connected graph is a spanning subgraph which is also a tree.

Given a sparse square matrix A of order n, one can associate any of the three
standard graph models described above. Formally one can associate the following
three graphs. The first one is the bipartite graph GB = (VR ∪ VC , E), where the
vertex sets VR and VC correspond to the rows and columns of A, respectively,
and the edge set E corresponds to the set of nonzeros of the matrix A so that
(i, j) ∈ E iff aij 6= 0. The second one is the directed graph GD = (V,E),
where each vertex corresponds to a row and the respective column of A, and
the edge set E corresponds to the set of nonzeros of A so that (i, j) ∈ E iff
aij 6= 0. The third one is the undirected graph GU = (V,E) which is defined for
a pattern symmetric matrix A (that is aij 6= 0 whenever aji 6= 0), where each
vertex corresponds to a row and the respective column of A, and the edge set
E corresponds to the set of nonzeros so that (i, j) ∈ E iff aij 6= 0 and aji 6= 0.
We note that among these three alternatives, only the bipartite graph GB can
represent a rectangular matrix.
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The three graph models discussed above suffice for the material that we cover
in this paper. For completeness, we also mention three hypergraph models that
are used in modeling sparse matrices. We do not cover the combinatorial scientific
computing problems for which hypergraph models are used. A hypergraph H is
a pair (V,H) where V is a finite set, called the vertex or node set, and H is a
family of subsets of V , called the hyperedge set. Each hyperedge is therefore a set
of vertices. Clearly, an undirected graph is a hypergraph where each hyperedge
has two vertices. There are three known hypergraph models for sparse matrices.
In the column-net hypergraph model [41] HR = (VR, HC) of a sparse matrix
matrix A, there exist one vertex vi ∈ VR and one hyperedge hj ∈ HC for each
row ri and column cj , respectively. In this model, vi ∈ hj if and only if aij 6= 0.
In the row-net hypergraph model [41] HC = (VC , HR) of matrix A, there exist
one vertex vj ∈ VC and one hyperedge hi ∈ HR for each column cj and row ri,
respectively. In this model, vi ∈ hj if and only if aji 6= 0. In the fine-grain
model [40] (see also [42]), Hz = (Vz, HRC) of an m × n sparse matrix matrix
A, there exist one vertex vij ∈ Vz corresponding to each nonzero aij in matrix
A. For each row and for each column there exists a hyperedge such that HRC
contains m row-hyperedges r1, . . . , rm and n column-hyperedges c1, . . . , cn where
vij ∈ri and vij ∈cj if and only if aij 6=0.

A matching in a graph is a set of edges such that no two are incident on
the same vertex. In this paper, we will be mostly interested in matchings in
bipartite graphs. A matching in the bipartite graph of a matrix A corresponds
to a set of nonzeros in A no two of which are in the same row or column. An
independent set in an undirected graph is a set of vertices no two of which are
adjacent. An independent set in the undirected graph of a matrix corresponds
to a square principal submatrix whose nonzeros can only be on the diagonal. A
clique is a set of mutually adjacent vertices. A clique in the undirected graph
of a matrix corresponds to a dense square principal submatrix, assuming a zero
free diagonal.

3 Direct methods

We start by describing the LU decomposition, sometimes called Gaussian elimi-
nation, of a nonsingular, square sparse matrix A of order n. Although there are
many variations, the basic point-wise LU decomposition proceeds in n−1 steps,
where at step k = 1, 2, . . . , n− 1, the formulae

a
(k+1)
ij ← a

(k)
ij −

(
a
(k)
ik /a

(k)
kk

)
a
(k)
kj , for i, j > k (1)

are used to create zeros below the diagonal entry in column k. Matrices of the
form A(k) = {a(k)

ij } of order n− k + 1 are called reduced matrices. This process

leads to an upper triangular matrix U . Here, each updated entry a
(k+1)
ij over-

writes a(k)
ij , and the multipliers lik = a

(k)
ik /a

(k)
kk may overwrite a(k)

ik resulting in the
decomposition A = LU stored in-place. Here L is a unit lower triangular matrix,
and U is an upper triangular matrix. In order for this method run to completion,
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the inequalities a(k)
kk 6= 0 should hold. These updated diagonal entries are called

pivots and the operation performed using the above formulae is referred to as
eliminating the variable xk from the subsequent equations.

Suppose at step k, either of the matrix entries a(k)
ik or a(k)

kj is zero. Then

there would be no update to a(k)
ij . On the other hand, if both are nonzero, then

a
(k+1)
ij becomes nonzero even if it was previously zero (accidental cancellations

due to existing values are not considered as zeros, rather they are held as if they
were nonzero). Now consider the first elimination step on a symmetric matrix
characterized by an undirected graph. If ai1 is nonzero we zero out that entry.
Suppose that a1j is also nonzero for some j > 1, then we will have a nonzero value
at aij after the application of the above formulae. Consider now the undirected
graph GU (V,E) of A. As ai1 6= 0 and a1j 6= 0, we have the edges (1, i) and
(1, j) in E. After the elimination, the new nonzero aij will thus correspond to
the edge (i, j) in the graph. Since the vertex 1 does not concern us any further
(due to the condition i, j > k in the formulae above), we can remove the vertex
1 from the graph, thereby obtaining the graph of the reduced matrix A(1) of size
(n−1)× (n−1). In other words, step k of the elimination process on the matrix
A(k−1) corresponds to removing the kth vertex from the graph and adding edges
between all the neighbours of vertex k that were not connected before.

Algorithm 1 Elimination process in the graph
GU (V, E)← undirected graph of A
for k = 1 : n− 1 do

V ← V − {k} . remove vertex k
E ← E − {(k, `) : ` ∈ adj(k)} ∪ {(x, y) : x ∈ adj(k) and y ∈ adj(k)}

This relation between Gaussian elimination on A and the vertex elimina-
tion process on the graph of A, shown in Algorithm 1, was first observed by
Parter [169]. Although it looks innocent and trivial1, this relation was the start-
ing point for much of what follows in the following subsections.

The following discussion is intentionally simplified. We refer the reader to [67]
and [97] for more rigorous treatment.

3.1 Labelling or ordering

Consider the elimination process on the matrices shown in Fig. 1. The original
ordering of the matrix A is shown on the left. The elimination process on this
matrix will lead to nonzeros in the factors that are zeros in the matrix A. These
new nonzeros are called fill-in. Indeed, the resulting matrix of factors will be
full. On the other hand, the ordering obtained by permuting the first row and

1 In 2000 at Los Alamos, Seymour V. Parter told Michele Benzi that such were the
reactions he had received from the referees on his paper.
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column to the end (shown on the right) will not create any fill-in. As is clearly
seen from this simple example, the ordering of the eliminations affects the cost
of the computation and the storage requirements of the factors.

× × × ×
× ×
× ×
× ×

Original matrix

× ×
× ×
× ×

× × × ×
Reordered matrix

Fig. 1. Ordering affects the sparsity during elimination.

Ordering the elimination operations corresponds to choosing the pivots among
combinatorially many alternatives. It is therefore important to define and find
the best ordering in an efficient way. There are many different ordering meth-
ods; most of them attempt to reduce the fill-in. Minimizing the fill-in is an NP-
complete problem. This was first conjectured to be true in 1976 by Rose, Tarjan,
and Lueker [184] in terms of the elimination process on undirected graphs. Then
Rose and Tarjan [183] proved in 1978 that finding an elimination ordering on a
directed graph that gives minimum fill-in is NP-complete (there was apparently
a glitch in the proof which was rectified by Gilbert [103] two years later). Finally,
Yannakakis [209] proved the NP-completeness of the minimum fill-in problem on
undirected graphs in 1981.

Heuristic ordering methods to reduce the fill-in predate these complexity
results by about two decades. The first of these ordering methods is due to
Markowitz [162]. At the beginning of the kth elimination step, a nonzero entry
a
(k)
ij in the reduced matrix is chosen to reduce the fill-in, and the chosen entry is

permuted to the diagonal, thus defining the kth pivot. The criterion for choosing
an entry a(k)

ij is to select the entry to minimize the product of the number of other
entries in its row and the number of other entries in its column. Markowitz’s pa-
per deals with nonsymmetric matrices. The selection criterion was later adapted
to symmetric matrices by Tinney and Walker [202] (they do not cite Markowitz’s
paper but state that their method might be used already). Tinney and Walker’s
method of choosing a diagonal entry as the pivot at step k, referred to as S2 in
their paper, can be seen more elegantly during the elimination process on the
graph, as noted by Rose [181]. Here, the vertex with the minimum degree in the
current graph is eliminated. In other words, instead of eliminating vertex k at
step k of the Algorithm 1, a vertex with minimum degree is selected as the pivot
and labelled as k. Due to this correspondence, Rose renamed the method S2 of
Tinney and Walker as the minimum degree algorithm.

There have been many improvements over the basic minimum degree al-
gorithm, reducing both the run time and the space complexity. Probably the
most striking result is that the method can be implemented in the same amount
of space used to represent the original graph with a few additional arrays of
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size n. This is surprising as the degrees changes dynamically, fill-in normally
occurs throughout the execution of the algorithm, and to be able to select a
vertex of minimum degree, the elimination process should somehow be simu-
lated. The methods used to achieve this goal are described in [73,95,96]. The
survey by George and Liu [98] lists, inter alia, the following improvements and
algorithmic follow-ups: mass eliminations [100], where it is shown that, in case
of finite-element problems, after a minimum degree vertex is eliminated a subset
of adjacent vertices can be eliminated next, together at the same time; indis-
tinguishable nodes [97], where it is shown that two adjacent nodes having the
same adjacency can be merged and treated as one; incomplete degree update [83],
where it is shown that if the adjacency set of a vertex becomes a subset of the
adjacency set of another one, then the degree of the first vertex does not need to
be updated before the second one has been eliminated; element absorption [74],
where based on a compact representation of elimination graphs, redundant struc-
tures (cliques being subsets of other cliques) are detected and removed; multiple
elimination [150], where it was shown that once a vertex v is eliminated, if there
is a vertex with the same degree that is not adjacent to the eliminated vertex,
then that vertex can be eliminated before updating the degree of the vertices
in adj(v), that is the degree updates can be postponed; external degree [150],
where instead of the true degree of a vertex, the number of adjacent and in-
distinguishable nodes is used as a selection criteria. Some further improvements
include the use of compressed graphs [11], where the indistinguishable nodes
are detected even before the elimination process and the graph is reduced, and
the extensions of the concept of the external degree [51,105]. The approximate
minimum degree as described in [6] is shown to be more accurate than previous
degree approximations and leads to almost always faster execution with an or-
dering often as good as or better than minimum degree. Assuming a linear space
implementation, the run-time complexity of the minimum degree (and multiple
minimum degree) and the approximate minimum degree ordering heuristics are
shown to be, respectively, O(n2m) and O(nm) for a graph of n vertices and m
edges [124].

A crucial issue with the minimum degree algorithm is that ties arise while
selecting the minimum degree vertex [66]. It is still of interest, though a little
daunting, to develop a tie-breaking strategy and beat the current fill-reducing
algorithms.

As mentioned above, the minimum degree based approaches order the matrix
by selecting pivots using the degree of a vertex without any reference to later
steps of the elimination. For this reason, the general class of such approaches are
called local strategies. Another class, called global strategies, permute the matrix
in a global sense so as to confine the fill-in within certain parts of the permuted
matrix. A widely used and cited algorithm is by Cuthill and McKee [49]. A struc-
turally symmetric matrix A is said to have bandwidth 2m+1, if m is the smallest
integer such that aij = 0, whenever |i−j| > m. If no interchanges are performed
during elimination, fill-in occurs only within the band. The algorithm is referred
to as CM and is usually based on a breadth-first search algorithm. George [102]
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found that reversing the ordering found by the CM algorithm effectively always
reduces the total storage requirement and the arithmetic operations when using
a variant of the band-based factorization algorithm (a rigorous treatment and
analysis of these two algorithms is given in [158]). This algorithm is called reverse
Cuthill-McKee and often referred to as RCM.

Another global approach that received and continues to receive considerable
attention is called the nested dissection method, proposed by George [93] and
baptized by Birkhoff (acknowledged in George’s paper). The central concept is
a vertex separator in a graph: that is a set of vertices whose removal leaves the
remaining graph disconnected. In matrix terms, such a separator corresponds to
a set of rows and columns whose removal yields a block diagonal matrix after
suitable permutation. Permuting the rows and columns corresponding to the
separator vertices last, and each connected component of the remaining graph
consecutively results in the doubly bordered block diagonal formA11 A1S

A22 A2S

AS1 AS2 ASS

 . (2)

The blocks A11 and A22 can be further dissected using the vertex separator of
the corresponding graphs and can themselves be permuted into the above form,
resulting in a nested dissection ordering. Given such an ordering, it is evident
that fill-ins are confined to the blocks shown in the form.

A significant property of nested-dissection based orderings is that they yield
asymptotically optimal fill-in and operation counts for certain types of problems.
It was shown in [93] that, for a matrix corresponding to a regular finite-element
mesh of size q × q, the fill-in and operation count using a nested dissection
ordering are O(q2 log2 q) and O(q3), respectively. For a three dimensional mesh
of size q × q × q, the bounds are O(q6) for the operation count and O(q4) for
the fill-in, see also [60] for a detailed analysis. George [93] shows the asymptotic
optimality of the operation count but not the fill-in. The asymptotic results
were settled thoroughly in [132]. Further developments for finite-element meshes
include automatic generation of nested dissection on square meshes with q =
2l − 1, with l integer, in [185], and methods for arbitrary square meshes and
irregular shaped regions in [66]. In [94], a heuristic is presented to perform nested
dissection on general sparse symmetric matrices. The nested dissection approach
was then generalized so that it yields the same bounds for systems defined on
planar and almost planar graphs [148]. The generalization essentially addresses
all n×n systems of linear equations whose graph has a bounded separator of size
n1/2. The results of [149] are used to obtain separators and bounds on separator
sizes on planar graphs, and therefore the asymptotic optimality results apply
to planar or almost planar graphs, a general class of graphs which includes two
dimensional finite-element meshes. Gilbert and Tarjan [108] combine and extend
the work in [94] and [148] to develop algorithms that are easier to implement than
the earlier alternatives and have smaller constant factors. In [108] asymptotic
optimality results are demonstrated on planar graphs, two-dimensional finite-
element graphs, graphs of bounded genus, and graphs of bounded degree with



Combinatorial problems in linear systems 9

n1/2-separators (note that without the bounded degree condition, the algorithm
can be shown not to achieve the bound on fill-in).

It is not much of a surprise that hybrid fill-reducing ordering methods (com-
bining the minimum degree and nested dissection heuristics) have been devel-
oped. We note that the essential ideas can be seen already in [202]. Tinney and
Walker suggest that if there is a natural decomposition of the underlying net-
work, in the sense of (2), then it may be advantageous to run the minimum degree
algorithm on each subnetwork. The first formalization of the hybrid approach
was, however, presented in [101]. In this work, the hybrid method is applied to
finite-element meshes, where first a few steps of nested dissection are applied
before ordering all entries (a precise recommendation is not given). The remain-
ing entries are ordered using bandwidth minimization methods such as CM and
RCM. Liu [154] uses a similar idea on general symmetric sparse matrices. Prob-
ably this is the first paper where minimum degree based algorithms are called
bottom-up approaches and the separator based, nested dissection algorithms are
called top-down approaches, thus defining the current terminology. Liu termi-
nates the nested dissection earlier (up to 5 levels of dissections are applied; but
this depends on the size of the graphs and there is no precise recommendation
for a general problem), and then orders the remaining vertices with minimum
degree, including the separator vertices in the degree counts but ignoring them
during vertex selection (this method is known as constrained minimum degree
or minimum degree with constraints). The merits of the proposed algorithm are
listed as a reduced sensitivity to the initial ordering of the matrix and an ordering
algorithm more appropriate for parallel factorization.

As we stated before, a nested dissection ordering gives asymptotically optimal
storage and operation counts for square grids. For rectangular grids, however,
this is not the case. It has been shown that for rectangular grids with a large
aspect ratio, nested dissection is inferior to the minimum degree ordering [14],
and even to the natural ordering [25]. The main issue, as stated by Ashcraft
and Liu [14], is that the ordering of the separator vertices found at different
dissection steps is important. For rectangular grids, Bhat et al. [25] propose to
order the separator vertices in the natural ordering to minimize the profile after
partitioning the rectangular grid into square sub-grids each of which is ordered
using nested dissection. Ashcraft and Liu [14] develop this idea to propose a
family of ordering algorithms. In these algorithms, a partitioning of the graph
is first found by using either the elimination tree or by recursive application
of graph bisection [13]. Then each part is ordered using constrained minimum
degree. The Schur complement of the domains is formed symbolically and used to
reorder the separator vertices using multiple minimum degree. Hendrickson and
Rothberg [129] (concurrently with Ashcraft and Liu) and Schulze [194] develop
similar algorithms. Ashcraft and Liu find multisectors instead of performing
recursive bisection; Hendrickson and Rothberg and Schulze use multilevel graph
partitioning; Schulze proposes an elegant coarsening algorithm.

Not surprisingly, the current state-of-the-art in fill-reducing ordering methods
is based on hybrid approaches of the kind outlined above. The efficiency of these
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methods is due to developments in graph partitioning methods such as efficient
algorithms for computing eigenvectors to use in partitioning graphs [17,174];
and the genesis of the multilevel paradigm [38,127] which enables better use of
vertex-move-based iterative refinement algorithms [87,140]. These developments
are neatly incorporated in graph partitioning and ordering software packages
such as Chaco [126], MeTiS [139], SCOTCH [170], and WGPP [116]. These
libraries usually have a certain threshold (according to F. Pellegrini, around 200
vertices seems to be a common choice) to terminate the dissection process and
to switch to a variant of the minimum degree algorithm.

3.2 Matching and scaling

As discussed before, for the elimination process to succeed, the pivots a(k)
kk should

be nonzero. This can be achieved by searching for a nonzero in the reduced matrix
and permuting the rows and columns to place that entry in a diagonal position.
Such permutations are called pivoting and guarantee that an a

(k)
kk 6= 0 can be

found for all k so long as the original matrix is nonsingular. In partial pivoting,
the search is restricted to the kth column. A general technique used to control the
growth factor is to search the column for a maximum entry or to accept an entry
as pivot so long as it passes certain numerical tests. These pivoting operations
are detrimental to the fill-reducing orderings discussed in the previous section, as
those ordering methods assume that the actual numerical elimination will follow
the ordering produced by the symbolic elimination process on the graph.

Suppose that the diagonal entries of the matrix are all nonzero. Assuming
no exact cancellation, all pivots will be nonzero when they are taken from the
diagonal. Notice that any symmetric permutation of the original matrix keeps
the set of diagonal entries the same, and hence the fill-reducing orderings of the
previous section are applicable in this case. Our purpose in this section is to
summarize the methods to find permutations that yield such diagonals.

As is clear, we are searching for n nonzeros in an n× n matrix A no two of
which are in the same row or column. As we mentioned earlier, this corresponds
to finding a perfect matching in the bipartite graph representation of A. The
existence of such a set of n nonzeros (i.e., a perfect matching in the bipartite
graph) is guaranteed to exist if, for k = 1, 2, . . . , n any k distinct columns have
nonzeros in at least k distinct rows—a result shown by P. Hall [122].

A few definitions are in order before describing bipartite matching algorithms.
Given a matching M, a vertex is said to be matched if there is an edge in
the matching incident on the vertex, and to be unmatched otherwise. An M-
alternating path is a path whose edges are alternately in M and not in M. An
alternating path is called an augmenting path, if it starts and ends at unmatched
vertices. The cardinality of a matching is the number of edges in it. We will
be mostly interested in matchings of maximum cardinality. Given a bipartite
graph G and a matchingM, a necessary and sufficient condition forM to be of
maximum cardinality is that there is noM-augmenting path in G [23, Theorem
1]—for the curious reader the second theorem of Berge gives a similar condition
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for minimum vertex covers. Given a matching M on the bipartite graph of a
square matrix A, one can create a permutation matrix M such that mji = 1 iff
row i and column j are matched in M. Then, the matrix AM has a zero-free
diagonal. It is therefore convenient to abuse the notation and refer to a matching
as a permutation matrix.

The essence of bipartite cardinality matching algorithms is to start with an
empty matching and then to augment it until no further augmentations are
possible. The existing algorithms mostly differ in the way the augmenting paths
are found and the way the augmentations are performed. In [121] a breadth-first
search is started from an unmatched row vertex to reach an unmatched column
vertex. The time complexity is O(nτ), where τ is the number of nonzeros in
the matrix. The algorithm in [62,63], known as MC21, uses depth-first search
where, before continuing the depth-first search with an arbitrary neighbour of
the current vertex, all its adjacency set is scanned to see if there is an unmatched
vertex. This is called a cheap assignment and helps reduce the run time. The
time complexity is O(nτ), but it is observed to run usually much faster than
that bound. Depth-first search is also used in [143] with a complexity of again
O(nτ). Hopcroft and Karp [133] find a maximal set of shortest augmenting
paths using breadth-first search and perform the associated augmentations at
the same time. With a detailed analysis of the possible length and number of such
augmentations, they demonstrate a complexity of O(

√
nτ). Building upon the

work of Hopcroft and Karp, Alt et al. [5] judiciously combine depth- and breadth-
first searches to further reduce the complexity to O(min{

√
nτ, n1.5

√
τ/ log n}).

Not all matrices have perfect matchings. Those that have a perfect matching
are referred to as structurally nonsingular, or structurally full rank, whereas
those that do not have a perfect matching are referred to as structurally singular,
or structurally rank deficient. The maximum cardinality of a matching is referred
to as the structural rank which is at least as large as the numerical rank.

Although permuting a matching to the diagonal guarantees existence of the
pivots, it does not say anything about their magnitudes. In order to control the
growth factor, it may still be necessary to perform pivoting during the course of
the elimination. It is known that for diagonally dominant matrices, pivoting on
the grounds of numerical stability is not necessary. Therefore, if we find a match-
ing which guarantees diagonal dominance after a permutation and probably some
scaling, we can avoid numerical pivoting. Unfortunately not all matrices can be
permuted to such a form but trying to do so is likely to reduce the need for nu-
merical pivoting. These were the motivating ideas in [69] and [167], where such
an attempt is formulated in terms of maximum weighted bipartite matchings.

In matrix terms, Olschowka and Neumaier [167] and Duff and Koster [69]
find a permutation matrix (and hence a perfect matching) M such that the
product of the diagonal of the permuted matrix,

∏
diag(AM), is maximum (in

magnitude) among all permutations. Although the product form of the variables
is intimidating, a simple transformation by changing each entry of the matrix to
the logarithm of its magnitude reduces the problem to the well known maximum
weighted bipartite matching problem. In particular, maximizing

∏
diag(AM) is
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equivalent to maximizing the diagonal sum given by
∑

diag(ĈM) for Ĉ = (ĉij)
where

ĉij =

{
log |aij |, if aij 6= 0
−∞, otherwise ,

or, to minimizing the diagonal sum given by
∑

diag(CM) for C = (cij) where

cij =

{
log maxi |aij | − log |aij |, if aij 6= 0
∞, otherwise .

The literature on the minimum weighted matching problem is much larger
than that on the cardinality matching problem. A recent book lists 21 algo-
rithms [39, p.121] from years 1946 to 2001 and provides codes or a link to codes
of eight of them (http://www.assignmentproblems.com/). The best strongly
polynomial time algorithm is by Fredman and Tarjan [88] and runs in O(n(τ +
n log n)). In addition to those 21 algorithms mentioned in the book above,
we mention Duff and Koster’s implementation of the matching algorithm, now
known as MC64 and available as an HSL subroutine (http://www.hsl.rl.ac.
uk/). MC64 was initially designed for square matrices, but the latest version
extends the algorithm to rectangular matrices. The running time of MC64 for
the maximum weighted matching problem is O(n(τ + n) log n). MC64 also pro-
vides algorithms for a few more bipartite matching problems. There are also
recent efforts which aim to develop practical parallel algorithms for the weighted
matching problem. In [180] and [77] parallel algorithms for maximum weighted
bipartite matching are proposed. Although these algorithms are still being in-
vestigated, one cannot expect them to be entirely successful for all problems
(given that depth-first search is inherently sequential [178] and certain varia-
tions of breadth-first search are also inherently sequential [110]); nevertheless,
there are many cases where each algorithm delivers solutions in quite reasonable
time with quite reasonable speed-ups. There are also efforts in designing parallel
approximate matching algorithms [120,161,172].

We say a few words about the pioneering work of Kuhn in maximum weighted
weighted matchings [143] for two reasons. Firstly, his paper was selected as the
best paper of Naval Research Logistics in its first 50 years and was reproduced
as [144] (there is a delightful history of the paper by Kuhn himself [145]). Sec-
ondly, it forms the basis for the algorithms [69,167] that combine matchings with
matrix scaling for better numerical properties during elimination.

By linear programming duality, it is known [143] that M is a maximum
weighted matching if and only if there exist dual variables ui and vj with{

ui + vj ≤ cij for (i, j) ∈ E \M
ui + vj = cij for (i, j) ∈M

For such ui and vj , setting

D1 = diag(eui) and D2 = diag(evj/max
i
|aij |)

http://www.assignmentproblems.com/
http://www.hsl.rl.ac.uk/
http://www.hsl.rl.ac.uk/
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scales the matrix so that D1AMD2 has all ones on the diagonal and all other
entries are less than or equal to one, see [69,167]. Off-diagonal entries can be
one in magnitude (this can happen for example when there is more than one
maximum weighted matching), but otherwise the combined effect is such that
the resulting matrix has larger entries on the diagonal. If the given matrix was
obtained from a strongly diagonally dominant matrix or a symmetric positive
definite matrix by permutations, the maximum product matching recovers the
original diagonal [167]. Therefore, it is believed that the combination of the
matching and the associated scaling would yield a set of good pivots. This was
experimentally observed but has never been proved.

3.3 Elimination tree and the multifrontal method

In this section, we describe arguably the most important graphical representation
for sparse matrices: the elimination tree. We discuss its properties, construction
and complexity, and illustrate the flexibility of this model. We then consider one
of the most important elimination-tree based class of direct methods: the mul-
tifrontal method. We indicate how we can modify the tree for greater efficiency
of the multifrontal method and show how it is used in a parallel and out-of-core
context.

Elimination tree The elimination tree is a graphical model that represents
the storage and computational requirements of sparse matrix factorization. The
name elimination tree was first used in [64] and was principally used there as a
computational tree to guide the factorization process. The term was also used by
Jess and Kees [136], who again used the elimination tree to represent the com-
putational dependencies in order to exploit parallelism. We note that Jess and
Kees used the elimination tree of a triangulated graph. That is, they consider
the graph that includes the fill-in edges obtained using a fill-reducing order-
ing. The formalized definitions of the elimination tree and the use of the data
structures resulting from it for efficient factorization and solution are given by
Schreiber [193]. Liu considers the elimination tree in some detail and provides
a detailed discussion on it in [151] and [155]. The latter paper is a comprehen-
sive survey of the elimination tree structure. Here we provide a few properties
of the elimination tree and comment on its computation, mostly following the
exposition in [155].

The elimination tree essentially relates to the factorization of irreducible, pat-
tern symmetric matrices. However, some modern solvers such as MUMPS [7] ex-
tend the use of the elimination tree to unsymmetric systems by using a tree based
on the structure of the matrix |A|+|AT |. This extends the benefits of the efficient
symmetric symbolic factorization to the unsymmetric case, and so the following
discussion can apply to general LU factorization. Note that there is a rich liter-
ature on the use of directed graphs and alternative tree models for the unsym-
metric case which we do not cover—the reader is referred to [51,104,106,56,117]
for a the use of directed graph models in sparse factorization and to [84,85] for
alternative tree models for unsymmetric matrices.
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We first give a few definitions before listing some important properties of the
elimination tree. Depth-first search (DFS) of a graph starts with an initial node
v, marks the node as visited and then recursively visits an unvisited vertex which
is adjacent to v. The edges that are traversed to explore an unvisited node form a
tree, which is called a depth-first search tree [200]. Let A be a symmetric positive
definite matrix having the factorization LLT . Let GF represent the graph of the
filled in matrix, i.e., the undirected graph of L+ LT . Then the elimination tree
T = (V,E) is a depth-first search tree of the undirected graph GF . To us, this
last statement summarizes most of the structural information relating to the
factorization process. Therefore we discuss this correspondence a little more. As
discussed in Section 2, the ith vertex of GF corresponds to the ith row/column of
L+LT . Then, running the DFS starting from the vertex n of GF and during the
recursive calls from a vertex to its unvisited neighbors, always choosing the one
with the highest index first yields the elimination tree as its search tree. We note
that if the matrix is reducible the first call from the vertex n will not explore all
the vertices; when this happens, the highest numbered unvisited vertex should
be taken as the starting vertex of another DFS. In a reducible matrix, this will
yield the forest of elimination trees for each block.

We now give the most significant characteristics of the elimination tree.
Firstly, the elimination tree is a spanning tree of the graph corresponding to
the filled in matrix. Secondly, the elimination tree can be constructed by making
an edge from each vertex j = 1, . . . , n − 1 to the first nonzero lij in column j
so that vertex i is the parent of vertex j. As there are no cross edges (a cross
edge is an edge of the graph but not the DFS tree and it connect vertices which
do not have an ancestor-descendant relationship in the DFS tree) with respect
to a DFS tree of an undirected graph, the edges of GF that are not in the tree
T are back edges, i.e., they are from a vertex v to another vertex in the unique
path joining v to the root (see [200] and [48, Section 23.3]). Combining with the
fill-path theorem of Rose et al. [184, Lemma 4, p.270], we have that for i > j,
the entry lij is nonzero if and only if there exists a path vj , vp1, . . . , vpt, vi in
the graph of A such that the vertices vj , vp1, . . . , vpt are all in the subtree of the
elimination tree T rooted at node vj . Another important property characterizing
the fill-in is that lij 6= 0, if and only if the vertex vj is an ancestor of some vertex
vk in the elimination tree T , where aik 6= 0 (see [151, Theorem 2.4]).

As is evident from the previous discussion, the elimination tree depends on
the ordering of elimination operations. In particular, a node (that is the asso-
ciated variable) can only be eliminated after all of its descendants have been
eliminated—otherwise the structure is lost and the tree no longer corresponds
to the depth-first search tree of the filled-in matrix anticipated at the beginning.
A topological ordering of the nodes of a tree refers to an ordering in which each
node is ordered before its parent. It was known earlier (see, e.g., [75] and com-
ments in [151, p.133]) that all topological orderings of the elimination tree are
equivalent in terms of fill-in and computation; in particular any postorderings
of the tree are equivalent. Liu [153] investigates a larger class of equivalent or-
derings obtained by tree restructuring operations, refereed to as tree rotations.
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Liu combines a result of Rose [181, Corollary 4, p.198] and one of his own [151,
Theorem 2.4, p.132] to note that for any node v in the tree there is an equivalent
ordering in which the nodes adjacent (in the graph of A) to the nodes in the
subtree rooted at v are numbered last. Using a result of Schreiber [193, Propo-
sition 5, p.260], Liu identifies a node y as eligible for rotation if the following
is true for all ancestor z (in the elimination tree) of y but not for the node y
itself: the ancestors of z forms a clique in the filled graph and are connected (in
the original graph, not in the tree) to the subtree rooted at z. Then, the nodes
are partitioned into three sets and numbered in the following order: those that
are not ancestors of the selected node while retaining their relative order; those
that are ancestors of the selected node but not connected to (in the original
graph, not in the tree) the subtree rooted at the selected node; then finally the
remaining nodes. The final ordering will correspond to a new elimination tree in
which the subtree rooted at the selected node would be closer to the root of the
new tree.

Liu [151] (also in the survey [155]) provides a detailed description of the
computation of the elimination tree. Firstly, an algorithm is given in which the
structure of row i of L is computed using only A and the parent pointers set
for the first i − 1 nodes. This algorithm processes the rows of in turn and runs
in time proportional to the number of nonzeros in L. At row i, the pattern of
the ith row of L is generated; for this the latest property of the elimination tree
that we mention above (see [151, Theorem 2.4]) is used. Then for for each k for
which lik 6= 0 and the parent k is not set, the parent of k is set to be i. In order
to reduce the time and space complexity, Liu observes that parent pointers can
be set using the graph of A and repeated applications of set operations for the
disjoint set union problem [201]. A relatively simple implementation using these
operations reduces the time complexity to O(τα(τ, n)), where τ is the number
of entries in A and α(τ, n) is the two parameter variation of the inverse of the
Ackermann function—α(τ, n) can be safely assumed to be less than four.

Multifrontal method Based on techniques developed for finite-element anal-
ysis by Irons [135] and Speelpenning [196], Duff and Reid proposed the multi-
frontal method for symmetric [74] and unsymmetric [76] systems of equations.
Liu [156] provides a good overview of the multifrontal method for symmetric
positive definite matrices.

The essence of a frontal method is that all elimination operations are per-
formed on dense submatrices (called frontal matrices) so that these operations
can be performed very efficiently on any computer often by using the Level 3
BLAS [59]. The frontal matrix can be partitioned into a block two by two ma-
trix where all variables from the (1,1) block can be eliminated (the variables
are called fully summed) but the Schur complement formed by the elimination
of these on the (2,2) block cannot be eliminated until later in the factorization.
This Schur complement is often called a contribution block.

The multifrontal method uses an assembly tree to generalize the notion of
frontal matrices and to allow any fill-reducing ordering. At each node of the
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assembly tree, a dense frontal matrix is constructed from parts of the original
matrix and the contribution blocks of the children—this process is called the
assembly operation. Then, the fully summed variables are eliminated (factoriza-
tion of the (1,1) block takes place) and the resulting contribution block is passed
to the parent node for assembly into the frontal matrix at that node. Clearly,
one can only perform the eliminations at a node when all the contributions have
been received from its children. Liu [156] defines a tree (associated with LLT

factorization of a matrix A) as an assembly tree if for any node j and its parent
p, the off-diagonal structure of the jth column of L is a subset of the structure
of the pth column of L and p > j. It is easy to see that the elimination tree sat-
isfies this condition and that there are other tree structures which will exhibit
the same property. In this setting, the contributions from j (or any descendant
of it in the assembly tree) can be accommodated in the frontal matrix of p and
hence the generality offered by the assembly tree might be used for reducing the
memory requirements [156, p.98].

Since the elimination tree is defined with one variable (row/column) per node,
it only allows one elimination per node and the (1,1) block would be of order
one. Therefore, there would be insufficient computation at a node for efficient
implementation. It is thus advantageous to combine or amalgamate nodes of the
elimination tree. The amalgamation can be restricted to avoid any additional
fill-in. That is, two nodes of the elimination tree are amalgamated only if the
corresponding columns of the L factor have the same structure. As even this may
not give a large enough (1,1) block, a threshold based amalgamation strategy
can be used in which the columns to be amalgamated are allowed to have a
certain number of discrepancies in their patterns, introducing logical zeros. Duff
and Reid do this in their original paper [74] where they amalgamate nodes
so that a minimum number of eliminations are performed at each node of the
resulting tree. That is, they make the (1,1) blocks at least of a user-defined order.
Ashcraft and Grimes [12] investigate the effect of this relaxation in amalgamation
and provide new algorithms. Firstly, the notion of a fundamental supernode is
defined. A fundamental supernode is a maximal chain (n1, n2, . . . , np) of nodes
in the tree such that each ni is the only child of ni+1, for i = 1, . . . , p − 1, and
the associated column structures are perfectly nested. Then, the fundamental
supernodes are visited in an ordering given by a postorder, and the effect of
merging children with a parent node on the number of logical zeros created is
taken into account to amalgamate nodes. In [157], an efficient algorithm which
determines the fundamental supernodes in time proportional to the number of
nonzeros in the original matrix (avoiding the symbolic factorization altogether)
is presented.

The simple tree structure of the computations helps to identify a number
of combinatorial problems, usually relating to scheduling and task mapping for
efficient memory use, in out-of-core solution and in parallel computing contexts.
In the rest of this section, we discuss some of the issues relating to efficient
memory use and parallelization.
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In a multifrontal method, the pattern of memory use permits an easy ex-
tension to out-of-core execution. In these methods, memory is divided into two
parts. In the static part, the computed factors of the frontal matrices are stored.
This part can be moved to secondary storage. The second part, called the active
memory, contains the frontal matrix being factorized and a stack of contribu-
tions from the children of still uneliminated nodes. Liu [152] minimizes the size
of the active memory by rearranging the children of each node (hence creating
an equivalent ordering) in order to minimize the peak active memory for pro-
cessing the whole tree. In a series of papers, Agullo et al. [2,3] and Guermouche
and L’Excellent [115] develop these ideas of Liu [152] concerning the assembly
and partial assembly of the children and their ordering. In these papers, algo-
rithmic models that differentiate between the concerns of I/O volume and the
peak memory size are developed, and a new reorganization of the computations
within the context of an out-of-core multifrontal method are presented.

George et al. [99] propose the subtree-to-subcube mapping to reduce the com-
munication overhead in parallel sparse Cholesky factorization on hypercubes.
This mapping mostly addresses parallelization of the factorization of matrices
arising from a nested dissection based ordering of regular meshes. The essen-
tial idea is to start from the root and to assign the nodes of the amalgamated
elimination tree in a round robin-like fashion along the chains of nodes and to
divide the processors according to the subtrees in the elimination tree and then
recursively applying the idea in each subtree. The method reduces the com-
munication cost but can lead to load imbalance if the elimination tree is not
balanced. Geist and Ng [92] improve upon the subtree-to-subcube mapping to
alleviate the load imbalance problem. Given an arbitrary tree, Geist and Ng
find the smallest set of subtrees such that this set can be partitioned among the
processors while attaining a load balance threshold supplied by the user (in the
experiments an imbalance as high as 95% is allowed). A breadth-first search of
the tree is performed to search for such a set of subtrees. The remaining nodes of
the tree are partitioned in a round robin fashion. Improving upon the previous
two algorithms, Pothen and Sun [175] propose the proportional mapping algo-
rithm. They observe that the remaining nodes after the subtree mapping can be
assigned to the processors in order to reduce the communication overhead that
arises because of the round robin scheme. The essential idea is to map the nodes
(they use a clique tree representation of the filled-in graph and therefore nodes
are cliques of the nodes of the original graph) that lie on the paths from already
assigned subtrees to the root onto the processors that are associated with those
subtrees. A first-fit decreasing bin-packing heuristic is used to select a processor
among the candidates. In a different framework, Gilbert and Schreiber [107] ad-
dress the parallelization on a massively parallel, fine-grained architecture (using
a virtual processor per each entry of L). In this work, a submatrix corresponding
to supernodes is treated as a dense submatrix and is factorized in a square grid
of processors. In order to facilitate parallelism among independent, dense sub-
matrices, a two-dimensional bin-packing is performed. It is interesting to note
the relevance of this work to current massively parallel architectures. Amestoy
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et al. [8,9,10] generalize and improve the heuristics in [92,175] by taking mem-
ory scalability issues into account and by incorporating dynamic load balancing
decisions for which some preprocessing is done in the analysis phase.

Many of the known results on out-of-core factorization methods are surveyed
in a recent thesis by Agullo [1]. The thesis surveys some out-of-core solvers
including [58,109,164,186,203], provides NP-completeness results for the problem
of minimizing I/O volume in certain variations of factorization methods, and
also develops polynomial time algorithms for some other variations. Reid and
Scott discuss the design issues for HSL MA77, a robust, state-of-the-art, out-of-
core multifrontal solver for symmetric positive-definite systems [176] and for
symmetric indefinite systems [177].

3.4 Block triangular form

Consider a permutation of a square, nonsingular sparse matrix that yields a
block upper triangular form (BTF):

A =


A11 ∗ ∗ ∗
O A22 ∗ ∗
...

...
. . . ∗

O O · · · App

 ,

where each block on the diagonal is square and nonsingular and the nonzeros
are confined to the block upper triangular part of the permuted matrix. If a
permutation to this form is used when solving the linear system, the whole
system can be solved as a sequence of subproblems, each involving a solution
with one of the blocks on the diagonal.

The algorithms to obtain the BTF proceed in two steps, see e.g., [60,82]
and [119]. First, a maximum cardinality matching on the bipartite graph rep-
resentation is found, see [62,63]. In the case of a structurally full-rank matrix,
this would be a perfect matching. Then, the matrix is nonsymmetrically per-
muted so that the matching entries are on the main diagonal. The directed graph
of this matrix is then constructed, and its strongly connected components are
found [200] which define the blocks on the diagonal. Efficient and very compact
implementations in Fortran are provided in [71,72].

The block structure of the BTF is unique, apart from possible renumbering
of the blocks or possible orderings within blocks, as shown in [61,80,81]. In other
words, the same block structure would be obtained from any perfect matching.
We note that any such matching contains nonzeros that are only in the diagonal
blocks of the target BTF.

The BTF form is generalized to rectangular and unsymmetric, structurally
rank deficient matrices by Pothen [171] and Pothen and Fan [173] following the
work of Dulmage and Mendelsohn [82,80,81]. According to this generalization
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any matrix has the following formAH ∗ ∗
O AS ∗
O O AV

 ,

where AH is underdetermined (horizontal), AS is square, and AV is overdeter-
mined (vertical). Each row of AH is matched to a column in AH , but there are
unmatched columns in AH ; each row and column of AS are matched; each col-
umn of AV is matched to a row in AV , but there are unmatched rows in AV .
Furthermore, Pothen and Fan [173] and Dulmage and Mendelsohn [82] give a
finer structural characterization. The underdetermined matrix AH can be per-
muted into block diagonal form, each block being underdetermined. The square
block AS can be permuted into upper BTF with square diagonal blocks, as
discussed before. The overdetermined block AV can be permuted into block di-
agonal form, with each block being overdetermined. Again, the fine permutation
is unique [171], ignoring permutations within each fine block. The permutation
to the generalized BTF is performed in three steps. In the first step, a maximum
cardinality matching is found, not necessarily a perfect matching. Then each row
that reaches an unmatched column through alternating paths (these rows are all
matched, otherwise the matching is not of maximum cardinality) are put into
the horizontal block, along with any column vertex in those paths. Then, a cor-
responding process is run to detect the columns and rows of the vertical block.
Finally, the previous algorithm is run on the remaining full rank square block
to detect its fine structure. Pothen [171] proves the essential uniqueness of the
BTF for rectangular and structurally singular square matrices (see also [80,81]).

In recent work, we have presented a few observations on the BTF of symmet-
ric matrices [78]. Firstly, the blocks AH and AV are transposes of each other.
That is, the set of rows and the set of columns that define the horizontal block
are equal to the set of columns and the set of rows that define the vertical block,
respectively. Secondly, a fine block of the square submatrix AS is such that either
the set of its row indices is equal to the set of its column indices, or they are
totally disjoint and there is another square block equal to the transpose of the
block.

4 Iterative methods

A different but equally well known family of methods used for solving linear
systems of the form

Ax = b (3)

starts with an initial guess and, by successive approximations, obtains a solu-
tion with a desired accuracy. The computations proceed in iterations (hence the
name iterative methods), where a set of linear vector operations and usually one
or two sparse matrix-vector multiplication operations take place at each itera-
tion. As one can easily guess, the presence of sparse matrices raises a number
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of combinatorial problems. Indeed, there is a beautiful interaction between the
parallelization of a certain class of iterative methods and combinatorial opti-
mization which revolves around graph and hypergraph partitioning. As this is
the subject of another survey [26], we do not cover this issue. Instead, we refer
the reader to [41,57,125,205] for this interaction and to [79] for different aspects
of parallelization (including a survey of earlier studies, the effect of granularity
of parallelism, and algorithm design issues).

There are many aspects to iterative methods; here we restrict the discussion
to some preconditioning techniques because of their combinatorial ingredients.
Preconditioning refers to transforming the linear system (3) to another one which
is easier to solve. A preconditioner is a matrix enabling such a transformation.
Suppose that M is a nonsingular matrix which is a good approximation to A
in the sense that M−1 well approximates A−1, then the solution of the system
M−1Ax = M−1b may be much easier than the solution of the original system.
There are alternative formulations as to how to apply the preconditioner: from
the left, from the right, or both from left and right. For our purposes in this
section, those formulations do not make any difference, and we refer the reader
to a survey by Benzi [18] that thoroughly covers most of the developments up
to 2002. We refer to some other surveys when necessary.

Among various preconditioning techniques, we briefly discuss incomplete
factorization-based preconditioners, support graph preconditioners, and alge-
braic multigrids. We choose these preconditioners because of the strong presence
of combinatorial issues and well-studied problems. We do not discuss the sparse
approximate inverse preconditioning [113] neither their factored form [20], al-
though the choice of pattern for the approximate inverse is a combinatorial issue
(see [44] and the references therein), and sparse matrix ordering has a signifi-
cant effect on the factored form of approximate inverse (see for example [22]).
We also do not include a recent family of banded preconditioners [160] which
raises various combinatorial problems that are currently being investigated.

4.1 Incomplete factorization-based preconditioners

As discussed in the previous section, fill-in usually occurs during the LU decom-
position of a matrix A. By selectively dropping the entries computed during the
decomposition, one can obtain an incomplete LU factorization (ILU) of A with
a lower and an upper triangular matrix L̂ and Û . The matrix M = L̂Û , then
can approximate the matrix A and hence can be used as a preconditioner. Benzi
traces incomplete factorization methods back to the 1950s and 1960s by citing
papers by Buleev and Varga, but credits Meijerink and van der Vorst [163] for
recognizing the potential of incomplete factorization as a preconditioner for the
conjugate gradient method.

As just mentioned, the essence of incomplete factorization is to drop entries
in the course of the elimination process. Current methods either discard entries
according to their position, value, or with a combination of both criteria.
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Consider a pattern S ⊆ {1, . . . , n} × {1, . . . , n} and perform the elimination
process as in (1) but allow fill-in if the position is in S using the formulae

a
(k+1)
ij ←

{
a
(k)
ij −

(
a
(k)
ik /a

(k)
kk

)
a
(k)
kj , if (i, j) ∈ S

a
(k)
ij , otherwise

(4)

for each major elimination step k (k = 1, . . . , n) and i, j > k. Often, S is set
to the nonzero pattern of A, in which case one obtains ILU(0), a no-fill ILU
factorization. This was used in [163] within the context of incomplete Cholesky
factorization.

A generalization was formalized by Gustafsson [118] (see in [15, p.259]).
Gustafsson develops the notion of level of fill-in and drops fill-in entries according
to this criterion. The initial level of fill-in for aij is defined as

levij ←

{
0 if aij 6= 0 or i = j,

∞ otherwise ,

and for each major elimination step k (k = 1, . . . , n) during the elimination (4),
the level of fill-in is updated using the formula

levij = min{levij , levik + levkj + 1} .

Given an initial choice of drop level `, ILU(`) drops entries whose level is larger
than `. Observe that the level of fill-in is a static value that can be computed by
following the elimination process on graphs.

There have been many improvements upon the basic two incomplete fac-
torization methods discussed above, resulting in almost always better precon-
ditioners. However, these two methods are still quite useful (and effective for
certain problems) because of the structural properties of the computed factors,
as we shall see later when discussing the parallel computation of incomplete
factorization preconditioners.

For example, Saad [188] develops a dual threshold strategy ILUT(τ, p), where
a fill-in entry is dropped if its value is smaller than τ , and at most p fill-ins per
row are allowed. For more on the variations and the properties of incomplete
factorization-based preconditioners, we refer the reader to [18,165,190].

Orderings and their effects As for their complete factorization counterparts,
incomplete factorization preconditioners are sensitive to the ordering of the elim-
ination. Recall from Section 3 that, for a complete factorization, the ordering
affects both the fill-in and stability of the factorization. For an incomplete fac-
torization, in addition to these two effects, the ordering of the eliminations also
affects the convergence of the iterative method. This last issue, although demon-
strated by many, has yet to be understood in a fully satisfactory way. Benzi [18]
cites 23 papers between the years 1989 and 2002 that experimentally investigate
the effects of ordering on incomplete factorization preconditioners.
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The first comparative study of the effect of ordering on incomplete Cholesky
factorization was performed by Duff and Meurant [70]. The paper shows that,
contrary to what was conjectured in [195], the number of iterations of the con-
jugate gradient method is not related to the number of fill-ins discarded but is
almost directly related to the norm of the residual matrix R = A− L̄L̄T . Chow
and Saad [46] show that for more general problems the norm of the precondi-
tioned residual (L̄Ū)−1R is also important.

The general consensus of the experimental papers, starting with [70], in-
cluding [21], strongly favour the use of RCM. Bridson and Tang [33] prove a
structural result (using only the connectivity information on the graph of A)
as to why RCM yields successful orderings for incomplete factorization precon-
ditioning. One of the results showing why RCM works for IC(0) is based on
(L̄L̄T )−1 being fully dense if and only if each column of L̄ has a nonzero below
the diagonal. Any ordering yielding such a structure is called a reversed graph
traversal in [33] and RCM is shown to yield such a structure. We note that for the
complete factorization case such characterizations were used before; for example
the irreducibility characterization of A in terms of the structure of L (see [208]
and [65]). The other result of [33] is based on the intuition that if the structures
of L−1 and L̄−1 coincide, then the incomplete factor returned by IC(0) could
be a good approximation. It is then shown that reversing an ordering that can
be found by a graph search procedure that visits, at each step, a node that is
adjacent to the most recently visited node (allowing backtracking) will order
A so that the above condition holds. RCM does not yield such an ordering in
general, but a close variant always will.

As an alternative to using the ordering methods originally designed for com-
plete factorization, orderings specially designed for incomplete factorization have
also been developed. In [52] a minimum discarded fill ordering, MDF, is pro-
posed. The algorithm is considered as the numerical analogue of the minimum
deficiency ordering (scheme S3 of [202]), and it corresponds to ILU(`). The basic
idea is to eliminate the node with the minimum discarded fill at each stage of
the incomplete elimination in an attempt to minimize the Frobenius norm of the
matrix of discarded elements. The method has been developed in [53] yielding
two variants, both of which still are fairly expensive. D’Azevedo et al. deserve
the credit for giving the static characterization of the factors in ILU(`) in terms
of the graph of the original matrix. In [47], two sets of ordering methods which
use the values of the matrix elements are proposed. The first one is a variation
of RCM where ties are broken according to the numerical values of the matrix
entries corresponding to edges between the vertex and the already ordered ver-
tices. The second one is based on minimum spanning trees, where at each node
the least heavy edge is chosen to produce an ordering of the nodes. These algo-
rithms use heuristics based on a theorem [47, Theorem 1] (the proof refers to the
results of [163,53]) relating the element lij to the entries along the path joining
vertices i and j in the original graph of an M-matrix.

In recent studies, such as [69,19,68], nonsymmetric orderings that permute
rows and columns differently are used to permute large entries to the diagonal
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before computing an incomplete preconditioner. Other more recent work that
uses similar ideas includes [27] where pivoting is performed during incomplete
elimination; [147] where fill-reducing ordering methods are interleaved with the
elimination; and [191] where weighted matching-like algorithms are applied to
detect a diagonally dominant square submatrix, which is then approximately
factorized. Its approximate Schur complement is then constructed, on which the
algorithm is applied recursively.

Blocking methods for the complete factorization are adapted to the incom-
plete factorization as well. The aim here is to speed up the computations as for
complete factorization and to have more effective preconditioners (in terms of
their effect on the convergence rate). A significant issue is that in certain in-
complete factorization methods, the structure of the incomplete factors are only
revealed during the elimination process. Ng et al. [166] present a technique for
the incomplete Cholesky factorization that starts with the supernodal structure
of the complete factors. If standard dropping techniques are applied to individ-
ual columns, the pre-computed supernodal structure is usually lost. In order to
retain the supernodal structure as much as possible, Ng et al. either drop the set
of nonzeros of a row in the current set of columns (the supernode) or retain that
set. In order to obtain sparser incomplete factors, they subdivide each supernode
so that more rows can be dropped.

In [130] and [189] blocking operations are relaxed in such a way that the
supernodes are not exact, but are allowed to incur some fill-in. In the first step,
the set of exact supernodes are found. Then, in [189], a compressed matrix is
created from the exact supernodes, and the cosine-similarity between nodes or
supernodes are computed to allow some inexact supernodes. In [130], inexact
amalgamations are performed between the parents and children in the assembly
tree with a threshold measuring the inexactness of the supernodes.

Another set of blocking approaches are presented in [89,168], explicitly for
preconditioning purposes. Here, a large number of small dense blocks are found
and permuted to the diagonal. The initial intention of these methods was to ob-
tain block diagonal preconditioners, but the resulting orderings are found to be
useful for point incomplete factorizations as well, see [21]. The blocking methods
are fast (in general run in O(n+τ) time although the current version finds a max-
imum product matching with MC64 as a preprocessor) and are provided in the
PABLO library (http://www.math.temple.edu/~daffi/software/pablo/).

Many of the current state-of-the-art variations of ILU methods are provided
in ILUPACK [28]. Other efforts include PETSc [16], IFPACK [192], and IT-
SOL (http://www-users.cs.umn.edu/~saad/software/ITSOL/index.html).

Benzi et al. [21] ask the following questions; answers to which will shed light
into the effect of orderings on incomplete factorization preconditioners: (i) why
does the choice of the initial node and the ordering within level sets affect the
performance of (reverse) Cuthill-McKee? (ii) why does ILU(0) with a minimum
degree ordering not suffer from the instability that occurs when a natural order-
ing is used, for the model problem or similar ones?

http://www.math.temple.edu/~daffi/software/pablo/
http://www-users.cs.umn.edu/~saad/software/ITSOL/index.html
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Parallelization The parallel computation of ILU preconditioners is often im-
plemented in two steps. Firstly, the matrix is partitioned into blocks to create a
high level parallelism where the ILU of the interior blocks can be performed inde-
pendently. Secondly, dependencies between blocks are identified and sequential
bottlenecks reduced to increase the parallelism.

The basic algorithm for no-fill ILU can be found in [190, p.398]. A paral-
lel algorithm for a threshold based ILU preconditioner is given in [138]. In this
work, after the initial partitioning and ILUT elimination of interior nodes, an
independent set of boundary nodes is found using Luby’s algorithm [159]. After
elimination of these nodes, which can be done in parallel, fill-in edges are deter-
mined and added between the remaining nodes. Another independent set is then
found and eliminated. The process is continued until all nodes have been elim-
inated. Hysom and Pothen [134] develop a parallel algorithm for a level-based
ILU. They order each subdomain locally, ordering the interface nodes of each do-
main after the interior nodes. Then, a graph of subdomains is constructed that
represents interactions between the subdomains. If two subdomains intersect,
ordering one before the other introduces a directed edge from the first domain
to the second one. Considering these directions, Hysom and Pothen colour the
vertices of the subdomain graph to reduce the length of directed paths in this
graph. The colour classes can again be found using Luby’s algorithm. Hysom
and Pothen impose constraints on the fill-in that can be obtained from a pure
ILU(`) factorization. This helps improve the parallelization. Their paper presents
an improvement to the scheme outlined above and provides a fill-in theorem for
the incomplete factorization.

4.2 Support graph preconditioners

Combinatorial structures have been used to construct and analyse precondition-
ers. For example, Rose [182] defines the R-regular splitting (matrix splitting is a
form of preconditioning, see [207] for splitting methods) of singular M-matrices.
Starting from a given choice of diagonal blocks, Rose reorders the blocks so that
the vertices in a cycle (guaranteed to exist) are ordered consecutively. This order-
ing guarantees the convergence of any given block regular splitting for singular
M-matrices. This was not true without this simple combinatorial tinkering of
the given choice of diagonal blocks.

A more recent combinatorial preconditioner and a set of tools used in de-
signing and proving the effectiveness of the constructed preconditioner is based
on work by Vaidya [206]. Although Vaidya’s manuscript is not published, his
main theorem and the associated preconditioners are given in the thesis of his
student Joshi [137, Chapter 5]. In this work, preconditioners for symmetric, pos-
itive definite, diagonally dominant matrices are constructed using a maximum
weighted spanning tree of the associated undirected graph (the edge weights
are equal to the absolute values of the corresponding matrix entries). In other
words, some off-diagonal entries of the given matrix are dropped to obtain the
preconditioner. In Joshi’s thesis there is a condition on which entries of A to
drop: an edge can be dropped if one can associate a single path in the graph
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of the preconditioner matrix such that all edges in this path have a weight at
least as large as the weight of the dropped edge. A maximum weighted spanning
tree satisfies this condition. Any matrix containing that spanning tree and some
additional edges also satisfies this condition. Joshi demonstrates the develop-
ment on two dimensional regular grids. First, he separates the boundary nodes
from the internal ones by removing all the edges between the boundary nodes
and the internal ones but keeping the edges between boundary nodes. Then, he
constructs a spanning tree of the internal nodes, and finally joins the boundary
to this tree with a single edge (one of those removed previously).

The proof that such structures give effective preconditioners uses two graph
embedding notions (Joshi uses the term embedding just to mean the representa-
tion of a grid by a graph). For simplicity, consider two graphs H and G defined
on the same set of vertices. The embedding of H into G is a set of paths of G,
such that each edge in H is associated with a single path in G. The congestion
of an edge of G is the sum of the weights of such paths that pass through that
edge, and the dilation of an edge of H is the length of the associated path in
G. The maximum congestion of an edge of G and the maximum dilation of an
edge of H define, respectively, the congestion and the dilation of the embedding.
Vaidya’s main result as stated by Joshi says that the condition number of the
preconditioned system is less than the product of the congestion and the dilation
of the embedding. We note that these graph embedding notions are also known
in parallel computing literature and are used in studying the interconnection
networks (see for example [146, p.39]).

The basic support-tree preconditioners and the graph embedding tools used
in bounding the condition number of the preconditioned system were extended
and generalized by Miller and his students Gremban and Guattery [111,112,114].
The extensions by Miller and Gremban include projecting the matrix onto a
larger space and building support trees using Steiner trees (a Steiner tree forms
a spanning tree of a graph with possibly additional vertices and edges). Vertex
separators that are used to partition the underlying graph are defined as the addi-
tional nodes. The leaves of the constructed support-tree correspond to the nodes
of the underlying graph, and the internal nodes correspond to vertex separators.
This form of preconditioner is demonstrated to be more amenable to paralleliza-
tion than the original support-tree preconditioners [111, Section 3.4]. Reif [179]
also develops Vaidya’s preconditioners and reduces the bounds on the condition
number of the preconditioned matrix by using a weighted decomposition, i.e.,
by partial embedding of the edges into multiple paths. Similar decompositions
are used and defined more clearly by Guattery [114] based on Gremban’s thesis.
Guattery uses the embedding tools to analyse incomplete Cholesky factorization
as well.

As seen from the references cited in the above paragraph, the earlier papers
on support tree preconditioners are not published in widely accessible journals,
except the rather theoretical paper by Reif [179]. The preconditioners, the re-
lated tools that are used to analyse them, and the potential of the theory as a
means to analyse preconditioners are presented by Bern et al. [24]. This paper
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collects many results and refines them, at the same time extending the techniques
to analyse modified incomplete Cholesky factorization (the dropped entries are
added to the diagonal entry, keeping the row sums of the original matrix and
the preconditioner matrix the same). The main tool that is used in bounding the
condition numbers of the preconditioned matrix is called the splitting lemma.
Suppose we use a preconditioner B for the matrix A, where A is symmetric and
diagonally dominant with nonnegative off-diagonal entries, and B is symmetric
positive semidefinite, and both A and B have zero row sums. One way to bound
the maximum eigenvalue of B−1A is to split A and B into m parts as

A = A1 + · · ·+Am and B = B1 + · · ·+Bm ,

where each Ak and Bk are symmetric positive semidefinite. Proving τBk−Ak is
positive semidefinite for all k gives a bound on λmax(B−1A). A similar technique
is used to bound λmin(B−1A) so that the condition number of the preconditioned
system given by λmax(B−1A)/λmin(B−1A) can be bounded. The relation with
the graph embedding concept is that each Ak represents an edge in the graph
of A and each Bk represents the associated path in the graph of B. Let Ak

and Bk correspond to the edge (i, j), i.e., to the nonzero aij = aji. The matrix
Ak contains the weight of the edge aij in its entirety, whereas the matrix Bk

contains fractions of the weights of the edges along the path associated with
the corresponding edge so that the sum of the weights of the same edge in
different paths add up to the weight of the edge in B. For example in Vaidya’s
construction, if bij represents the weight of an edge b in the graph of B, and if the
edge b appears in paths associated with some aij , then each such aij contributes
aij divided by the congestion of b to bij . The diagonal entries of Ak and Bk are
set in such a way that the row sums are zero. The congestion due to the edge
aij represented by Ak in the path represented by Bk is |aij |/bk, where bk is the
minimum magnitude of a nonzero off-diagonal entry in Bk. The dilation dk is the
length of the associated path, hence one less than the number of non-null rows or
columns of Bk. These two numbers can be used to show that dk|aij |/bkBk −Ak

is positive semidefinite. The bound on λmax is therefore maxij dk(|aij |/bk).
Bern et al. [24] use the above tools to analyse Vaidya’s maximum-weight span-

ning tree preconditioners. In this analysis, B’s underlying graph is a maximum-
weight spanning tree T . Loose asymptotic bounds for congestion and dilation
can be computed as follows. Suppose there are m edges in the graph of A, then
B will be split using m paths, each defined uniquely in T . If one allocates 1/m
of the weight of each edge of T to each path, then the maximum congestion due
to an edge aij in the associated path would be aij

aij/m = m. Furthermore, the di-
lation can be at most n−1, one less than the number of vertices. Hence, O(mn)
is a loose upper bound on the maximum eigenvalue λmax of the preconditioned
system. The analysis for λmin is easier: λmin is at least 1, as each edge of B is al-
ready in A. Therefore, the preconditioned system has a condition number bound
of O(mn). Another class of preconditioners that are based on maximum-weight
spanning trees is also proposed by Vaidya and analysed in [24]. These precon-
ditioners are built by partitioning the vertices of a maximum-weight spanning
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tree T into t connected parts, and then enriching the edge set of T by adding
the maximum weighted edge between any pair of parts (if two parts are already
connected by an edge of T , nothing is done for these two). With this kind of
preconditioners, the preconditioned system is shown to have a condition number
of O(n2/t2) [24].

Later, Boman and Hendrickson [31] generalized these embedding tools to
develop more widely applicable algebraic tools. Specifically, the tools can now
address symmetric positive semidefinite matrices. The insights gained with this
generalization are used to analyse the block Jacobi preconditioner and have en-
abled the development of new preconditioners [30]. Additionally, the support
theory techniques have been extended to include all diagonally dominant matri-
ces [31].

The work by Chen and Toledo [43] presents an easily accessible description
of Vaidya’s preconditioners and their implementation. They report mixed results
with Vaidya’s preconditioners: on certain problems (2D and 3D with diagonal
dominance) remarkable performance is obtained but on some others (3D general)
the performance is poorer than incomplete factorization-based standard precon-
ditioners. Sophisticated algorithmic approaches which aim at constructing span-
ning trees yielding provably better condition numbers for the preconditioned ma-
trix, and again provably better graph decompositions are given in [86,197,198].
The developments in these papers lead to nearly linear time algorithms for solv-
ing a certain class of linear systems. Another very recent study is by Koutis,
again a student of Miller. Koutis [142] proposes preconditioners for Laplacian
matrices of planar graphs. Koutis develops the preconditioners by aggregating
graph-based preconditioners of very small subsystems. Furthermore, Steiner tree
preconditioners [111] are extended and algebraic multigrid preconditioners are
cast in terms of Steiner trees, yielding combinatorial implications for the alge-
braic preconditioners.

The research on support graph preconditioners is very active. It seems that
much of the results are theoretical, focusing only on some particular classes of
linear systems. Therefore, there is much to do in this relatively young inter-
section of combinatorics and linear system solution. For example, except for a
few comments in [31], nothing is said for nonsymmetric matrices, not even for
pattern symmetric ones. Although we have very little experience with support
graph preconditioning methods, we think that they can help understand the ef-
fects of ordering methods for incomplete factorization preconditioners discussed
in the previous subsection.

Support-graph preconditioners are available in the TAUCS library of iterative
solvers http://www.tau.ac.il/~stoledo/taucs/ and in PETSc [16].

4.3 Algebraic multigrid preconditioning

Algebraic multigrid preconditioners approximate a given matrix by a series of
smaller matrices. Simply put, the system of equations is coarsened to a much
smaller system, a system is solved and refined at each level to obtain a correction
to the original solution. There are a number of combinatorial issues regarding

http://www.tau.ac.il/~stoledo/taucs/
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efficient parallelization of multigrid solvers, see Chow at el. [45]. Here, we will
look at the coarsening operation which incorporates a number of combinatorial
techniques. For a survey on algebraic multigrid, we refer the reader to [199].

In general, there are three coarsening approaches used in algebraic multi-
grid: classical coarsening (see, e.g., [187]), aggregation based coarsening (see,
e.g., [204]), and graph matching (this is a relatively new method described
in [141]).

In classical coarsening approaches of the type given in [187], the grid points
are classified into coarse or fine points. The coarse points are used to define the
coarser grid. In order to restrict the size of the coarser grid, such points are
restricted to be a maximal independent set. As we have seen before, this can be
achieved using Luby’s algorithm [159]. Two modifications of Luby’s algorithm are
presented in [55] for the coarsening operation in the algebraic multigrid context.
The modifications include directing Luby’s algorithm to choose points that have
a higher number of influenced points (that is, those that are connected to the
chosen points by heavy weights) and removing certain points before running the
algorithm.

In aggregation based coarsening [204], an aggregate is defined as a root point
and its immediate neighbours for which a certain condition in the magnitudes
of the coefficient between the neighbours and the root point is satisfied. A con-
straint on a root point is that the aggregate defined around it cannot be adjacent
to another root point. Therefore, a maximal independent set in the square of
the graph (a graph formed by adding edges between any two vertices that are
connected by a path of length 2 in the original graph) of the fine grid is found to
define the roots of the aggregates again using Luby’s algorithm. The exposition
suggests that Luby’s algorithm is run on the square graph. The graph colouring
heuristics, see e.g., [32,90], can be modified and used to reduce the space require-
ments by avoiding the construction of the square graph (similar applications of
the distance-k graph colouring heuristics can also boost the performance of some
other aspects of multigrid solvers [54] as well as the coarsening [4]).

In the matching based coarsening [141], the coarse grids are defined using
simple graph matching heuristics. In this work, a matching is found on the
graph of a fine grid, and the matched vertices are reduced to a single vertex in
the coarser grid. The matching is of the cardinality matching type, but does not
aim at maximizing the cardinality. An investigation in the paper shows that if
the original matrix is an M-matrix, so are the coarser matrices.

Current state-of-the-art multigrid solvers include ML [91] and BoomerAMG
[131]. PETSc [16] provide interfaces for a number of multigrid preconditioners.
For a much larger list of multigrid solvers and related multilevel ones see http:
//www.mgnet.org/mgnet-codes.html.

http://www.mgnet.org/mgnet-codes.html
http://www.mgnet.org/mgnet-codes.html
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4.4 Block triangular form

Consider a permutation of a square, nonsingular sparse matrix that yields a
block upper triangular form (BTF):

A =


A11 ∗ ∗ ∗
O A22 ∗ ∗
...

...
. . . ∗

O O · · · App

 ,

where each block on the diagonal is square and nonsingular and the nonzeros
are confined to the block upper triangular part of the permuted matrix. If a
permutation to this form is used when solving the linear system, the whole
system can be solved as a sequence of subproblems, each involving a solution
with one of the blocks on the diagonal.

The algorithms to obtain the BTF proceed in two steps, see e.g., [60,82]
and [119]. First, a maximum cardinality matching on the bipartite graph rep-
resentation is found, see [62,63]. In the case of a structurally full-rank matrix,
this would be a perfect matching. Then, the matrix is nonsymmetrically per-
muted so that the matching entries are on the main diagonal. The directed graph
of this matrix is then constructed, and its strongly connected components are
found [200] which define the blocks on the diagonal. Efficient and very compact
implementations in Fortran are provided in [71,72].

The block structure of the BTF is unique, apart from possible renumbering
of the blocks or possible orderings within blocks, as shown in [61,80,81]. In other
words, the same block structure would be obtained from any perfect matching.
We note that any such matching contains nonzeros that are only in the diagonal
blocks of the target BTF.

The BTF form is generalized to rectangular and unsymmetric, structurally
rank deficient matrices by Pothen [171] and Pothen and Fan [173] following the
work of Dulmage and Mendelsohn [82,80,81]. According to this generalization
any matrix has the following formAH ∗ ∗

O AS ∗
O O AV

 ,

where AH is underdetermined (horizontal), AS is square, and AV is overdeter-
mined (vertical). Each row of AH is matched to a column in AH , but there are
unmatched columns in AH ; each row and column of AS are matched; each col-
umn of AV is matched to a row in AV , but there are unmatched rows in AV .
Furthermore, Pothen and Fan [173] and Dulmage and Mendelsohn [82] give a
finer structural characterization. The underdetermined matrix AH can be per-
muted into block diagonal form, each block being underdetermined. The square
block AS can be permuted into upper BTF with square diagonal blocks, as
discussed before. The overdetermined block AV can be permuted into block di-
agonal form, with each block being overdetermined. Again, the fine permutation
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is unique [171], ignoring permutations within each fine block. The permutation
to the generalized BTF is performed in three steps. In the first step, a maximum
cardinality matching is found, not necessarily a perfect matching. Then each row
that reaches an unmatched column through alternating paths (these rows are all
matched, otherwise the matching is not of maximum cardinality) are put into
the horizontal block, along with any column vertex in those paths. Then, a cor-
responding process is run to detect the columns and rows of the vertical block.
Finally, the previous algorithm is run on the remaining full rank square block
to detect its fine structure. Pothen [171] proves the essential uniqueness of the
BTF for rectangular and structurally singular square matrices (see also [80,81]).

In recent work, we have presented a few observations on the BTF of symmet-
ric matrices [78]. Firstly, the blocks AH and AV are transposes of each other.
That is, the set of rows and the set of columns that define the horizontal block
are equal to the set of columns and the set of rows that define the vertical block,
respectively. Secondly, a fine block of the square submatrix AS is such that either
the set of its row indices is equal to the set of its column indices, or they are
totally disjoint and there is another square block equal to the transpose of the
block.

5 Conclusions

In this review, we have been rather eclectic in our choice of topics to illustrate
the symbiotic relationship between combinatorics and sparse linear algebra. This
is in part because other papers in this volume address specific subareas and
in part because of our own interest and expertise. Although space and energy
prevent us from going into significant detail, we have given a substantial number
of references that should easily quench the thirst of anyone eager to dig more
deeply.

We have discussed graph search algorithms in the spirit of depth- and breadth-
first search methods; both weighted and unweighted bipartite matchings; span-
ning trees; and graph embedding concepts. We believe that these are the most
important and useful tools of the trade, and hence by having some level of ac-
quaintance with these concepts, a computational scientist will be able to start
understanding many of the issues that arise in solving sparse linear systems and
be able to see how combinatorial approaches can be used to solve them.

We hope that we have communicated to the reader that combinatorial opti-
mization and graph theory play a dominant role in sparse linear system solution.
This is a delightful combination as the discrete and continuous worlds often seem
so far apart, yet the synergy created by the interaction of the two leads to devel-
opments and advances in both worlds. Much of the combinatorial material that
we have discussed is fairly elementary and indeed most would be covered in the
context of an undergraduate level discrete mathematics course, or a senior-level
algorithms course. We view this very positively as it means that these basic
techniques are accessible to many people. However, the way these elementary
techniques are applied requires substantial conceptualization, both in casting a
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problem in combinatorial terms and in restructuring computational methods to
accommodate the combinatorial results.
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92. G. A. Geist and E. G. Ng, Task scheduling for parallel sparse Cholesky factor-
ization, International Journal of Parallel Programming, 18 (1989), pp. 291–314.

93. A. George, Nested dissection of a regular finite element mesh, SIAM Journal on
Numerical Analysis, 10 (1973), pp. 345–363.

94. A. George and J. W. H. Liu, An automatic nested dissection algorithm for
irregular finite element problems, SIAM Journal on Numerical Analysis, 15 (1978),
pp. 1053–1069.

95. , A fast implementation of the minimum degree algorithm using quotient
graphs, ACM Transactions on Mathematical Software, 6 (1980), pp. 337–358.

96. , A minimal storage implementation of the minimum degree algorithm,
SIAM Journal on Numerical Analysis, 17 (1980), pp. 282–299.

97. , Computer Solution of Large Sparse Positive Definite Systems, Prentice-
Hall, Englewood Cliffs, N.J., 1981.

98. , The evolution of the minimum degree ordering algorithm, SIAM Review,
31 (1989), pp. 1–19.

99. A. George, J. W. H. Liu, and E. Ng, Communication results for parallel sparse
Cholesky factorization on a hypercube, Parallel Computing, 10 (1989), pp. 287–
298.

100. A. George and D. R. McIntyre, On the application of the minimum degree
algorithm to finite element systems, SIAM Journal on Numerical Analysis, 15
(1978), pp. 90–112.

101. A. George, W. G. Poole, and R. G. Voigt, Incomplete nested dissection for
solving n by n grid problems, SIAM Journal on Numerical Analysis, 15 (1978),
pp. 662–673.

102. A. J. George, Computer Implementation of the Finite Element Method, PhD
thesis, Stanford University, Stanford, CA, USA, 1971.

103. J. R. Gilbert, A note on the NP-completeness of vertex elimination on directed
graphs, SIAM Journal on Algebraic and Discrete Methods, 1 (1980), pp. 292–294.

104. J. R. Gilbert and J. W. H. Liu, Elimination structures for unsymmetric
sparse LU factors, SIAM Journal on Matrix Analysis and Applications, 14 (1993),
pp. 334–352.

105. J. R. Gilbert, C. Moler, and R. Schreiber, Sparse matrices in MATLAB:
Design and implementation, SIAM Journal on Matrix Analysis and Applications,
13 (1992), pp. 333–356.

106. J. R. Gilbert and T. Peierls, Sparse partial pivoting in time proportional to
arithmetic operations, SIAM Journal on Scientific and Statistical Computing, 9
(1988), pp. 862–874.

107. J. R. Gilbert and R. Schreiber, Highly parallel sparse Cholesky factorization,
SIAM Journal on Scientific and Statistical Computing, 13 (1992), pp. 1151–1172.

108. J. R. Gilbert and R. E. Tarjan, The analysis of a nested dissection algorithm,
Numerische Mathematik, 50 (1987), pp. 377–404.

109. J. R. Gilbert and S. Toledo, High-performance out-of-core sparse LU factor-
ization, in 9th SIAM Conference on Parallel Processing for Scientific Computing
(CDROM), 1999, p. p.10.

110. R. Greenlaw, A model classifying algorithms as inherently sequential with appli-
cations to graph searching, Information and Computation, 97 (1992), pp. 133–149.

111. K. D. Gremban, Combinatorial Preconditioners for Sparse, Symmetric, Di-
agonally Dominant Linear Systems, PhD thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, USA, 1996.



Combinatorial problems in linear systems 37

112. K. D. Gremban, G. L. Miller, and M. Zagha, Performance evaluation of a
parallel preconditioner, in 9th International Parallel Processing Symposium, Santa
Barbara, April 1995, IEEE, pp. 65–69.

113. M. J. Grote and T. Huckle, Parallel preconditioning with sparse approximate
inverses, SIAM Journal on Scientific Computing, 18 (1997), pp. 838–853.

114. S. Guattery, Graph embedding techniques for bounding condition numbers of in-
complete factor preconditioners, Tech. Report ICASE Report No.97-47, Institute
for Computer Applications in Science and Engineering, NASA Langley Research
Center, Hampton, Virginia, 1997.

115. A. Guermouche and J.-Y. L’Excellent, Constructing memory-minimizing
schedules for multifrontal methods, ACM Transactions on Mathematical Software,
32 (2006), pp. 17–32.

116. A. Gupta, Fast and effective algorithms for graph partitioning and sparse matrix
ordering, Tech. Report RC 20496 (90799), IBM Research Division, T. J. Watson
Research Center, Yorktown Heights, NY, USA, 1996.

117. , Improved symbolic and numerical factorization algorithms for unsymmetric
sparse matrices, SIAM Journal on Matrix Analysis and Applications, 24 (2002),
pp. 529–552.

118. I. Gustafsson, A class of first order factorization methods, BIT Numerical Math-
ematics, 18 (1978), pp. 142–156.

119. F. G. Gustavson, Finding the block lower-triangular form of a sparse matrix, in
Sparse Matrix Computations, J. R. Bunch and D. J. Rose, eds., Academic Press,
New York and London, 1976, pp. 275–289.

120. M. Halappanavar, Algorithms for vertex-weighted matching in graphs, PhD the-
sis, Old Dominion University, Norfolk, Virginia, USA, 2008.

121. M. Hall, Jr., An algorithm for distinct representatives, The American Mathe-
matical Monthly, 63 (1956), pp. 716–717.

122. P. Hall, On representatives of subsets, Journal of the London Mathematical
Society, s1-10 (1935), pp. 26–30.

123. M. T. Heath, E. Ng, and B. W. Peyton, Parallel algorithms for sparse linear
systems, SIAM Review, 33 (1991), pp. 420–460.

124. P. Heggernes, S. C. Eisenstat, G. Kumfert, and A. Pothen, The computa-
tional complexity of the minimum degree algorithm, in Proceedings of NIK 2001—
14th Norwegian Computer Science Conference, Tromsø, Norway, 2001, pp. 98–
109.

125. B. Hendrickson and T. G. Kolda, Graph partitioning models for parallel com-
puting, Parallel Computing, 26 (2000), pp. 1519–1534.

126. B. Hendrickson and R. Leland, The Chaco user’s guide, version 2.0, Sandia
National Laboratories, Alburquerque, NM, 87185, 1995.

127. , A multilevel algorithm for partitioning graphs, in Supercomputing ’95: Pro-
ceedings of the 1995 ACM/IEEE conference on Supercomputing (CDROM), New
York, NY, USA, 1995, ACM, p. 28.

128. B. Hendrickson and A. Pothen, Combinatorial scientific computing: The en-
abling power of discrete algorithms in computational science, in High Performance
Computing for Computational Science—VECPAR 2006, M. Dayde, M. L. M.
Palma, L. G. A. Coutinho, E. Pacitti, and J. C. Lopes, eds., vol. 4395 of Lecture
Notes in Computer Science, 2007, pp. 260–280.

129. B. Hendrickson and E. Rothberg, Improving the run time and quality of
nested dissection ordering, SIAM Journal on Scientific Computing, 20 (1998),
pp. 468–489.



38 Duff and Uçar
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