
HAL Id: ensl-00420806
https://ens-lyon.hal.science/ensl-00420806v1

Preprint submitted on 29 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static Strategies for Worksharing with Unrecoverable
Interruptions (Extended version)

Anne Benoit, Yves Robert, Arnold Rosenberg, Frédéric Vivien

To cite this version:
Anne Benoit, Yves Robert, Arnold Rosenberg, Frédéric Vivien. Static Strategies for Worksharing with
Unrecoverable Interruptions (Extended version). 2009. �ensl-00420806�

https://ens-lyon.hal.science/ensl-00420806v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Static Strategies for Worksharing

with Unrecoverable Interruptions

(Extended version)

Anne Benoit,
Yves Robert,
Arnold L. Rosenberg,
Frédéric Vivien

September 2009

Research Report No 2009-26

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique :lip@ens-lyon.fr

Static Strategies for Worksharing

with Unrecoverable Interruptions

(Extended version)

Anne Benoit, Yves Robert, Arnold L. Rosenberg, Frédéric Vivien

September 2009

Abstract

One has a large workload that is “divisible”—its constituent work’s granular-
ity can be adjusted arbitrarily—and one has access to p remote computers
that can assist in computing the workload. How can one best utilize these
computers? Complicating this question is the fact that each remote com-
puter is subject to interruptions (of known likelihood) that kill all work in
progress on it. One wishes to orchestrate sharing the workload with the remote
computers in a way that maximizes the expected amount of work completed.
Strategies are presented for achieving this goal, by balancing the desire to
checkpoint often—thereby decreasing the amount of vulnerable work at any
point—vs. the desire to avoid the context-switching required to checkpoint.
The current study demonstrates the accessibility of strategies that provably
maximize the expected amount of work when there is only one remote com-
puter (the case p = 1) and, at least in an asymptotic sense, when there are
two remote computers (the case p = 2); but the study strongly suggests the in-
tractability of exact maximization for p ≥ 2 computers. This study responds to
that challenge by developing efficient heuristics that employ both checkpointing
and work replication as mechanisms for decreasing the impact of work-killing
interruptions. The quality of these heuristics, in expected amount of work
completed, is assessed through exhaustive simulations that use both idealized
models and actual trace data.

Keywords: Fault-tolerance, scheduling, divisible loads, probabilities

Résumé

On dispose d’une large tâche divisible et l’on a accès à p ordinateurs distants
pour traiter cette tâche. Comment utiliser au mieux ces ordinateurs ? Le pro-
blème est d’autant plus compliqué que chaque ordinateur est sujet à des in-
terruptions (de probabilité connue) tuant tout le travail qu’il est en train d’ef-
fectuer. On souhaite orchestrer le traitement du travail par les ordinateurs de
manière à maximiser l’espérance de la quantité de travail complété. Des straté-
gies pour atteindre ce but sont présentées. Ces stratégies sont des compromis
entre l’envie d’effectuer souvent des sauvegardes (checkpoint) —ce qui diminue
à tout moment la quantité de travail qui risque d’être perdue— et le désir d’évi-
ter le coût des changements de contexte requis par ces sauvegardes. Cette étude
présente des stratégies qui maximisent l’espérance de la quantité de travail fait
quand il y a un seul ordinateur (cas p = 1) et, au moins d’un point de vue
asymptotique, quand il y a deux ordinateurs distants (cas p = 2). Mais cette
étude suggère l’intractabilité de ce problème pour p > 2 ordinateurs. Ce défi
est relevé par la définition d’heuristiques efficaces qui emploient sauvegardes et
réplications pour minimiser l’impact des interruptions destructrices de travail.
La qualité de ces heuristiques, en quantité de travail accompli, est évaluée au
moyen de simulations exhaustives utilisant d’une part des modèles idéaux et
d’autre part des traces réelles.

Mots-clés: Tolérance aux pannes, ordonanncement, tâches divisibles, probabilités

2

Static Strategies for Worksharing with Unrecoverable Interruptions 1

Contents

1 Introduction 3

2 The Technical Framework 5
2.1 The Computation and the Computers . 6
2.2 Modeling Interruptions and Expected Work . 6

2.2.1 The interruption model . 6
2.2.2 Expected work production . 7

3 Scheduling for a Single Remote Computer 12
3.1 An Optimal Schedule under the Free-Initiation Model 12
3.2 An Optimal Schedule under the Charged-Initiation Model 13

4 Scheduling for Two Remote Computers 20
4.1 Two Remote Computers under General Risk . 20
4.2 Two Remote Computers under Linear Risk . 25

4.2.1 Allocating work in a single chunk . 25
4.2.2 Asymptotically optimal schedules . 29

5 Scheduling for p Remote Computers 34
5.1 The Partitioning Phase . 34
5.2 The Orchestration Phase . 36

5.2.1 General schedules . 36
5.2.2 Group schedules: introduction . 37
5.2.3 Group schedules: specific schedules . 38

5.3 Choosing the Optimal Number of Chunks . 42

6 Experiments 44
6.1 The Experimental Plan . 44
6.2 Experimental Results . 45

6.2.1 Experiment (E1): Fixed p, n, and ε . 45
6.2.2 Experiment (E2): Fixed W(ttl), cs, and ε 46
6.2.3 Experiment (E3): Fixed W(ttl), p, and ε . 46
6.2.4 Experiment (E4): Fixed W(ttl), p, and cs 50
6.2.5 Experiment (E5) and (E6): Automatic Inference of Chunk Size 50

6.3 Summarizing the Experiments . 50

7 Going Beyond the Linear Risk Model 50
7.1 Asymptotically Optimal Scheduling under General

Risk and the Free-Initiation Model . 52
7.1.1 One Remote Computer . 52
7.1.2 Two Remote Computers . 54

7.2 Heuristics and Simulations . 56
7.2.1 Traces and Methodology . 56
7.2.2 Simulation Results . 57

8 Conclusion 57

A Experiments with linear risk functions
(selected heuristics) 62
A.1 Experiments E1 . 62
A.2 Experiments E2 . 73
A.3 Experiments E3 . 78
A.4 Experiments E4 . 84

2 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

B Experiments with linear risk functions
(all heuristics) 90
B.1 Experiments E1 . 90
B.2 Experiments E2 . 101
B.3 Experiments E3 . 106
B.4 Experiments E4 . 112
B.5 Experiments E5 . 118

C Experiments with general risk functions 121

Static Strategies for Worksharing with Unrecoverable Interruptions 3

1 Introduction

Technological advances and economic constraints have engendered a variety of modern computing
platforms that allow a person who has a massive, compute-intensive workload to enlist the help of
others’ computers in executing the workload. The resulting cooperating computers may belong to
a nearby or remote cluster (of “workstations”; cf. [29]), or they could be geographically dispersed
computers that are available under one of the increasingly many modalities of Internet-based
computing—such as Grid computing (cf. [14, 19, 18]), global computing (cf. [16]), or volunteer
computing (cf. [25]). In order to avoid unintended connotations concerning the organization of
the remote computers, we avoid evocative terms such as “cluster” or “grid” in favor of the generic
“assemblage.” Advances in computing power never come without cost. These new platforms
add various types of uncertainty to the list of concerns that must be addressed when preparing
one’s computation for allocation to the available computers: notably, computers can slow down
unexpectedly, even failing ever to complete allocated work. The current paper follows in the
footsteps of sources such as [5, 11, 13, 21, 27, 34], which present analytic studies of algorithmic
techniques for coping with uncertainty in computational settings. Whereas most of these sources
address the uncertainty of the computers in an assemblage one computer at a time, we attempt
here to view the assemblage as a“team”wherein one computer’s shortcomings can be compensated
for by other computers, most notably by judiciously replicating work, i.e., by allocating some work
to more than one computer. Such a team-oriented viewpoint has appeared mainly in experimental
studies (cf. [24]); ours is the first analytical study to adopt such a point of view.

The problem. We have a large computational workload whose constituent work is divisible in
the sense that one can partition chuks of work into arbitrary granularities (cf. [12]). We also have
access to p ≥ 1 identical computers to help us compute the workload via worksharing (wherein
the owner of the workload allocates work to remote computers that are idle; cf. [35]).

We study homogeneous assemblages in the current paper in order to concentrate only
on developing technical tools to cope with uncertainty within an assemblage. We hope
to focus in later work on the added complexity of coping with uncertainty within a
heterogeneous assemblage, whose computers may differ in power and speed.

We address here the most draconian type of uncertainty that can plague an assemblage of comput-
ers, namely, vulnerability to unrecoverable interruptions that cause us to lose all work currently
in progress on the interrupted computer. We wish to cope with such interruptions—whether they
arise from hardware failures or from a loaned/rented computer’s being reclaimed by its owner, as
during an episode of cycle-stealing (cf. [5, 13, 31, 32, 34]). The scheduling tool that we employ to
cope with these interruptions is work replication, the allocation of chunks of work to more than one
remote computer. The only external resource to help us use this tool judiciously is our assumed
access to a priori knowledge of the risk of a computer’s having been interrupted—which we assume
is the same for all computers.1

The goal. Our goal is to maximize the expected amount of work that gets computed by the
assemblage of computers, no matter which, or how many computers get interrupted. Therefore, we
implicitly assume that we are dealing with applications for which even partial output is meaningful,
e.g., annotation of metagenomics data. In metagenomics annotation, one has a large number of
DNA fragments to classify (as belonging to eukaryotes, prokaryotes, etc.); one would rather have
all the DNA fragments processed, but the result of the classification is nevertheless meaningful
even if the annotation is fragmentary (this just artificially raises the “unknown” category).

Three challenges. The challenges of scheduling our workload on interruptible remote com-
puters can be described in terms of three dilemmas. The first two apply even to each remote
computer individually.2

1As in [13, 31, 34], our scheduling strategies can be adapted to use statistical, rather than exact, knowledge of
the risk of interruption—albeit at the cost of weakened performance guarantees.

2We put “parallelism” in quotes when stating these dilemmas because remote computers are (usually) not
synchronized, so they do not truly operate in parallel.

4 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

1. If we send each remote computer a large amount of work with
each transmission,

then we both decrease the overhead of packaging work-containing
messages and maximize the opportunities for “parallelism”
within the assemblage of remote
computers,

but we thereby maximize our vulnerability to losing work
because of a remote computer’s being interrupted.

On the other hand,
2. If we send each remote computer a small amount of work with

each transmission,
then we minimize our vulnerability to interruption-induced losses
but we thereby maximize message overhead and minimize the

opportunities for “parallelism” within the assemblage of
remote computers.

The third dilemma arises only when there are at least two remote computers.3

3. If we replicate work, by sending the same work to more than
one remote computer,

then we lessen our vulnerability to interruption-induced losses,
but we thereby minimize both the opportunities for

“parallelism” and the expected productivity advantage from
having access to the remote computers.

Approaches to the challenges. (1) “Chunking” our workload. We cope with the first two
dilemmas by sending work allocations to the remote computers as a sequence of chunks4 rather
than as a single block to each computer. This approach, which is advocated in [13, 31, 32, 34],
allows each computer to checkpoint at various times and, thereby, to protect some of its work
from the threat of interruption. (2) Replicating work. We allocate some chunks to more than one
remote computer in order to enhance their chances of being computed successfully. We use work
replication judiciously, in deference to the third dilemma.

Under our model, the risk of a computer’s being interrupted increases as the computer
operates, whether it works on our computation or not. This assumption models, e.g.,
interruptions from hardware failures or from returning owners in cycle-stealing scenar-
ios. Thus, certain chunks of our workload are more vulnerable to being interrupted
than others. To wit, the first “round” of allocated chunks involves our first use of
the remote computers; hence, these chunks are less likely to be interrupted than are
the chunks that are allocated in the second “round”: the remote computers will have
been operating longer by the time the second “round” occurs. In this manner, the
second-“round” chunks are less vulnerable than the third-“round” chunks, and so on.

Because communication to remote computers is likely to be costly in time and overhead, we limit
such communication by orchestrating work replication in an a priori, static manner, rather than
dynamically, in response to observed interruptions. While we thereby duplicate work unneces-
sarily when there are few interruptions among the remote computers, we also thereby prevent
our computer, which is the server in the studied scenario, from becoming a communication bot-
tleneck when there are many interruptions. Our cost concerns are certainly justified when we
access remote computers over the Internet, but also when accessing computers over a variety of
common local-area networks (LANs). Moreover, as noted earlier, we get a good “return” from
our conservative work replication, by increasing the expected amount of work done by the remote
computers.

In summation, we assume: that we know the instantaneous probability that a remote computer
will have been interrupted by time t; that this probability is the same for all remote computers;

3The pros and cons of work replication are discussed in [24].
4We use the generic “chunk” instead of “task” to emphasize tasks’ divisibility: by definition, divisible workloads

do not have atomic tasks.

Static Strategies for Worksharing with Unrecoverable Interruptions 5

that the probability increases with the amount of time that the computer has been available. These
assumptions, which we share with [13, 31, 34], seem to be necessary in order to derive scheduling
strategies that are provably optimal. As suggested in these sources (cf. footnote 1), one can use
approximate knowledge of these probabilities, obtained, say, via trace data, but this will clearly
weaken our performance claims for our schedules. Also as noted earlier, the challenge of allowing
individual computers to have different probabilities must await a sequel to the current study.

Related work. The literature contains relatively few rigorously analyzed scheduling algo-
rithms for interruptible “parallel” computing in assemblages of computers. Among those we know
of, only [5, 13, 31, 32, 34] deal with an adversarial model of interruptible computing. One finds
in [5] a randomized scheduling strategy which, with high probability, completes within a loga-
rithmic factor of the optimal fraction of the initial workload. In [13, 31, 32, 34], the scheduling
problem is viewed as a game against a malicious adversary who seeks to interrupt each remote
computer in order to kill all work in progress. Among the experimental sources, [39] studies the
use of task replication on a heterogeneous desktop grid whose constituent computers may become
definitively unavailable; the objective is to eventually process all work. In a similar context, [3]
aims at minimizing both the completion time of applications and the amount of resources used.

There is a very large literature on scheduling divisible workloads on assemblages of computers
that are not vulnerable to interruption. We refer the reader first to [12] and its myriad intellec-
tual progeny; not all of these sources share the current study’s level of detailed argumentation.
One finds in [2], its precursor [33], and its accompanying experimental study [1], an intriguing
illustration of the dramatic impact on the scheduling problem for heterogeneous assemblages of
having to account for the transmission of the output generated by the computation; a different
aspect of the same observation is noted in [10]. Significant preliminary results about assemblages
in which communication links, as well as constituent computers, are heterogeneous appear in [10].
Several studies focus on scheduling divisible computations but focus on algorithmically simpler
computations whose tasks produce no output. A near-optimal algorithm for such scheduling ap-
pears in [40] under a simplified model, in which equal-size chunks of work are sent to remote
computers at a frequency determined by the computers’ powers. The body of work exemplified
by [36, 37, 12, 15, 17] and sources cited therein allow heterogeneity in both communication links
and computers, but schedule outputless tasks, under a simple communication model. (It is worth
noting that one consequence of a linear, rather than affine communication cost model is that it
can be advantageous to distribute work in many small pieces, rather than in a few large chunks;
cf. [37, 40].) A significant study that shares our focus on tasks having equal sizes and complexities,
but that allows workstations to redistribute allocated tasks, appears in [7, 9]. Under the assump-
tion of unit computation time per task, these sources craft linear-programming algorithms that
optimize the steady-state processing of tasks. The distribution of inputs and subsequent collection
of results form an integral part of [2, 10]; these problems are studied as independent topics in [8].

Even the subset of the divisible workload literature that focuses on collective communication in
assemblages of computers is enormous. Algorithms for various collective communication operations
appear in [6, 22]. One finds in [20] approximation algorithms for a variant of broadcasting under
which receipt of the message“triggers”a“personal”computation whose cost is accounted for within
the algorithm.

We do not enumerate here the many studies of computation on assemblages of remote com-
puters, which focus either on systems that enable such computation or on specific algorithmic
applications. However, we point to [26] as an exemplar of the former type of study and to [38] as
an exemplar of the latter.

2 The Technical Framework

We supply the technical details necessary to turn the informal discussion in the Introduction into
a framework in which we can develop and rigorously validate scheduling guidelines.

6 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

2.1 The Computation and the Computers

We begin with W(ttl) units of divisible work that we wish to execute on an assemblage of p ≥ 1
identical computers. Each computer is susceptible to unrecoverable interruptions that “kill” all
work currently in progress on it. All computers share the same instantaneous probability of
being interrupted, and this probability increases with the amount of time the computer has been
operating (whether working on our computation or not). We know this probability exactly.5

Because we deal with a single computational application and identical computers, we
lose no generality by expressing our results in terms of units of work, rather than the
execution time of these units. We paraphrase the following explanation from [2], which
uses a similar convention.

Our results rely only on the fact that all work units have the same size and complexity:
formally, there is a constant c > 0 such that executing w units of work takes cw time
units. The work units’ (common) complexity can be an arbitrary function of their
(common) size: c is simply the ratio of the fixed size of a work unit to the complexity
of executing that amount of work.

As discussed in the Introduction, the danger of losing work in progress when an interruption
incurs mandates that we not just divide our workload into W(ttl)/p equal-size chunks and allocate
one chunk to each computer in the assemblage. Instead, we “protect” our workload as best we can,
by:

• partitioning it into chunks, the unit of work that we allocate to the computers

• prescribing a schedule for allocating chunks to computers

• allocating some chunks to more than one computer, as a divisible-load mode of work repli-
cation.

As noted in the Introduction, we treat intercomputer communication as a resource to be used very
conservatively—which is certainly justified when communication is over the Internet, and often
when communication is over common local-area networks (LANs). Specifically, we try to avoid
having our computer become a communication bottleneck by orchestrating chunk replications in
an a priori, static manner—even though this leads to duplicated work when there are few or no
interruptions—rather than dynamically, in response to observed interruptions.

2.2 Modeling Interruptions and Expected Work

2.2.1 The interruption model

Within our model, all computers share the same risk function, i.e., the same instantaneous prob-
ability, Pr(w), of having been interrupted by the end of “the first w time units.”

Recall that we measure time in terms of work units that could have been executed
“successfully,” i.e., with no interruption. In other words “the first w time units” is the
amount of time that a computer would have needed to compute w work units if it had
started working on them when the entire worksharing episode began.

This time scale is shared by all computers in our homogeneous setting.

Of course, Pr(w) increases with w; we assume that we know its value exactly: see, however,
footnote 1.

It is useful in our study to generalize our measure of risk by allowing one to consider many
baseline moments. We denote by Pr(s, w) the probability that a computer has not been interrupted
during the first s “time units” but has been interrupted by “time” s + w. Thus, Pr(w) = Pr(0, w)
and Pr(s, w) = Pr(s + w) − Pr(s).

5As stated earlier, our analyses can be modified to accommodate probabilities that are known only statistically.

Static Strategies for Worksharing with Unrecoverable Interruptions 7

We let6 κ ∈ (0, 1] be a constant that weights our probabilities. We illustrate the role of κ as
we introduce two specific common risk functions Pr, the first of which is our focus in the current
study.

Linearly increasing risk. The risk function that will be the main focus of our study is
Pr(w) = κw. It is the most natural model in the absence of further information: the failure risk
grows linearly, in proportion to the time spent, or equivalently to the amount of work done. This
linear model covers a wide range of cycle-stealing scenarios, but also situations when interruptions
are due to hardware failures.

In this case, we have the density function

dPr =

{
κdt for t ∈ [0, 1/κ]
0 otherwise

so that

Pr(s, w) = min

{
1,

∫ s+w

s

κdt

}
= min{1, κw} (1)

The constant 1/κ will recur repeatedly in our analyses, since it can be viewed as the time by
which an interruption is certain, i.e., will have occurred with probability 1. To enhance legibility of
the rather complicated expressions that populate our analyses, we henceforth denote the quantity
1/κ by X.

Geometrically decaying lifespan. A commonly studied risk function, which models a vari-
ety of common “failure” scenarios, is Pr(w) = 1−exp−κw, wherein the probability of a computer’s
surviving for one more “time step” decays geometrically. More precisely,

Pr(w, 1) = Pr(w + 1) − Pr(w) = (1 − exp−κ(w+1)) − (1 − exp−κw)

= (1 − exp−κ) exp−κw .

One might expect such a risk function, for instance, when interruptions are due to someone’s
leaving work for the day; the longer s/he is absent, the more likely it is that s/he is gone for the
night.

In this case, we have the density function dPr = κ exp−κt dt, so that

Pr(s, w) =

∫ s+w

s

κ exp−κt dt = exp−κs(1 − exp−κw).

2.2.2 Expected work production

Risk functions help us finding an efficient way to chunk work for, and allocate work to, the
remote computers, in order to maximize the expected work production of the assemblage. To this
end, we focus on a workload consisting of W(ttl) work units, and we let W(cmp) be the random
variable whose value is the number of work units that the assemblage executes successfully under
a given scheduling regimen. Stated formally, we are striving to maximize the expected value (or,
expectation) of W(cmp).

We perform our study under two models, which play different roles as one contemplates the
problem of scheduling a large workload. The models differ in the way chunk execution times relate
to chunk sizes. The actual time for processing a chunk of work has several components:

• There is the overhead for transmitting the chunk to the remote computer. This may be a
trivial amount of actual time if one must merely set up the communication, or it may be a
quite significant amount if one must, say, encode the chunk before transmitting it. In the
latter case, the overhead can be proportional to the chunk size.

• There is the time to actually transmitting the chunk, which is proportional to the chunk
size.

6As usual, (a, b] (resp., [a, b]) denotes the real interval {x | a < x ≤ b} (resp., {x | a ≤ x ≤ b}).

8 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

• There is the actual time that the remote computer spends executing the chunk, which, by
assumption, is proportional to the chunk size.

• There is the time that the remote computer spends checkpointing after computing a chunk.
This may be a trivial amount of actual time—essentially just a context switch—if the chunk
creates little output (perhaps just a YES/NO decision), or it may be a quite significant
amount if the chunk creates a sizable output (e.g., a matrix inversion).

In short, there are two classes of time-costs, those that are proportional to the size of a chunk and
those that are fixed constants. It simplifies our formal analyses to fold the first class of time-costs
into a single quantity that is proportional to the size of a chunk and to combine the second class
into a single fixed constant. When chunks are large, the second cost will be minuscule compared
to the first. This suggests that the fixed costs can be ignored, but one must be careful: if one
ignores the fixed costs, then there is no disincentive to, say, deploying the workload to the remote
computers in n + 1 chunks, rather than n. Of course, increasing the number of chunks tends to
make chunks smaller—which increases the significance of the second cost! One could, in fact, strive
for adaptive schedules that change their strategies depending on the changing ratios between chunk
sizes and fixed costs. However, for the reasons discussed earlier, we prefer to seek static scheduling
strategies, at least until we have a well-understood arsenal of tools for scheduling interruptible
divisible workloads. Therefore, we perform the current study with two fixed cost models, striving
for optimal schedules under each. (1) The free-initiation model is characterized by not charging the
owner of the workload a per-chunk fixed cost. This model focuses on situations wherein the fixed
costs are negligible compared to the chunk-size-dependent costs. (2) The charged-initiation model,
which more accurately reflects the costs incurred with real computing systems, is characterized by
accounting for both the fixed and chunk-size-dependent costs.

The free-initiation model. This model, which assesses no per-chunk cost, is much the
easier of our two models to analyze. The results obtained using this model approximate reality
well when one knows a priori that chunks must be large. One situation that mandates large
chunks is when communication is over the Internet, so that one must have every remote computer
do a substantial amount of the work in order to amortize the time-cost of message transmission
(cf. [25]). In such a situation, one will keep chunks large by placing a bound on the number of
scheduling “rounds,” which counteracts this model’s tendency to increase the number of “rounds”
without bound. Importantly also: the free-initiation model allows us to obtain predictably good
bounds on the expected value of W(cmp) under the charged-initiation model, in situations where
such bounds are prohibitively hard to derive directly; cf. Theorem 1.

Under the free-initiation model, the expected value of W(cmp) under a given scheduling regimen

Σ and for a workload W(ttl), denoted E(f)(W(ttl),Σ), the superscript“f”denoting“free(-initiation),”
is

E(f)(W(ttl),Σ) =

∫ ∞

0

Pr(W(cmp) ≥ u under Σ) du.

Let us illustrate this model via three simple calculations of E(f)(W(ttl),Σ). In these calculations,
the regimen Σ allocates the whole workload and deploys it on a single computer. To enhance
legibility, let the phrase “under Σ” within “Pr(W(cmp) ≥ u under Σ)” be specified implicitly by
context.

Deploying the workload as a single chunk. Under regimen Σ1 the whole workload is deployed as
a single chunk on a single computer. By definition, E(f)(W(ttl),Σ1) for an arbitrary risk function
Pr is given by

E(f)(W(ttl),Σ1) = W(ttl)

(
1 − Pr(W(ttl))

)
. (2)

Deploying the workload in two chunks. Regimen Σ2 specifies how the workload is split into the
two chunks of respective sizes ω1 > 0 and ω2 > 0, where ω1 +ω2 = W(ttl). The following derivation

Static Strategies for Worksharing with Unrecoverable Interruptions 9

determines E(f)(W(ttl),Σ2) for an arbitrary risk function Pr.

E(f)(W(ttl),Σ2) =

∫ ω1

0

Pr(W(cmp) ≥ u)du +

∫ ω1+ω2

ω1

Pr(W(cmp) ≥ u)du

=

∫ ω1

0

Pr(W(cmp) ≥ ω1)du +

∫ ω1+ω2

ω1

Pr(W(cmp) ≥ ω1 + ω2)du

= ω1(1 − Pr(ω1)) + ω2(1 − Pr(ω1 + ω2)). (3)

Deploying the workload in n chunks. Continuing the reasoning of the cases n = 1 and n = 2,
we finally obtain the following general expression for expectation E(f)(W(ttl),Σn) for an arbitrary
risk function Pr, when Σn partitions the whole workload into n chunks of respective sizes ω1 > 0,
ω2 > 0, . . . , ωn > 0 such that ω1 + · · · + ωn = W(ttl).

E(f)(W(ttl),Σn) =

∫ ω1

0

Pr(W(cmp) ≥ u)du +

∫ ω1+ω2

ω1

Pr(W(cmp) ≥ u)du

+ · · · +
∫ ω1+···+ωn−1+ωn

ω1+···+ωn−1

Pr(W(cmp) ≥ u)du

=

∫ ω1

0

Pr(W(cmp) ≥ ω1)du

+

∫ ω1+ω2

ω1

Pr(W(cmp) ≥ ω1 + ω2)du (4)

+ · · · +
∫ ω1+···+ωn−1+ωn

ω1+···+ωn−1

Pr(W(cmp) ≥ ω1 + · · · + ωn)du

= ω1(1 − Pr(ω1)) + ω2(1 − Pr(ω1 + ω2)) (5)

+ · · · + ωn(1 − Pr(ω1 + · · · + ωn)).

Optimizing expected work-production on one remote computer. One goal of our study is to learn
how to craft, for each integer n, a scheduling regimen Σ that maximizes E(f)(W(ttl),Σ). However,
we have a more ambitious goal, which is motivated by the following observation.

Many risk functions—such as the linear risk function—represent situations wherein the remote
computers are certain to have been interrupted no later than a known eventual time. In such a
situation, one might get more work done, in expectation, by not deploying the entire workload:
one could increase the expectation by making the last deployed chunk even a tiny bit smaller than
needed to deploy all W(ttl) units of work.

We shall see the preceding observation in operation in Theorem 2 for the free-initiation
model and in Theorem 3 for the charged-initiation model.

Thus, our ultimate goal when considering a single remote computer (the case p = 1), is to deter-
mine, for each integer n:

• how to select n chunk sizes that collectively sum to at most W(ttl) (rather than to exactly
W(ttl) as in the preceding paragraphs),

• how to select n chunks of these sizes out of our workload,
• how to schedule the deployment of these chunks

in a way that maximizes the expected amount of work that gets done. We formalize this goal via
the function E(f)(W(ttl), n):

E(f)(W(ttl), n) = max{ω1(1 − Pr(ω1)) + · · · + ωn(1 − Pr(ω1 + · · · + ωn))},

where the maximization is over all n-tuples of positive chunk sizes that sum to at most W(ttl):

{ω1 ≥ 0, ω2 ≥ 0, . . . , ωn ≥ 0} such that ω1 + ω2 + · · · + ωn ≤ W(ttl)

10 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

The charged-initiation model. This model is much harder to analyze than the free-initiation
model, even when there is only one remote computer. In compensation, the charged-initiation
model often allows one to determine analytically the best numbers of chunks and of “rounds” (when
there are multiple remote computers). Under this model, the overhead for each additional chunk
is a fixed cost—which, in common with time, we measure in units of work—that is added to the
cost of computing of each chunk; we denote this overhead by ε (for instance this may correspond
to a checkpointing cost). Under this model, the expected value of W(cmp) under a given scheduling

regimen Σ and for a worload W(ttl), denoted E(c)(W(ttl),Σ), the superscript“c”denoting“charged(-
initiation)” is

E(c)(W(ttl),Σ) =

∫ ∞

0

Pr(W(cmp) ≥ u + ε) du.

We find that, when the whole workload is deployed as a single chunk,

E(c)(W(ttl),Σ1) = W(ttl)

(
1 − Pr(W(ttl) + ε)

)
,

and when work is deployed as two chunks of respective sizes ω1 and ω2,

E(c)(W(ttl),Σ2) = ω1(1 − Pr(ω1 + ε)) + ω2(1 − Pr(ω1 + ω2 + 2ε)).

Finally, we let E(c)(W(ttl), k) be the analogue for the charged-initiation model of the parameterized

free-initiation expectation E(f)(W(ttl), k)
Relating the two models. One can bound the work completed under the charged-initiation

model via the free-initiation model. This justifies our primary focus on the free-initiation model.

Theorem 1. (Charged-initiation output vs. Free-initiation output)
Let E(c)(W(ttl), n) and E(f)(W(ttl), n) denote, respectively, the optimal n-chunk expected value of
W(cmp) under the charged-initiation model and under the free-initiation model. Then:

E(f)(W(ttl), n) ≥ E(c)(W(ttl), n) ≥ E(f)(W(ttl), n) − nε. (6)

Proof. The lefthand bound in (6) is obvious, because risk functions are nondecreasing —so that,
for any given scheduling regimen, the expected value of W(cmp) under the charged-initiation model
cannot exceed the expected value under the free-initiation model.

To derive the righthand bound in (6), let us focus on any optimal scheduling regimen Σ under
the free-initiation model with p remote computers. Σ schedules the load via n chunks W1, . . . ,
Wn of size ω1 > 0, . . . , ωn > 0. We note W(dpl) = ∪n

i=1Wi. For any j ∈ [1, p], Σ(j, k) denotes the
k-th chunk executed on computer j by schedule regimen Σ. In other words, computer j executes
chunks in the order Σ(j, 1), Σ(j, 2), . . . , Σ(j, n).7

Note that, because we target here a p-computer schedule, two different chunks may contain
some shared piece of work: whatever i and j in [1, n], we may have i 6= j and Wi ∩ Wj 6= ∅.
We then partition W(dpl) into X = {X1, ...,Xm} such that, for any partition-element Xi and any
chunk Wj , either Xi is included in Wj (Xi ⊂ Wj), or Xi and Wj have no elements in common
(Xi ∩ Wj = ∅). Then, under scheduling regimen Σ, any computer is attempting to process the
whole partition-element Xi or is not attempting to process any part of it. Then πi is the subset
of the computers on which Xi is scheduled under Σ. If j ∈ πi, σ(j, i) is the rank of the first chunk
scheduled on computer j and containing Xi; formally σ(j, i) = min{k|Xi ⊂ Σ(j, k)}.

From schedule Σ we define a new schedule Σ′. For any i in [1, n], let ω′
i = max{0, ωi − ε},

and let W ′
i be any subset of size ω′

i of Wi. Σ′ denotes the scheduling regimen that executes the
chunks W ′

1, . . . , W ′
n on the p-computers exactly as Σ executes the chunks W1, . . . , Wn on those

same computers, except that zero-length chunks are not executed but skipped (in order not to
pay the charged-initiation for nothing). We account for these zero-length chunks in the following
equations, via the function

1ω′
i

=

{
1 if ω′

i 6= 0
0 if ω′

i = 0.

7Without loss of generality we can assume that each computer executes the n chunks. Indeed, we never decrease
the expectation of a schedule by extending it so that each computer attempts to execute each chunk.

Static Strategies for Worksharing with Unrecoverable Interruptions 11

We then define the objects X ′
i , π′

i and σ′(j, i) as we defined Xi, πi and σ(j, i) except that we
further impose that any partition-elements X ′

i be a subset of some partition-element Xj (we thus
subdivide the partition X to obtain the partition X ′). Then, Xτ(i) is the element of X containing
X ′

i . Finally, let I ′ be the largest subset of X ′ satisfying the property:

∀i ∈ I ′, {j | X ′
i ⊂ W ′

j} = {j | Xτ(i) ⊂ Wj}.

Informally speaking, the pieces of work in an element of I ′ belong to the same chunks under the
two schedules Σ and Σ′. If X ′

i does not belong to I ′, this means that there exist some chunk
Wj such that some piece of work in Xτ(i) belongs to Wj but not to W ′

j . Then, X ′
i ⊂ Wj \ W ′

j ,
∪i/∈I′X ′

i ⊂ ∪n
i=1Wi \W ′

j and:

∑

i/∈I′

|X ′
i | =

∣∣∣∣∣
⋃

i/∈I′

X ′
i

∣∣∣∣∣ ≤
∣∣∣∣∣

n⋃

i=1

Wi \W ′
j

∣∣∣∣∣ ≤
n∑

i=1

|Wi \W ′
j | = nε.

Since Σ′ implicitly specifies a scheduling regimen for the charged-initiation model when using ≤
n chunks, the expected value of W(cmp) under Σ′ obviously cannot exceed the expected value under
the best scheduling regimen for the charged-initiation model when using ≤ n chunks. Therefore,

E(c)(W(ttl), n) ≥ E(c)(W(ttl),Σ
′)

=

m′∑

i=1

|X ′
i |

1 −
∏

j∈π′
i

Pr

σ′(j,i)∑

k=1

(ω′
Σ(j,k) + ε1ω′

Σ(j,k)
)

=

m′∑

i=1

|X ′
i |

1 −
∏

j∈π′
i

Pr

σ′(j,i)∑

k=1

1ω′
Σ(j,k)

(ω′
Σ(j,k) + ε)

=

m′∑

i=1

|X ′
i |

1 −
∏

j∈π′
i

Pr

σ′(j,i)∑

k=1

1ω′
Σ(j,k)

ωΣ(j,k)

≥
m′∑

i=1

|X ′
i |

1 −
∏

j∈π′
i

Pr

σ′(j,i)∑

k=1

ωΣ(j,k)

≥
∑

i∈I′

|X ′
i |

1 −
∏

j∈π′
i

Pr

σ′(j,i)∑

k=1

ωΣ(j,k)

=
∑

i∈I′

|X ′
i |

1 −
∏

j∈πτ(i)

Pr

σ(j,τ(i))∑

k=1

ωΣ(j,k)

= E(f)(W(ttl),Σ) −
∑

i/∈I′

|X ′
i |

1 −
∏

j∈πτ(i)

Pr

σ(j,τ(i))∑

k=1

ωΣ(j,k)

≥ E(f)(W(ttl),Σ) −
∑

i/∈I′

|X ′
i |

= E(f)(W(ttl),Σ) −
∣∣∣∣∣
⋃

i/∈I′

X ′
i

∣∣∣∣∣

≥ E(f)(W(ttl), n) − nε

which yields the righthand bound.

12 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

3 Scheduling for a Single Remote Computer

This section is devoted to studying how to schedule optimally when there is only a single remote
computer that is subject to the linear risk of interruption: Pr(w) = min (1, κw). Some of the
results we derive bear a striking similarity to their analogues in [13], despite certain substantive
differences in models.

3.1 An Optimal Schedule under the Free-Initiation Model

We begin with a simple illustration of why the risk of losing work because of an interruption
must affect our scheduling strategy, even when there is only one remote computer and even when
dispatching a new chunk of work incurs no cost, i.e., under the free-initiation model.

When the amount of work W(ttl) is no larger than X (recall that κ = 1/X is the con-
stant that accounts for the size of the work-unit), then instantiating the linear risk function,
Pr(W(ttl)) = κW(ttl), in (2) shows that the expected amount of work achieved when deploying the
entire workload in a single chunk is

E(f)(W(ttl),Σ1) = W(ttl) − κW 2
(ttl).

Similarly, instantiating this risk function in (3) shows that the expected amount of work achieved
when deploying the entire workload using two chunks, of respective sizes ω1 > 0 and ω2 > 0 is
(recalling that ω1 + ω2 = W(ttl))

E(f)(W(ttl),Σ2) = ω1(1 − ω1κ) + ω2(1 − (ω1 + ω2)κ))

= W(ttl) − (ω2
1 + ω1ω2 + ω2

2)κ

= W(ttl) − W 2
(ttl)κ + ω1ω2κ.

We observe that
E(f)(W(ttl),Σ2) − E(f)(W(ttl),Σ1) = ω1ω2κ > 0.

Thus, as one would expect intuitively: For any fixed total workload, one increases the expectation
of W(cmp) by deploying the workload as two chunks, rather than one—no matter how one sizes the
chunks.

Continuing with the preceding reasoning, we can actually characterize the optimal—i.e., expectation-
maximizing—schedule for any fixed number of chunks. (We thereby also identify a weakness of the
free-initiation model: increasing the number of chunks always increases the expected amount of
work done—so the (unachievable) “optimal” strategy would deploy infinitely many infinitely small
chunks.)

Theorem 2. (One remote computer: free-initiation model)
Say that one wishes to deploy W(ttl) ∈ [0,X] units of work to a single remote computer in at most
n chunks, for some positive integer n. In order to maximize the expectation of W(cmp), one should
have all n chunks share the same size, namely, Z/n units of work, where

Z = min

{
W(ttl),

n

n + 1
X

}
.

In expectation, this optimal schedule completes

E(f)(W(ttl), n) = Z − n + 1

2n
Z2κ

units of work.

Note that for fixed W(ttl), E(f)(W(ttl), n) increases with n.

Proof. Let us partition the W(ttl)-unit workload into n + 1 chunks, of respective sizes ω1 ≥ 0, . . . ,
ωn ≥ 0, ωn+1 ≥ 0, with the intention of deploying the first n of these chunks.

Static Strategies for Worksharing with Unrecoverable Interruptions 13

(a) Our assigning the first n chunks nonnegative, rather than positive sizes affords us
a convenient way to talk about “at most n chunks” using only the single parameter n.
(b) By creating n+1 chunks rather than n, we allow ourselves to hold back some work
in order to avoid what would be a certain interruption of the nth chunk. Formally,
exercising this option means making ωn+1 positive; declining the option—thereby de-
ploying all W(ttl) units of work—means setting ωn+1 = 0.

Each specific such partition specifies an n-chunk schedule Σn. Our challenge is to choose the
sizes of the n + 1 chunks in a way that maximizes E(f)(W(ttl),Σn). To simplify notation, let
Z = ω1 + · · · + ωn denote the portion of the entire workload that we actually deploy.

Extending the reasoning from the cases n = 1 and n = 2, one obtains easily from (5) the
expression

E(f)(W(ttl),Σn) = ω1(1 − ω1κ) + ω2(1 − (ω1 + ω2)κ) + · · · +
+ · · · + ωn(1 − (ω1 + · · · + ωn)κ) (7)

= Z − Z2κ +

∑

1≤i<j≤n

ωiωj

κ. (8)

Standard arguments show that the bracketed sum in (8) is maximized when all ωi’s share the

common value Z/n, in which case, the sum achieves the value
1

n2

(
n

2

)
Z2κ. Since maximizing the

sum also maximizes E(f)(W(ttl),Σn), simple arithmetic yields:

E(f)(W(ttl),Σn) = Z − n + 1

2n
Z2κ.

Viewing this expression for E(f)(W(ttl),Σn) as a function of Z, we note that the function is uni-

modal, increasing until Z =
n

(n + 1)κ
and decreasing thereafter. Setting this value for Z, gives us

the maximum value for E(f)(W(ttl),Σn), i.e., the value of E(f)(W(ttl), n). The theorem follows.

3.2 An Optimal Schedule under the Charged-Initiation Model

Under the charged-initiation model—i.e., on a computing platform wherein processing a new chunk
of work (for transmission or checkpointing) does incur a cost (that we must account for)—deriving
the optimal strategy becomes dramatically more difficult, even when there is only one remote
computer and even when we know a priori how many chunks we wish to employ.

Theorem 3. (One remote computer: charged-initiation model)
Say that one wishes to deploy W(ttl) ∈ [0,X] units of work, where X ≥ ε, to a single remote

computer in at most n chunks, for some positive integer n. Let n1 =
⌊

1
2

(√
1 + 8X/ε − 1

)⌋

and n2 =
⌊

1
2

(√
1 + 8W(ttl)/ε + 1

)⌋
. The unique regimen for maximizing E(c)(W(ttl), n) specifies

m = min{n, n1, n2} chunks: the first has size8

ω1,m =
W(dpl)

m
+

m − 1

2
ε

where

W(dpl) = min

{
W(ttl),

m

m + 1
X − m

2
ε

}
; (9)

and the (i + 1)th chunk inductively has size

ωi+1,m = ωi,m − ε.

8The second subscript of ω reminds us how many chunks the workload is divided into.

14 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

In expectation, this schedule completes

E(c)(W(ttl), n) =

W(dpl) −
m + 1

2m
W 2

(dpl)κ − m + 1

2
W(dpl)εκ +

(m − 1)m(m + 1)

24
ε2κ (10)

units of work.

Note that E(c)(W(ttl), n) is maximal for any value of n no smaller than min{n1, n2}.

Proof. We proceed by induction on the number n of chunks we want to partition our W(ttl) units

of work into. We denote by E(c)
opt(W(ttl), n) the maximum expected amount of work that a schedule

can complete under such a partition.
Focus first on the case n = 1. When work is allocated in a single chunk, the maximum expected

amount of total work completed is, by definition:

E(c)
opt(W(ttl), 1) = max

0≤ω1,1≤W(ttl)

E(c)(ω1,1) where

E(c)(ω1,1) = max
0≤ω1,1≤W(ttl)

ω1,1(1 − (ω1,1 + ε)κ).

We determine the optimal size of ω1,1 by viewing this quantity as a variable in the closed interval
[0,W(ttl)] and maximizing E(c)(ω1,1) symbolically. We thereby find that E(c)(ω1,1) is maximized
by setting

ω1,1 = min

{
W(ttl),

1

2κ
− ε

2

}
,

so that

E(c)
opt(W(ttl), 1) =

1

4κ
− ε

2
+

ε2

4
κ if W(ttl) >

1

2κ
− ε

2
,

W(ttl) − W 2
(ttl)κ − W(ttl)εκ otherwise.

(Note that ω1,1 has a non-negative size because of the natural hypothesis that X ≥ ε.)
We now proceed to general values of n by induction. We begin by assuming that the conclusions

of the theorem have been established for the case when the workload is split into n ≥ 1 positive-size
chunks. We also assume that n is no greater than min{n1, n2}. In other words, we assume that
any optimal solution with at most n chunks used n positive-size chunks.

As our first step in analyzing how best to deploy n + 1 positive-size chunks, we note that
the only influence the first n chunks of work have on the probability that the last chunk will be
computed successfully is in terms of their cumulative size.

Let us clarify this last point, which follows from the failure probability model. Denote
by An the cumulative size of the first n chunks of work in the expectation-maximizing
(n + 1)-chunk scenario; i.e., An =

∑n
i=1 ωi,n+1. Once An is specified, the probability

that the remote computer will be interrupted while working on the (n + 1)th chunk
depends only on the value of An, not on the way the An units of work have been
divided into chunks.

This fact means that once one has specified the cumulative size of the workload that comprises the
first n chunks, the best way to partition this workload into chunks is as though it were the only
work in the system, i.e., as if there were no (n+1)th chunk to be allocated. Thus, one can express
Eopt(W(ttl), n + 1) in terms of An (whose value must, of course, be determined) and Eopt(An, n),
via the following maximization.

Eopt(W(ttl), n + 1) =

max
{
Eopt(An, n) + ωn+1,n+1 (1 − (An + ωn+1,n+1 + (n + 1)ε) κ)

}
,

Static Strategies for Worksharing with Unrecoverable Interruptions 15

where the maximization is over all values for An in which

An > 0 allowing for the n previous chunks
ωn+1,n+1 ≥ 0 allowing for an (n + 1)th chunk

An + ωn+1,n+1 ≤ W(ttl) because the total workload has size W(ttl)

An + ωn+1,n+1 + (n + 1)ε ≤ X reflecting the risk and cost models

The last of these inequalities acknowledges that the remote computer is certain to be interrupted
(with probability 1) before it can complete the (n + 1)th chunk of work, if its overall workload is
no smaller than X − (n + 1)ε.

We now have two cases to consider, depending on the size of An.

Case 1: An <
n

n + 1
X − n

2
ε.

By assumption, the expectation-maximizing regimen deploys An units of work via its first n
chunks. By induction, expression (10) tells us that the expected amount of work completed by
deploying these An units is

E(c)
opt(An, n) = An − n + 1

2n
A2

nκ − n + 1

2
Anεκ +

(n − 1)n(n + 1)

24
ε2κ.

Let W(dpl) denote the total work that is actually allocated: W(dpl) = An + ωn+1,n+1. In the
following calculations, we write ωn+1,n+1 as W(dpl) − An, in order to represent the (n + 1)-chunk
scenario entirely via quantities that arise in the n-chunk scenario.

We focus on

E(1)(An, ωn+1,n+1) = Eopt(An, n) + (W(dpl) − An)
(
1 −

(
W(dpl) + (n + 1)ε

)
κ
)

=

(
An − n + 1

2n
A2

nκ − n + 1

2
Anεκ +

(n − 1)n(n + 1)

24
ε2κ

)

+ (W(dpl) − An)
(
1 −

(
W(dpl) + (n + 1)ε

)
κ
)

=

(
W(dpl) +

n + 1

2
ε

)
Anκ − n + 1

2n
A2

nκ

+ W(dpl)(1 − (W(dpl) + (n + 1)ε)κ) +
(n − 1)n(n + 1)

24
ε2κ.

For a given value of W(dpl), we look for the best value for An using the preceding expression. We
note first that

∂E(1)(An, ωn+1,n+1)

∂An
= −n + 1

n
Anκ + W(dpl)κ +

n + 1

2
εκ.

We note next that, for fixed W(dpl), the quantity E(1)(An, ωn+1,n+1) begins to increase with An

and then decreases. The value for An that maximizes this expectation, which we denote A
(opt)
n , is

A(opt)
n = min

{
W(ttl),

n

n + 1
W(dpl) +

n

2
ε

}
.

When W(ttl) ≤ (n/(n + 1))W(dpl) + 1
2nε, A

(opt)
n = W(ttl), meaning that the (n + 1)th chunk is

empty, and the schedule does not optimize the expected work. (In the charged-initiation model
an empty chunk decreases the overall probability). Consequently, we focus for the moment on the
case

A(opt)
n =

n

n + 1
W(dpl) +

n

2
ε (11)

(thereby assuming that W(ttl) ≥ (n/(n + 1))W(dpl) + 1
2nε). Therefore, we have

E(1)(A(opt)
n , ωn+1,n+1) =

− n + 2

2(n + 1)
W 2

(dpl)κ + W(dpl) −
n + 2

2
εW(dpl)κ +

n(n + 1)(n + 2)

24
ε2κ.

16 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

We maximize E(1)(A
(opt)
n , ωn+1,n+1) via the preceding expression by viewing the expectation as a

function of W(dpl). We discover that E(1)(A
(opt)
n , ωn+1,n+1) is maximized when

W(dpl) = Z(opt) = min

{
n + 1

n + 2
X − n + 1

2
ε, W(ttl)

}
. (12)

For this case to be meaningful, the (n + 1)th chunk must be nonempty, so that A
(opt)
n < Z;

i.e., Z > 1
2n(n + 1)ε. Therefore, we must simultaneously have:

1. (n + 1)/(n + 2)X − 1
2 (n + 1)ε > 1

2n(n + 1)ε, so that X > 1
2 (n + 1)(n + 2)ε, which requires

that n ≤
⌊

1
2

(√
1 + 8X/ε − 3

)⌋
.

2. W(ttl) > 1
2n(n + 1)ε, which requires that n ≤

⌊
1
2

(√
1 + 8W(ttl)/ε − 1

)⌋
.

We can now check the sanity of the result.

Z(opt) + (n + 1)ε ≤ n + 1

n + 2
X − n + 1

2
ε + (n + 1)ε < X,

because of the just established condition 1
2 (n + 1)(n + 2)ε < X. We also have,

A(opt)
n =

n

n + 1
W(dpl) +

n

2
ε ≤ n

n + 1

(
n + 1

n + 2
X − n + 1

2
ε

)
+

n

2
ε =

n

n + 2
X

<
n

n + 1
X − n

2
ε

because 1
2 (n + 1)(n + 2)ε < X. Therefore, the solution is consistent with the defining hypothesis

for this case—namely, that An <
n

n + 1
X − n

2
ε.

Before moving on to case 2, we note that the value (11) does, indeed, extend our inductive
hypothesis. To wit, the optimal total amount of allocated work, Z(opt), has precisely the predicted
value, and the sizes of the first n chunks do follow a decreasing arithmetic progression with common
difference ε (by using the induction hypothesis). Finally, the last chunk has the claimed size:

ωn+1,n+1 = Z(opt) − A(opt)
n =

1

n + 1
Z(opt) − n

2
ε.

We turn now to our remaining chores. We must derive the expectation-maximizing chunk sizes
for the second case, wherein An is “big.” And, we must show that the maximal expected work
completion in this second case is always dominated by the solution of the first case—which will
lead us to conclude that the regimen of the theorem is, indeed, optimal.

Case 2: An ≥ n

n + 1
X − n

2
ε.

By (9), if the current case’s restriction on An is an inequality, then An cannot be an optimal
cumulative n-chunk work allocation. We lose no generality, therefore, by focusing only on the
subcase when the defining restriction of An is an equality:

An =
n

n + 1
X − n

2
ε.

For this value of An, call it A⋆
n, we have

Eopt(W(ttl), n + 1) =

max
(
Eopt(A

⋆
n, n) + ωn+1,n+1 (1 − (A⋆

n + ωn+1,n+1 + (n + 1)ε) κ)
)
,

where the maximization is over all values of ωn+1,n+1 in the closed interval [0, W(ttl) − A⋆
n].

Static Strategies for Worksharing with Unrecoverable Interruptions 17

To determine a value of ωn+1,n+1 that maximizes Eopt(W(ttl), n + 1) for A⋆
n, we focus on the

function

E(2)(An,ωn+1,n+1)

= Eopt(An, n) + ωn+1,n+1 (1 − (An + ωn+1,n+1 + (n + 1)ε) κ)

=

(
An − n + 1

2n
A2

nκ − n + 1

2
Anεκ +

(n − 1)n(n + 1)

24
ε2κ

)

+ ωn+1,n+1 (1 − (An + ωn+1,n+1 + (n + 1)ε) κ)

= −κω2
n+1,n+1 +

(
−n + 2

2
κε +

1

n + 1

)
ωn+1,n+1

+
n

(
(n + 1)2(n + 2)ε2κ2 − 12(n + 1)εκ + 12

)

24(n + 1)κ
.

Easily,
∂E(2)(An, ωn+1,n+1)

∂ωn+1,n+1
= −2κωn+1,n+1 −

n + 2

2
κε +

1

n + 1
.

Knowing A⋆
n exactly, we infer that the value of ωn+1,n+1 that maximizes the expectation E(2)(A⋆

n, ωn+1,n+1)
is

ωn+1,n+1 = min

{
1

2(n + 1)
X − 1

4
(n + 2)ε, W(ttl) −

n

n + 1
X − n

2
ε

}
.

The second term dominates this minimization whenever

W(ttl) ≥ 2n + 1

2n + 2
X +

n − 2

4
ε;

therefore, if W(ttl) is large enough—as delimited by the preceding inequality—then

E(2)(A⋆
n, ωn+1,n+1) =

2n2 + 2n + 1

4(n + 1)2
X − 2n2 + 3n + 2

4(n + 1)
ε +

(n + 2)(2n2 + 5n + 6

48
κε2,

When W(ttl) does not achieve this threshold, then

E(2)(A⋆
n, ωn+1,n+1) = − W 2

(ttl)κ +

(
n − 2

2
κε +

2n + 1

n + 1

)
W(ttl)

+
(n2 + 3n + 14)nκε2

24
− n2

n + 1
ε − n

2(n + 1)
X.

For the found solution to be meaningful, the (n+1)th chunk must be nonempty, i.e., ωn+1,n+1 >
0. This has two implications.

1. X > (n+1)(n+2)
2 ε, which is true as long as n ≤

⌊
1
2

(√
1 + 8X/ε − 3

)⌋
.

2. W(ttl) − (n/(n + 1))X − 1
2nε > 0, which implies W(ttl) > 1

2n(n + 1)ε because X ≥ W(ttl).

This inequality on W(ttl) is true as long as n ≤
⌊

1
2

(√
1 + 8W(ttl)/ε − 1

)⌋
.

Because X > 1
2 (n + 1)(n + 2)ε, we have

An + ωn+1,n+1 + (n + 1)ε ≤ n

n + 1
X − n

2
ε +

1

2(n + 1)κ
− 1

4
(n + 2)ε + (n + 1)ε ≤ X.

For both Case 1 and Case 2, if either condition
[
n ≤

⌊
1

2

(√
1 + 8X/ε − 3

)⌋]
or

[
n ≤

⌊
1

2

(√
1 + 8W(ttl)/ε − 1

)⌋]

18 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

does not hold, then there is no optimal schedule with (n + 1) nonempty chunks. (We will come
back later to the case where one of these conditions does not hold.) If both conditions hold, then
Case 1 always has an optimal schedule, but Case 2 may not have one.

To complete the proof, we must verify that the optimal regimen always corresponds to Case 1
(as suggested by the theorem), never to Case 2 (whenever Case 2 defines a valid solution). We
accomplish this by considering two cases, depending on the size W(ttl) of the workload. We show
that the expected work completed under the regimen of Case 1 is never less than under the regimen
of Case 2.

Case A: W(ttl) ≥
n + 1

n + 2
X − n + 1

2
ε.

Under this hypothesis, and under Case 1, the workload that is actually deployed has size

W(dpl) =
n + 1

n + 2
X − n + 1

2
ε,

so that, in expectation,

E(1)(W(ttl), n + 1) = W(dpl) −
n + 1

2n
W 2

(dpl)κ − n + 1

2
W(dpl)εκ

+
(n − 1)n(n + 1)

24
ε2κ

=
n + 1

2(n + 2)
X − n + 1

2
ε +

(n + 1)(n + 2)(n + 3)

24
ε2κ.

units of work are completed. Moreover, because

n + 1

n + 2
X − n + 1

2
ε ≤ 2n + 1

2n + 2
X +

n − 2

4
ε,

the most favorable value for E(1)(W(ttl), n + 1) under Case 2 lies within the range of values for the

current case. Because the value of E(1)(W(ttl), n + 1) is constant whenever

W(ttl) ≥ n + 1

n + 2
X − n + 1

2
ε,

we can reach the desired conclusion by just showing that this value is no smaller than:

E(2)

(
2n + 1

2n + 2
X +

n − 2

4
ε, n + 1

)
. Thus, we need only focus on the specific value

W(ttl−lim) =
2n + 1

2n + 2
X +

n − 2

4
ε

for W(ttl). For this value, we have:

E(2)(W(ttl−lim), n + 1) = −W 2
(ttl−lim)κ +

(
n − 2

2
κε +

2n + 1

n + 1

)
W(ttl−lim)

+
(n2 + 3n + 14)nκε2

24
− n2

n + 1
ε − n

2(n + 1)
X

=
2n2 + 2n + 1

4(n + 1)2
X − 2n2 + 3n + 2

4(n + 1)
ε

+
(n + 2)(2n2 + 5n + 6)

48
ε2κ.

Static Strategies for Worksharing with Unrecoverable Interruptions 19

By explicit calculation, we finally see that

E(1)(W(ttl), n + 1)−E(2)(W(ttl−lim), n + 1)

=

(
4 + (n4 + 6n3 + 13n2 + 12n + 4)κ2ε2

)
n

16(n + 1)2(n + 2)κ

− (4n2 + 12n + 8)κεn

16(n + 1)2(n + 2)κ

=

(
4 + (n + 1)2(n + 2)2κ2ε2 − 4(n + 1)(n + 2)κε

)
n

16(n + 1)2(n + 2)κ

=
((n + 1)(n + 2)κε − 2)

2
n

16(n + 1)2(n + 2)κ

≥ 0.

Case B: W(ttl) ≤
n + 1

n + 2
X − n + 1

2
ε.

In this case, the regimen of Case 1 deploys all W(ttl) units of work, thereby completing, in
expectation,

E(1)(W(ttl), n + 1)

= W(ttl) −
n + 1

2n
W 2

(ttl)κ − n + 1

2
W(ttl)εκ +

(n − 1)n(n + 1)

24
ε2κ.

units of work. Moreover,

n + 1

n + 2
X − n + 1

2
ε ≤ 2n + 1

2n + 2
X +

n − 2

4
ε,

so that the regimen of Case 2 also deploys all W(ttl) units of work, thereby completing, in expec-
tation,

E(2)(W(ttl), n + 1) = − W 2
(ttl)κ +

(
n − 2

2
κε +

2n + 1

n + 1

)
W(ttl)

+
(n2 + 3n + 14)nκε2

24
− n2

n + 1
ε − n

2(n + 1)
X.

units of work.
Explicit calculation now shows that

E(1)(W(ttl), n + 1)−E(2)(W(ttl), n + 1)

=
n

2(n + 1)
W 2

(ttl)κ − n

n + 1
(1 + (n + 1)εκ)W(ttl)

+
n

2(n + 1)
(1 + 2nκε − (n + 1)κ2ε2)X.

Viewed as a function of W(ttl), this difference is, thus, unimodal, decreasing up to its global
minimum, which occurs at W(ttl) = X + (n + 1)ε, and increasing thereafter. The largest value of
W(ttl) allowed by the current case is

W(ttl−max) =
n + 1

n + 2
X − n + 1

2
ε,

so this is also the value on which the difference E(1)(W(ttl), n + 1) − E(2)(W(ttl), n + 1) reaches its
minimum within its domain of validity. Thus, we need only focus on the behavior of the difference

20 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

at the value W(ttl) = W(ttl−max). At this value,

E(1)(W(ttl−max), n + 1)−E(2)(W(ttl−max), n + 1)

=
n(5n + 1)ε2κ

8
+

(n − 1)nε

2(n + 1)(n + 2)

+
n

2(n + 1)(n + 2)2κ
.

This quantity is obviously positive, which means that E(1)(W(ttl−max), n+1) > E(2)(W(ttl−max), n+
1).

We thus see that, for workloads of any size W(ttl), one completes at least as much expected
work via the schedule of Case 1 as via the schedule of Case 2.

In summation, if

n ≤ min

{⌊
1

2

(√
1 + 8X/ε − 3

)⌋
,

⌊
1

2

(√
1 + 8W(ttl)/ε − 1

)⌋}
, (13)

then Case 1 specifies the optimal schedule that uses no more than n + 1 chunks. Of course, this
inequality translates to the conditions of the theorem (where it is written for n chunks instead of
n + 1).

Note that if n exceeds either quantity in the minimization of (13), then one never improves
the expected amount of work completed by deploying the workload in more than n chunks. This
is another consequence of our remark about An at the beginning of this proof. If there exists a
value of m for which there exists a schedule S that uses ≥ n + 1 nonempty chunks, then replacing
the first n + 1 chunks in this solution with the optimal solution for n chunks, using a workload
equal to the first n+1 chunks of S, yields a schedule that, in expectation, completes strictly more
work than S.

4 Scheduling for Two Remote Computers

Before we approach the general case of p remote computers, we study the case of two remote
computers, in order to adduce principles that will be useful in the general case. We first establish
characteristics of optimal schedules under general risk functions, then restrict attention to the
linear risk model. Throughout this section, we consider two remote computers, P1 and P2, under
the free-initiation model.

4.1 Two Remote Computers under General Risk

Focus on a distribution of work to P1 and P2 under which, for i = 1, 2, Pi receives ni chunks to
execute, call them Wi,1, . . . , Wi,ni

, to be scheduled in this order; as usual we denote |Wi,j | by
ωi,j . We do not assume any a priori relation between the way P1 and P2 break their allocated
work into chunks; in particular, any work that is allocated to both P1 and P2 may be chunked
quite differently on the two machines.

Theorem 4. (Two remote computers: free-initiation model; general risk)
Let Σ be a schedule for two remote computers, P1 and P2. Say that, for both P1 and P2, the
probability of being interrupted never decreases as a computer processes more work. There exists a
schedule Σ′ for P1 and P2 that, in expectation, completes as much work as does Σ and that satisfies
the following three properties; cf. Fig. 1.

Maximal work deployment. Σ′ deploys as much of the overall workload as possible. Therefore,
the workloads it deploys to P1 and P2 can overlap only if their union is the entire overall
workload.

Static Strategies for Worksharing with Unrecoverable Interruptions 21

Local work priority. Σ′ has P1 (resp., P2) process all of the allocated work that it does not share
with P2 (resp., P1) before it processes any shared work.

Shared work “mirroring.” Σ′ has P1 and P2 process their shared work “in opposite orders.”
Specifically, say that P1 chops its allocated work into chunks W1,1, . . . ,W1,n1

, while P2 chops
its allocated work into chunks W2,1, . . . ,W2,n2

.

Say that there exist chunk-indices a1, b1 > a1 for P1, and a2, b2 > a2 for P2 such that:
chunks W1,a1

and W2,a2
both contain a shared “piece of work” A, and chunks W1,b1 and

W2,b2 both contain a shared “piece of work” B.

Then if Σ′ has P1 execute A before B (i.e., P1 executes chunk W1,a1
before chunk W1,b1),

then Σ′ has P2 execute B before A (i.e., P2 executes chunk W2,b2 before chunk W2,a2
).

W1,2 W1,3

W2,3 W2,2 W2,1

W1,1

Figure 1: The shape of an optimal schedule for two computers, as described in Theorem 4; n1 =
n2 = 3. The top row displays P1’s chunks, the bottom row P2’s. Vertically aligned parts of chunks
correspond to shared work; shaded areas depict unallocated work (e.g., none of the work in W2,1

is allocated to P1).

Proof. The strategy. We devise a cut-and-paste argument for each of the theorem’s three char-
acteristics in turn. Each time, we begin with an arbitrary schedule Σ that does not have that
characteristic, and we show how to alter Σ to a schedule Σ′ that does have the characteristic
and that, in expectation, completes as much work as does Σ. In order to achieve the required
alterations, we must refine our description of workloads. Specifically, we now describe the overall
workload via a partition X = {X1, . . . ,Xm} of pieces of work, that has the following property. For
j = 1, 2, each piece Xi ∈ X is either included within a chunk of Pj , or it is disjoint from each
chunk of Pj . We define, for j = 1, 2 and i = 1, . . . ,m, the indicator

δj(i) =

0 when Xi ∈ X does not intersect
any chunk of Pj

1 when Xi is contained within a chunk
of Pj , say, chunk σj(i)
— so that Xi ⊂ Wj,σj(i)

We now specify the expectation, E , of W(cmp) under this new specification of the deployment
of chunks to P1 and P2. The probability that piece Xi ∈ X is computed successfully is:

• 0 if Xi is not allocated to either P1 or P2;

• 1 − Pr
(∑σk(i)

j=1 ωk,j

)
if Xk is allocated only to Pk

i.e., if δk(i)(1 − δk′(i)) = 1, where {k, k′} = {1, 2};
• 1−Pr

(∑σ1(i)
j=1 ω1,j

)
Pr

(∑σ2(i)
j=1 ω2,j

)
if Xi is allocated to both P1 and P2; i.e., if δ1(i)δ2(i) =

1.

We thus have

E =

m∑

i=1

|Xi| · Ξi (14)

22 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

where

Ξi = δ1(i)δ2(i)

1 − Pr

σ1(i)∑

j=1

ω1,j

 Pr

σ2(i)∑

j=1

ω2,j

+ δ1(i)(1 − δ2(i))

1 − Pr

σ1(i)∑

j=1

ω1,j

+ (1 − δ1(i))δ2(i)

1 − Pr

σ2(i)∑

j=1

ω2,j

 .

The alterations. We now look at each of our three characteristics in turn, performing the following
process for each. We begin with a schedule Σ(0) that, in expectation, completes E(0) units of
work. Say, for induction, that we now have a schedule Σ(r) that completes E(r) units of work. We
describe how to alter Σ(r) to obtain a schedule Σ(r+1) that, in a sense, comes closer to enjoying the
current characteristic and that, in expectation, completes E(r+1) ≥ E(r) units of work. We prove
that a finite sequence of such alterations convert Σ(0) to a schedule Σ that enjoys the characteristic.

Maximal work deployment. Say that schedule Σ deploys some portion of the overall workload
to both P1 and P2, while it leaves some other piece unallocated to either:

• the doubly allocated portion is a piece Xi ∈ X ;
• the unallocated work is a piece Xj ∈ X .

To alter schedule Σ, we wish somehow to swap some doubly allocated work for an equal amount
of unallocated work. This is easy when |Xi| = |Xj |. Otherwise, we achieve this goal as follows.

1. If |Xj | < |Xi|, then we invoke divisibility to subdivide Xi into one piece, A, of size |Xj | and
another of size |Xi| − |A|. We swap B = Xj for A in the chunk of P1 that contains Xi.

2. If |Xj | > |Xi|, then we invoke divisibility to subdivide Xj into one piece, B, of size |Xi| and
another of size |Xj | − |B|. We swap B for A = Xi in the relevant chunk of P1.

In case 1, Σ(r+1) has no more unallocated work and the maximal deployment rule is in force. In
case 2, Σ(r+1) has one fewer piece of doubly allocated work. It follows that a finite sequence of
alterations convert Σ(0) into a schedule that practices maximal work deployment. We henceforth
assume that Σ practices maximal work deployment.

Local-work prioritization. Assume that under optimal schedule Σ, there exist Xi,Xj ∈ X such
that:

1. Σ allocates Xi to P1 but not to P2; i.e., δ1(i)(1 − δ2(i)) = 1;
2. Σ allocates Xj to both P1 and P2; i.e., δ1(i)δ2(i) = 1;
3. Σ attempts to execute Xj before Xi on P1: symbolically, σ1(i) ≥ σ1(j).

We alter Σ to obtain a new schedule that comes closer to prioritizing local work. And, we do so
in a way that (a) at least matches Σ’s expected work production and (b) guarantees that a finite
sequence of alterations produce a schedule that practices local work prioritization. We proceed as
follows.

We codify the set of violations of local work prioritization via the set V that identifies every
triplet of chunks that violate local work prioritization.

V =

(k, k′, l)

∣∣∣∣∣∣∣∣

W1,k ∩W2,k′ 6= ∅ (replicated work)
W1,l \

⋃n2

l′=1 W2,l′ 6= ∅ (local work)
k < l (replicated starts before local)
k ∈ [1, n1], k

′ ∈ [1, n2], l ∈ [1, n1]

To choose the alteration to apply to Σ at this step, we take any triplet (k, k′, l) ∈ V whose
first component, k, is minimal among all the first components of elements of V, and whose third
component, l, is maximal among all the third components of elements of V (one verifies easily that
such an element always exists). From the perspective of P1, we thus focus on the earliest-scheduled
replicated chunk that is scheduled before the latest-scheduled unreplicated chunk.

Static Strategies for Worksharing with Unrecoverable Interruptions 23

(1) Say first that |W1,l \
⋃n2

l′=1 W2,l′ | ≤ |W1,k ∩W2,k′ |. In this case, we alter Σ by swapping
the piece of work A = W1,l \

⋃n2

l′=1 W2,l′ from W1,l with an arbitrarily chosen like-sized subset B
of W1,k ∩W2,k′ in W1,k. After the swap, V no longer contains any element of the form (α, β, l),
because chunk W1,l now contains only replicated work. Furthermore, by choice of k, chunks W1,1

through W1,k−1 contain only work for P1 that is not replicated on P2. Thus, the swap reduces the
number of violations.

(2) Say alternatively that |W1,l \
⋃n2

l′=1 W2,l′ | > |W1,k ∩ W2,k′ |. In this case, we alter Σ
by swapping the piece of work B = W1,k ∩W2,k′ from W1,k with an arbitrarily chosen like-sized
subset A of W1,l \

⋃n2

l′=1 W2,l′ in W1,l. After the swap, V no longer contains any element of the
form (k, k′, α). Furthermore, by definition of k, chunks W1,1 through W1,k−1 contain only work
for P1 that is not replicated on P2. Thus, this swap also reduces the number of violations.

Clearly, at most |V| alterations are needed to convert Σ to a schedule that practices local-work
prioritization on computer P1. Because each alteration affects only the scheduling on P1, we can
now apply an analogous sequence of alterations that focus on violations by computer P2. After
this second round of alterations, we have finally converted Σ to a schedule that practices local work
prioritization on both computers. We henceforth assume that Σ practices local-work prioritization.

“Mirroring” of replicated work. Say that, under schedule Σ, there are two partition elements,
Xi and Xj , such that:

1. Σ allocates both Xi and Xj to both P1 and P2; i.e.,
δ1(i)δ2(i) = δ1(j)δ2(j) = 1;

2. Σ attempts to execute Xi after Xj on both P1 and P2: symbolically, [σ1(i) ≥ σ1(j)] and
[σ2(i) ≥ σ2(j)].

We craft a sequence of alterations to Σ that produce a schedule that practices the mirroring of
replicated work. Essentially, at each step, we identify a pair of pieces of work, A and B, that
violate mirroring in the way just described. We then swap B for A in chunk W1,σ1(A) and swap
A for B in chunk W1,σ1(B), while leaving the schedule of P2 unchanged.

How do we select the pieces to focus on at this step? Our job is somewhat simplified by our
ability to focus entirely on replicated pieces of work—because of our assumption that Σ practices
both maximal work deployment and local-work prioritization. We employ the following inductive
process to choose the pieces from among pieces of replicated work that violate mirroring. Say,
for induction, that we have times—so that the k pieces of replicated work that P1 is scheduled to
(attempt to) execute first are the k pieces of replicated work that P2 is scheduled to (attempt to)
execute last, and that these pieces are executed in reverse orders on P1 and P2. We now select the
(k + 1)th piece of replicated work that P1 is scheduled to (attempt to) execute, call it Xi, and the
kth from last piece of replicated work that P2 is scheduled to (attempt to) execute, call it Xj .

(1) If Xi = Xj , then there is no violation to undo.
(2) If Xi 6= Xj , then we select the pieces, A and B, to swap in the (k + 1)th alteration of Σ,

in the following manner. (a) If |Xj | ≥ |Xi|, then we have Xi play the role of A, and we select as
B any size-|A| subset of Xj . After the swap, B is scheduled as the (k + 1)th piece of replicated
work for P1 to (attempt to) execute and (in deference to mirroring) as the kth from last piece of
replicated work for P2 to (attempt to) execute. None of the first k pieces of replicated work for P1

nor any of the last k pieces of replicated work for P2 were affected by the swap. To conclude that
the inductive process eventually terminates (successfully!) we first consider the number of chunks
of P1 (respectively P2) that include only work from the first (resp. last) k pieces of replicated
work. As the alterations progress, the numbers of such pieces never decrease. If an alteration does
not increase either of these numbers, then we focus on the set of early chunks of P2 that contain
work that is replicated in the chunk of P1 that we are working with:

V2 =
{
l < σ2(Xj) | W1,σ1(Xi) ∩W2,l 6= ∅

}
,

and the symmetrical set of chunks for P1:

V1 =
{
l > σ1(Xi) | W1,l ∩W2,σ2(Xj) 6= ∅

}
.

If we assume—as we may with no loss of generality—that we are working with a partition made
of maximal elements, then the alteration decreases the set V2 by one element (namely, W2,σ2(Xi))

24 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

and does not modify the set V1. (b) The case when |Xj′ | < |Xi′ | is symmetric with case (a), hence
is left to the reader. We note only that, in that case, the alteration does not modify the set V2,
and it decreases the set V1 by one element (namely, W1,σ1(Xj))

Validating the alterations. To complete the proof, we need only verify that each of the schedule
alterations we have described cannot produce a schedule that completes less work than schedule Σ
does. Rather similar arguments verify this work preservation for each of the three characteristic.
An important feature of our alterations that greatly simplifies these verifications is that, in each
case, the relevant alteration affects only the terms in expression (14) that mention the pieces
involved in the alteration.

Maximal work deployment. Recall that our alteration of schedule Σ in this case substituted
piece B for piece A in chunk W1,σ1(A). Now, before this substitution, the total contribution to the
expectation E of these pieces was:

|A| ·

1 − Pr

σ1(A)∑

k=1

ω1,k

 Pr

σ2(A)∑

k=1

ω2,k

 + |B| · 0.

After the substitution, this contribution becomes:

|A| ·

1 − Pr

σ2(A)∑

k=1

ω2,k

 + |B| ·

1 − Pr

σ1(A)∑

k=1

ω1,k

 .

Because |A| = |B|, the latter contribution is never less than the former, differing from it by the
quantity

|A| ·

1 − Pr

σ1(A)∑

k=1

ω1,k

 ·

1 − Pr

σ2(A)∑

k=1

ω2,k

 ,

whose nonnegativity implies that the altered schedule completes at least as much work, in expec-
tation, as does schedule Σ.

Local work prioritization. Recall that our alteration of schedule Σ in this case substituted a
piece of local work A from W1,σ1(A) with a piece of replicated work B of W1,σ1(B). Now, before
this substitution, the total contribution to the expectation E of these pieces was:

|A| ×

1 − Pr

σ1(A)∑

k=1

ω1,k

 + |B| ×

1 − Pr

σ1(B)∑

k=1

ω1,k

 Pr

σ2(B)∑

k=1

ω2,k

 .

After the substitution, the contribution becomes

|A| ×

1 − Pr

σ1(B)∑

k=1

ω1,k

 + |B| ×

1 − Pr

σ1(A)∑

k=1

ω1,k

 Pr

σ2(B)∑

k=1

ω2,k

 .

Because |A| = |B|, we see that the substitution increases the overall expectation by the quantity

|A| ×

Pr

σ1(A)∑

k=1

ω1,k

 − Pr

σ1(B)∑

k=1

ω1,k

 ×

1 − Pr

σ2(B)∑

k=1

ω2,k

 ,

This quantity is nonnegative because

• the probability Pr(w) is nondecreasing in w;

• ∑σ1(A)
k=1 ω1,k ≥ ∑σ1(B)

k=1 ω1,k, because σ1(A) ≥ σ1(B).

Static Strategies for Worksharing with Unrecoverable Interruptions 25

The altered schedule completes, in expectation, at least as much work as Σ.
Shared work “mirroring.” Recall that our alteration of schedule Σ in this case swapped B for

A in chunk W1,σ1(A) and swapped A for B in chunk W1,σ1(B), while leaving the schedule of P2

unchanged. Now, before this substitution, the total contribution to the expectation E of these
pieces was:

|A| ×

1 − Pr

σ1(A)∑

k=1

ω1,k

 Pr

σ2(A)∑

k=1

ω2,k

+ |B| ×

1 − Pr

σ1(B)∑

k=1

ω1,k

 Pr

σ2(B)∑

k=1

ω2,k

 .

After the substitution, their contribution becomes:

|A| ×

1 − Pr

σ1(B)∑

k=1

ω1,k

 Pr

σ2(A)∑

k=1

ω2,k

+ |B| ×

1 − Pr

σ1(A)∑

k=1

ω1,k

 Pr

σ2(B)∑

k=1

ω2,k

 .

Because |A| = |B|, the substitutions have increased the overall expectation by the quantity:

|A| ×

Pr

σ1(B)∑

k=1

ω1,k

 − Pr

σ1(A)∑

k=1

ω1,k

Pr

σ2(B)∑

k=1

ω2,k

 − Pr

σ2(A)∑

k=1

ω2,k

 .

This quantity is nonnegative because A and B are processed in the same order on P1 and on P2.
The altered schedule thus completes, in expectation, at least as much work as Σ.

4.2 Two Remote Computers under Linear Risk

4.2.1 Allocating work in a single chunk

We now specialize from general risk functions to the linear risk function. We first consider the
case wherein each computer processes its allocated work as a single chunk. Even this simple case
turns out to be surprisingly difficult to schedule optimally when there is more than one remote
computer. Indeed, our experience with this case has led us to abandon the quest for exactly
optimal schedules, in favor of the more easily accessed asymptotically optimal schedules.

“Asymptotically optimal” here means that the expected amount of work completed by
these schedules deviates from exact maximality by an amount that shrinks as the size
of the workload grows without bound.

To render the single-chunk scheduling problem tractable, we restrict attention to schedules that
are symmetric, in the sense that they allocate the same amount of work to each remote computer.
It seems intuitive that there is always a symmetric schedule among the optimal single-chunk
schedules, but we have yet to verify this.

Say that our workload consists of W(ttl) units of work that we somehow order linearly. We
denote by 〈a, b〉 the sub-workload obtained by eliminating: the initial a units of work and all work
beyond the initial b units. For instance, 〈0,W(ttl)〉 denotes the entire workload, 〈0, 1

2W(ttl)〉 denotes

the first half of the workload, and 〈 1
2W(ttl),W(ttl)〉 denotes the last half of the workload.

Theorem 5. (Two remote computers: linear risk; single chunk allocation)
Say that we wish to deploy W(ttl) units of work on two computers, deploying a single chunk per
computer. The following symmetric schedule Σ completes, in expectation, a maximum amount of
work.

26 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

• If W(ttl) ≤ 1
2X, then Σ deploys the entire workload on both remote computers; symbolically,

W1,1 = W2,1 = 〈0,W(ttl)〉;

• if 1
2X < W(ttl) ≤ X, then Σ deploys the first half of the workload on one computer and the

second half on the other; symbolically, W1,1 = 〈0, 1
2W(ttl)〉, and W2,1 = 〈 1

2W(ttl),W(ttl)〉;
• if X < W(ttl), then Σ deploys only X units of the workload, allocating the first half to

one computer and the second half to the other; symbolically, W1,1 = 〈0, 1
2X〉, and W2,1 =

〈 1
2X,X〉.

Proof. Our derivation of the optimal schedule builds on the following principle (which we have
encountered before). When we deploy work as a single chunk, we never make that chunk as large
as X, for then we risk certain interruption, hence, in expectation, completes no work. In order to
see how to optimally deploy work as a single chunk, we consider separately schedules that allow
overlapping deployments to the two computers and those that do not.

Disjoint allocations. Focus first on schedules that deploy non-overlapping workloads to
the two remote computers. These two workloads, W1,1 and W2,1, are independent, so we can
invoke Theorem 2 to discover their optimal sizes. We see that the optimal strategy is to deploy
W(dpl) = min{W(ttl),X} units of work in total. We determine the optimal allocation of this work
to the remote computers, in respective chunk sizes ω1,1 and ω2,1 = Z − ω1,1, by considering the
expectation of W(cmp).

E = ω1,1

(
(1 − ω1,1κ) + (W(dpl) − ω1,1)(1 − (W(dpl) − ω1,1)κ)

)

= −2ω2
1,1κ + 2ω1,1Zκ + Z − Z2κ.

Easily, E is maximized when ω1,1 = ω2,1 = 1
2W(dpl). The optimal value of E is, then, E =

W(ttl) − 1
2W 2

(dpl)κ. (Note that we did not need to assume that the optimal schedule is symmetric

in this case; we actually proved that it should be.)
Overlapping allocations to the two computers. The principle enunciated at the beginning

of this proof implies that an optimal schedule that deploys overlapping workloads to the two remote
computers never allocates a full X units of work to either computer. We can, therefore, simplify
our calculations by restricting attention henceforth to the case W(ttl) < 2X. Since we consider only

symmetric schedules, the common size s of the allocations to both computers satisfies s ≥ W(ttl)

2 ,
by Theorem 4. We thus obtain the following expression for the expectation of W(cmp) as a function
of s.

E(s) = 2(W(ttl) − s)(1 − sκ) + (2s − W(ttl))(1 − s2κ2)

= −2s3κ2 + (2 + W(ttl)κ)s2κ − 2sW(ttl)κ + W(ttl).

We seek the maximizing value of s.

E ′(s) =
d

ds
E(s) = 2[−3s2κ + (2 + W(ttl)κ)s − W(ttl)]κ.

The discriminant of the bracketed quadratic polynomial is

∆ = W 2
(ttl)κ

2 − 8W(ttl)κ + 4 =
(
W(ttl)κ − 2

(
2 +

√
3
)) (

W(ttl)κ − 2
(
2 −

√
3
))

.

Because W(ttl) < 2X we have, W(ttl)κ < 2(2 +
√

3). We branch on the relative sizes of W(ttl) and

2(2 −
√

3)X:
W(ttl) > 2(2 −

√
3)X. In this case, ∆ < 0, so the polynomial has no real roots, and E(s) is

decreasing with s. Because s ∈ [12W(ttl),W(ttl)], E(s) is maximized when s = W(ttl)/2.

W(ttl) ≤ 2(2 −
√

3)X. This case is far more complicated than its predecessor. Let us denote

the two roots of our quadratic polynomial by s− and s+, as follows:

s− =
2 + W(ttl)κ −

√
W 2

(ttl)κ
2 − 8W(ttl)κ + 4

6κ
and

Static Strategies for Worksharing with Unrecoverable Interruptions 27

s+ =
2 + W(ttl)κ +

√
W 2

(ttl)κ
2 − 8W(ttl)κ + 4

6κ
.

One sees that E(s) decreases as s progresses from −∞ to s−, then increases as s progresses from
s− to s+, then decreases once more as s increases beyond s+. We must determine how these three
intervals overlap E ’s domain of validity, viz., s ∈ [12W(ttl), W(ttl)].

We note first that 1
2W(ttl) ≤ s−. Indeed:

W(ttl)/2 ≥ s−

just when W(ttl)/2 ≥
2 + W(ttl)κ −

√
W 2

(ttl)κ
2 − 8W(ttl)κ + 4

6κ

just when
√

W 2
(ttl)κ

2 − 8W(ttl)κ + 4 ≥ 2(1 − W(ttl)κ)

only if 0 ≥ 3W 2
(ttl)κ

2.

We invoke here the fact that W(ttl)κ ≤ 1, because W(ttl) ≤ 2(2−
√

3)X ≤ X. We remark next that

E ′(W(ttl)) = 2W(ttl)κ(1 − 2W(ttl)κ), so that E ′(W(ttl)) ≥ 0 and W(ttl) ∈ [s−, s+] when W(ttl) ≤ X
2 ;

moreover, W(ttl) > s+ when W(ttl) > 1
2X. Indeed, if we assume that 1

2X < W(ttl) ≤ s+ (the lower
bound implying 5W(ttl)κ − 2 ≥ 0), then we reach a contradiction:

W(ttl) ≤ s+

just when W(ttl) ≤
2 + W(ttl)κ +

√
W 2

(ttl)κ
2 − 8W(ttl)κ + 4

6κ

just when 5W(ttl)κ − 2 ≤
√

W 2
(ttl)κ

2 − 8W(ttl)κ + 4

only if 2W(ttl)κ ≤ 1.

So, once again we have two cases to consider:
W(ttl) ≤ X/2. In this case, we have W(ttl) ∈ [s−, s+], so that E(s) achieves its maximum

either when s = 1
2W(ttl) or when s = W(ttl). Hence E(s)’s maximum is either

E(W(ttl)/2) = W(ttl) −
1

2
W 2

(ttl)κ or E(W(ttl)) = W(ttl) − W 3
(ttl)κ

2.

When W(ttl) ≤ 1
2X, which is the case here, the latter value dominates, so the optimal deployment

is ω1,1 = ω2,1 = W(ttl).
W(ttl) > X/2. In this case, W(ttl) > s+, so that E(s) achieves its maximum either when

s = W(ttl)/2 or when s = s+. We compare the values at these points by computing both E(s+)
and E(s+) − E(W(ttl)/2). We find that

E(s+) =
(W 2

(ttl)κ
2 − 8W(ttl)κ + 4)

3
2 + W 3

(ttl)κ
3 − 12W 2

(ttl)κ
2 + 30W(ttl)κ + 8

54κ

and

E(s+) − E(W(ttl)/2) =

[W 2
(ttl)κ

2 − 8W(ttl)κ + 4]3/2 + [W 3
(ttl)κ

3 + 15W 2
(ttl)κ

2 − 24W(ttl)κ + 8]

54κ
. (15)

Easily, both of the bracketed polynomials in (15) decrease as W(ttl) progresses along its current

hypothesized interval, from 1
2X through 2(2−

√
3)X; therefore, the difference E(s+)−E(W(ttl)/2)

decreases as W(ttl) proceeds along the same interval. Since the difference vanishes at the point

W(ttl) = 1
2X, we conclude that the optimal deployment in this case is ω1,1 = ω2,1 = 1

2W(ttl).

28 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

m × α

W(ttl)−mα

4
W(ttl)−mα

2

W(ttl)−mα

4

Figure 2: Counterexample to the optimality of
schedules that employ equal-size chunks.

W(ttl)−2α

8

W(ttl)−2α

8

W(ttl)−2α

8

W(ttl)−2α

8

W(ttl)−2α

8

W(ttl)−2α

8

W(ttl)−2α

8

W(ttl)−2α

8
α α

Figure 3: Counterexample to the optimality of
the schedule of Fig. 2.

Moving beyond Theorem 5. The preceding analysis determines the optimal schedule for
only two remote computers that each process their allocations as single chunks. The complexity of
even this simple case has led us to abandon our focus on exactly optimal schedules in the sequel,
in favor of a hopefully more tractable search for schedules that are asymptotically optimal.

Since one can view schedules under the free-initiation model as “asymptotic versions”
of schedules under the charged-initiation model —cf. Theorem 1—our shift in focus is
not a drastic one.

This shift in focus notwithstanding, it is worth seeking significant restricted situations wherein one
can tractably discover exactly optimal schedules. One obvious candidate for special consideration
is the family of schedules that allocate the entire workload to each remote computer—which seems
to be desirable when W(ttl)κ is small enough. We conjecture that, for such schedules, an optimal
strategy would have the two computers chop the workload into chunks of the same size and then
process these chunks in “opposite orders” (as defined in the third property of Theorem 4). When
all remote computers chop the workload into n chunks, this scheduling strategy completes, in
expectation,

E = W(ttl) −
W 3

(ttl)κ
2

6

(
1 +

3

n
+

2

n2

)

units of work (cf. Theorem 6 below). Extensive numerical simulations suggest that such a schedul-
ing strategy is, indeed, optimal as long as n ≤ 3. However, we know that the strategy is subop-
timal once one allows n to exceed 3. Indeed, for n = 4, the strategy completes, in expectation,

W(ttl) − 5
16W 3

(ttl)κ
2 units of work, which is strictly less than the W(ttl) − 757−73

√
73

432 W 3
(ttl)κ

2 units

completed, in expectation, by the strategy specified schematically in Fig. 2 (with m = 1 and

α =
√

73−7
6 W(ttl)).

The boxes in Figs. 2 and 3 contain chunk sizes. In Fig. 2, for instance, each computer
uses m chunks of size α, two chunks of size 1

4 (W −mα), and one chunk of size 1
2 (W −

mα).

Furthermore, the schedule in Fig. 2 is suboptimal as soon as we allow computers to chop work into
eight chunks. To wit, Fig. 3 presents an 8-chunk schedule that completes, in expectation, W(ttl) −
229−44

√
22

98 W 3
(ttl)κ

2 ≈ W(ttl) − 0.230834W 3
(ttl)κ

2 units of work, when α = 4
√

22−17
14 W(ttl), while

the schedule of Fig. 2, using 8 chunks per computer (specifically, m = 5 and α = 19−
√

193
42 W(ttl))

completes, in expectation, W(ttl) − 18293−965
√

193
21168 W 3

(ttl)κ
2 ≈ W(ttl) − 0.230857W 3

(ttl)κ
2 units of

work. (The schedule of Fig. 3 is not even optimal for 8 chunks, but the best schedule we found
numerically was almost identical but slightly less regular.)

The increasing complexities of the preceding “counterexample” schedules suggest how hard
it will be to search for, and characterize, exactly optimal schedules—even in the presence of
simplifying assumptions, such as that the whole workload is distributed to each computer. Since
our simulations suggest that simple regular solutions often complete, in expectation, almost as
much work as do complex exactly optimal schedules, we henceforth aim for simply structured
asymptotically optimal schedules.

Static Strategies for Worksharing with Unrecoverable Interruptions 29

4.2.2 Asymptotically optimal schedules

This section is devoted to Algorithm 1, whose prescribed schedules for two remote computers
branch on the value of W(ttl)κ. We show in Theorem 6 that the proposed schedules are all
asymptotically optimal; they are exactly optimal when W(ttl)κ ≥ 2.

Algorithm 1: Scheduling for 2 computers using at most n chunks per computer

if W(ttl) ≥ 2X then1

∀i ∈ [1, n], W1,i ←
〈

i − 1

n
· n

n + 1
X,

i

n
· n

n + 1
X

〉

2

∀i ∈ [1, n], W2,i ←
〈

W(ttl) −
i

n
· n

n + 1
X, W(ttl) −

i − 1

n
· n

n + 1
X

〉

3

if W(ttl) ≤ X then4

∀i ∈ [1, n], W1,i = W2,n−i+1 ←
〈

i − 1

n
W(ttl),

i

n
W(ttl)

〉

5

if X < W(ttl) < 2X then6

ℓ ← ⌊n/3⌋7

∀i ∈ [1, ℓ], W1,i ←
〈

i − 1

ℓ
(W(ttl) − X),

i

ℓ
(W(ttl) − X)

〉

8

∀i ∈ [1, ℓ], W2,i ←
〈

W(ttl) −
i

ℓ
(W(ttl) − X), W(ttl) −

i − 1

ℓ
(W(ttl) − X)

〉

9

∀i ∈ [1, 2l],10

W1,l+i = W2,3l−i+1 ←
〈
(W(ttl)−X)+

i−1

2ℓ
(2X−W(ttl)), (W(ttl)−X)+

i

2ℓ
(2X−W(ttl))

〉

Theorem 6. The schedules specified by Algorithm 1 are:

1. optimal when W(ttl) ≥ 2X;

In expectation, the schedules complete

E(f,2)(W(ttl),Algorithm 1(n)) =
n − 1

n
X

units of work, which tends to9 X;

2. asymptotically optimal when W(ttl) ≤ X;

In expectation, the schedules complete

E(f,2)(W(ttl),Algorithm 1(n)) = W(ttl) −
1

6
W 3

(ttl)κ
2

(
1 +

3

n
+

2

n2

)

units of work, which tends to W(ttl) − 1
6W 3

(ttl)κ
2;

3. asymptotically optimal when X < W(ttl) < 2X.

Letting ℓ = ⌊n/3⌋, in expectation, the schedules complete

E(f,2)(W(ttl),Algorithm 1(n)) = 2W(ttl) −
1

3
X − W 2

(ttl)κ +
1

6
W 3

(ttl)κ
2

+
1

ℓ

((
1 +

1

ℓ

)
W(ttl) −

(
1 +

2

3ℓ

)
X − 1

2ℓ
W 2

(ttl)κ − 1

4

(
1 − 1

3ℓ

)
W 3

(ttl)κ
2

)

units of work, which tends to 2W(ttl) − 1
3X − W 2

(ttl)κ + 1
6W 3

(ttl)κ
2.

9“tends to” means “as n grows without bound.”

30 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

W1,2 W1,3

W2,3 W2,2 W2,1

W1,1

(a) Optimal schedule Σ with n chunks.

W1,2 W1,3

W2,3 W2,2 W2,1

W1,1

W2,4

W1,4

(b) Schedule Σ1: Σ augmented with an (n + 1)th chunk
for each computer.

(c) Schedule Σ2: Σ1 with chunks subdivided so that
chunk boundaries coincide.

(d) Schedule Σ3: Σ2 via Algorithm 1 with 2n+1 chunks.

Figure 4: Schedule transformations that prove the asymptotic optimality of Algorithm 1 when
W(ttl) ≤ X.

Proof. We prove the theorem’s three assertions in turn.
1. Case: W(ttl) ≥ 2X.

By definition, a computer is certain to be interrupted when processing a workload of size ≥ X.
Therefore, when W(ttl) ≥ 2X, Theorem 4 tells us that the two remote computers are working
on disjoint subsets of the workload. In this case, then, Theorem 2: (a) defines the sizes of these
workloads and the way they are partitioned into chunks; (b) gives us the expectation of W(cmp).

2. Case: W(ttl) ≤ X. We must prove that the proposed schedule is asymptotically optimal, and

we must evaluate the resulting expected work production. Focus on an arbitrary positive integer
n. Clearly, the expected work produced by Algorithm 1 when each remote computer’s work-
load is partitioned into n chunks cannot exceed the analogous quantity for the optimal schedule;
symbolically,

E(f,2)(W(ttl), n) ≥ E(f,2)(W(ttl),Algorithm 1(n)).

We now invoke the series of transformations illustrated in Fig. 4 to show that the expected
work production of the optimal schedule that partitions each computer’s workload into n chunks
is no greater than the expected work production of Algorithm 1 that partitions each computer’s
workload into 2n + 1 chunks. Each of these transformations can not decrease the expected work
production.

We begin—see Fig. 4(a)—with an optimal schedule Σ that processes work in n chunks and
that satisfies the three properties of Theorem 4. First—see Fig. 4(b)—we transform Σ to schedule
Σ1, by adding a possibly empty (n + 1)th chunk to the workload of each computer so that each
computer processes the entire workload. Clearly, this transformation cannot decrease expected
work production. Next—see Fig. 4(c)—we transform Σ1 to schedule Σ2 by subdividing chunks
so that both computers’ chunk boundaries coincide. Formally, let B1 (resp., B2) be the set of
the “places” in the workload at which there is the boundary of a chunk of computer P1 (resp., of

computer P2): B1 =
⋃n+1

i=0

{∑i
j=1 ω1,j

}
(resp., B2 =

⋃n+1
i=0

{
W(ttl) −

∑i
j=1 ω2,j

}
). We take the

union of these two sets and order the resulting set’s elements:

B1 ∪ B2 = {b1, . . . , bl} with 0 = b0 < b1 < b2 < ... < bl−1 < bl = W(ttl).

Finally, we specify the new chunks by partitioning the entire workload into l chunks such that:

W ′
1,i = W ′

2,l−i+1, where ω′
1,i = bi − bi−1.

We then remark that l ≤ 2n + 1. Indeed, each of computers P1 and P2 creates at most n chunk
boundaries, which are strictly between 0 and W(ttl). Therefore, in the new schedule, there are at
most 2n chunk boundaries, each strictly between 0 and W(ttl). This leaves us with at most 2n + 1

Static Strategies for Worksharing with Unrecoverable Interruptions 31

chunks, with the boundaries of the whole workload. Finally, we remark that subdividing chunks
does not decrease the overall expected work production.

To move closer to the schedule produced by Algorithm 1, we replace the l chunks we just
created by l equal-size chunks:

(∀i ∈ [1, l]) W ′′
1,i = W ′′

2,l−i+1 =

[
(i − 1)

W(ttl)

l
, i

W(ttl)

l

]
.

We prove that this indeed gives us a better solution by proving a more general result.
Consider the following schedule-optimization problem for two computers, P1 and P2. For

i = 1, 2, computer Pi executes li chunks of possibly different sizes; specifically, it executes chunks
Vi,1, . . . , Vi,li , in that order. Suppose that P1 and P2 have two consecutive chunks in common;
i.e., for some i ∈ [1, l1 − 1] and j ∈ [1, l2 − 1], V1,i = V2,j+1 and V1,i+1 = V2,j .

10 What should the
relative sizes of V1,i (=V2,j+1) and V1,i+1 (=V2,j) be? To answer this question, we begin with the
indicated schedules of P1 and P2, and we consider the impact on the overall work expectation of
possibly redistributing between the chunks the |V1,i| + |V1,i+1| units of work allocated to chunks
V1,i and V1,i+1.

E = |V1,i|
(

1 −
(

i∑

k=1

|V1,k|κ
) (

j+1∑

k=1

|V2,k|κ
))

+ |V1,i+1|
(

1 −
(

i+1∑

k=1

|V1,k|κ
) (

j∑

k=1

|V2,k|κ
))

.

To simplify formulas, we use the following abbreviations: V1 =
∑i−1

k=1 |V1,k|, V2 =
∑j−1

k=1 |V2,k|, and
L = |V1,i| + |V1,i+1|. Then,

E = |V1,i| (1 − (V1 + |V1,i|)κ(V2 + L)κ)

+ (L − |V1,i|) (1 − (V1 + L)κ(V2 + L − |V1,i|)κ) .

Therefore, the contribution of these two chunks to the expectation is given by:

E = −(V1 + V2 + 2L)κ2|V1,i|2 + (V1 + V2 + 2L)Lκ2|V1,i| + L(1 − (V1 + L)(V2 + L)κ2).

This expression is maximized by setting |V1,i| = 1
2L, that is, by making both chunks have the

same size.
Proceeding by induction, we thus see that replacing l coinciding chunks by l equal-size chunks

does not decrease the expectation.
Finally, to obtain a well defined bound using the schedule of Algorithm 1, we enlarge the

number of (equal-size) chunks, going from l to 2n+1. To prove that this last transformation does
not decrease the overall expectation, we explicitly calculate the expectation of a solution with n
equal-size chunks per computer and show that this expectation is nondecreasing in n.

E(f,2)(W(ttl),Algorithm 1(n)) =

n∑

i=1

W(ttl)

n

1 −
i∑

j=1

W(ttl)

n
κ

n−i+1∑

j=1

W(ttl)

n
κ

= W(ttl) −
W 3

(ttl)

n3
κ2

n∑

i=1

(i(n + 1 − i))

= W(ttl) −
W 3

(ttl)κ
2

6

(
1 +

3

n
+

2

n2

)
.

The last expression is obviously nondecreasing in n.

10Theorem 4 tells us that P1 and P2 should execute these chunks in opposite orders.

32 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

W(ttl) − X X W(ttl)

(a) Optimal scheduling with n chunks.

W(ttl) − X X W(ttl)

(b) Each workload is extended up to a size X with an
(n + 1)-th chunk.

W(ttl) − X X W(ttl)

(c) Dividing chunks for chunk boundaries to coincide.

W(ttl) − X X W(ttl)

(d) In each of the three main parts, equalizing the size
of chunks.

W(ttl) − X X W(ttl)

(e) Solution of Algorithm 1 with 3(n + 1) chunks.

Figure 5: Series of schedule transformations to prove the asymptotic optimality of Algorithm 1
when X < W(ttl) < 2X.

We have thus proved that, for any positive n:

E(f,2)(W(ttl),Algorithm 1(2n + 1)) ≥ E(f,2)(W(ttl), n)

≥ E(f,2)(W(ttl),Algorithm 1(n)).

The optimal expectation is obviously a nondecreasing function bounded above by W(ttl), so that
the process converges. Because of the preceding inequality, the optimal expectation has the same
limit as does the expectation of Algorithm 1. The latter expectation is thus asymptotically optimal.

3. Case: X < W(ttl) < 2X.

As for the previous case, we must prove two things: that the proposed schedule is asymptotically
optimal and that its expectation for W(cmp) is what we claim it is. Let us take any positive integer
n. Then, the expectation of W(cmp) under Algorithm 1 is no greater than this expectation under
the optimal scheduling:

E(f,2)(W(ttl), n) ≥ E(f,2)(W(ttl),Algorithm 1(n)).

Following the series of transformations illustrated by Figure 5, we show that the optimal
scheduling with n chunks is not a better expectation than the solution of Algorithm 1 with 3(n+1)
chunks. Each transformation is a non-decreasing transformation from the point of view of the
expectation of W(cmp).

We start from an optimal scheduling for n chunks satisfying Theorem 4 (see Figure 5(a)). By
definition of X any computer-workload no smaller than X is obviously strictly suboptimal. In the
first transformation (see Figure 5(b)) we add a (n+1)-th chunk to the workload of each computer
for each computer-workload to be exactly equal to X. Obviously, this transformation does not
change the expectation. Then, we subdivide the chunks so that the boundaries of the chunks of
a computer coincide with the boundaries of the chunks of the other computer (see Figure 5(c)).
For a formal description of this process, see the proof of the case W(ttl) ≤ X. Subdividing chunks
does not decrease the expectation. We must still count how many chunks we may have in each of

Static Strategies for Worksharing with Unrecoverable Interruptions 33

the three main parts of the workload, that is, in the intervals [0,W(ttl) − X], [W(ttl) − X,X], and
[X,W(ttl)]. Note that each of the interval bounds is a chunk boundary. The chunk boundaries in
[0,W(ttl)−X] can only come from original chunks of P1 and from the bound of the (n+1)-th chunk
we added to P2 (which gives a bound at W(ttl) −X). Therefore, there are at most n + 1 chunks in
[0,W(ttl)−X]. The same is true for [X,W(ttl)]. Now, looking at the interval [W(ttl)−X,X], all the
boundaries of the chunks W1,2, ..., W1,n could lie strictly in this interval. The same thing is true for
the chunks W2,2, ..., W2,n. Therefore, in the worst case, there can be 2n chunk boundaries strictly
between W(ttl) − X and X. This gives us at most 2n + 1 chunks in the interval [W(ttl) − X,X].
Algorithm 1(3(n+1)) builds a solution with n + 1 chunks in the interval [0,W(ttl) − X], 2n + 2
chunks in the interval [W(ttl) − X,X], and n + 1 chunks in the interval [X,W(ttl)]. Therefore, in
none of the three main parts of the schedule does it have fewer chunks than the solution we just
built.

The third transformation is done interval per interval. In each of the intervals [0,W(ttl) − X],
[W(ttl) −X,X], and [X,W(ttl)] we distribute the interval workload equally among the chunks (see
Figure 5(d)). From the proof of the case W(ttl) ≤ X we know that this transformation does not
decrease the expectation when it is solely applied to the interval [W(ttl) −X,X]. Therefore, what
only remains to prove is that this transformation when solely applied to the interval [0,W(ttl)−X]
does not decrease the expectation (the fact that the different intervals do not impact each other
is due to our failure model and to the fact that no chunk simultaneously strictly belongs to two
intervals). To establish the desired result we only consider two consecutive chunks of P1, V1,i and
V1,i+1 belonging in the interval [0,W(ttl) − X] (and thus which do not intersect the workload of
P2). The contribution of these two chunks to the expectation is:

E = |V1,i|

1 −
i∑

j=1

|V1,j |κ

 + |V1,i+1|

1 −
i+1∑

j=1

|V1,j |κ

 .

Using the notations L = |V1,i| + |V1,i+1| and V =
∑i−1

j=1 V1,j , we have:

E = |V1,i| (1 − (V + |V1,i|)κ) + (L − |V1,i|) (1 − (V + L)κ)
= −|V1,i|2κ + L|V1,i|κ + L(1 − (V + L)κ).

This last expression is obviously maximized when |V1,i| = L
2 , that is, when the two consecutive

chunks have the same size.

The last transformation increases the number of same-size jobs in each of the three phases of
the scheduling for these numbers to respectively be n+1, 2(n+1), and n+1 (see Figure 5(b)). We
already know, from the study of the case W(ttl) ≤ X, that this is not decreasing the expectation
for the chunks in the interval [W(ttl) −X,X]. We now show that this is also the case for chunks in
the interval [0,W(ttl) −X]. The cumulative expectation for the m equal-size chunks of the interval
[0,W(ttl) − X] is:

E =

m∑

i=1

W(ttl) − X

m

1 −
i∑

j=1

W(ttl) − X

m
κ

= (W(ttl) − X) − (W(ttl) − X)2κ

m2

m∑

i=1

i

= (W(ttl) − X) −
(

1

2
+

1

2m

)
(W(ttl) − X)2κ

which is obviously increasing with m.

The expectation of W(cmp), with l =
⌊

n
3

⌋
, for the scheduling of Algorithm 1(n) is then equal

34 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

to:

E =

l∑

i=1

W(ttl) − X

l

(
1 − i

W(ttl) − X

l
κ

)

+
2l∑

i=1

2X − W(ttl)

2l

(
1 −

(
W(ttl) − X + i

2X − W(ttl)

2l

)
κ

×
(

X − (i − 1)
2X − W(ttl)

2l

)
κ

)

+
l∑

i=1

W(ttl) − X

l

(
1 − i

W(ttl) − X

l
κ

)

= 2W(ttl) −
1

3
X − W 2

(ttl)κ +
W 3

(ttl)κ
2

6

+
1

l

((
1 +

1

l

)
W(ttl) −

(
1 +

2

3l

)
X − 1

2l
W 2

(ttl)κ

− 1

4

(
1 − 1

3l

)
W 3

(ttl)κ
2

)
.

5 Scheduling for p Remote Computers

We finally turn to the general case, wherein there are p remote computers. We have discovered
this case of general p to be much more difficult than the already challenging case p = 2, so we
devote our efforts here to searching for efficient heuristic schedules.

In order to appreciate how hard it is to extend the case p = 2 even to p = 3, the reader
is invited to seek an analogue of Theorem 4 for p = 3. As one example, we have not
discovered a 3-computer analogue of “mirroring,” and our attempts to do so have all
fallen to unobvious schedules such as those discussed after Theorem 5.

Because of the difficulty of the general scheduling problem, we adopt a pragmatic approach, by
focusing only on the linear risk model, and by restricting attention to “well-structured” schedules
that employ same size chunks.

Our restriction to same-size chunks has two major antecedents. (1) The optimal sched-
ules for the case p = 1 and the asymptotically optimal schedules for the case p = 2
mandate using same-size chunks. This suggests that such chunking may be computa-
tionally beneficial. (2) This restriction greatly simplifies the specification and imple-
mentation of schedules for the case of general p, by imposing simplifying structure on
this extremely hard scheduling problem.

All of the schedules we develop here operate as follows.

1. They partition the total workload into (disjoint) slices that they assign to—and replicate
on—disjoint subsets (coteries) of remote computers. (Each computer partitions each slice
into same-size chunks.)

2. They orchestrate the processing of the slices on each coterie of remote computers.

5.1 The Partitioning Phase

We begin with some simple partitioning heuristics that are tailored to the linear risk function—
but we suggest how they can be adapted to other risk functions. We partition our scheduling
problem into three subproblems, based on the size of the workload we wish to schedule. This
partition—which acknowledges the futility of deploying a workslice of size > X on any computer,

Static Strategies for Worksharing with Unrecoverable Interruptions 35

in the light of our interruption model—gives us one easy subproblem and two challenging ones
that will occupy the rest of our attention.

W(ttl) is “very large.” When W(ttl) ≥ pX, we deploy p slices of common size X, to be
processed independently on the remote computers. We abandon the remaining W − pX units of
work, in acknowledgment of our interruption model. (We assume here that work is not prioritized,
so we do not care which pX units we deploy.) We then reuse on each computer the results of
Section 3.

W(ttl) is “very small.” When W(ttl) ≤ X, we deploy the entire workload in a single slice, which
we replicate on all p computers. The partitioning phase is therefore obvious; all the scheduling
work is done in the orchestration phase.

W(ttl) is of “intermediate” size. The case X < W(ttl) < pX is the interesting challenge, as
there is no compelling scheduling strategy. There is no point of deploying more than X units of
work on a single computer. Therefore, we decide to deploy W(dpl) = min(W(ttl), pX) units of work
in to the p remote computers. The p computers enable to replicate each “piece of work” pX/W(dpl)

times on average. For the sake of simplicity, we have disjoint coteries of computers working on
independent slices of work. Ideally, we would like to have p/ pX

W(dpl)
= W(dpl)κ coteries. As we must

have an integer number of computers in each coterie, we partition the work into q = ⌈Zκ⌉ slices.
We balance computing resources as much as possible, by replicating each slice on either ⌊p/q⌋ or
⌈p/q⌉ remote computers. To balance the load among the coteries, a coterie with ⌊p/q⌋ computers
will work on a slice of size sl− = ⌊p/q⌋ Z

p , and a coterie with ⌈p/q⌉ computers will work on a slice

of size sl+ = ⌈p/q⌉ Z
p .

Among the ways in which we have tailored the preceding scenario to the linear risk
function is by demanding that the load of a single computer has a size ≤ X. For general
risk functions, we would introduce a parameter λ that specifies the maximum probabil-
ity of interruption that the user would allow for the work allocated to a computer. For
linear risk functions we used λ = 1, but this choice would be impractical, for instance,
for heavy tailed distributions. Hence the need for the λ parameter. We would then
use λ to compute the maximum work maxsl allocatable to a computer by insisting that
Pr(maxsl) = λ. For instance if λ = 1/2, then with the linear risk function we would set
maxsl = 1

2X, while with the exponential risk function we would set maxsl = (ln 2)X.
The amount of work we actually deploy would now be W(dpl) = min(W(ttl), p×maxsl).
This would mandate using q = ⌈Z/maxsl⌉ slices, of sizes defined as previously.

We now specify the partition procedure, Algorithm 2, which takes three inputs: the total
amount of work W(ttl), the number p of computers, and the maximum allowable risk λ. The
algorithm returns the number of slices, their sizes, and the number of remote computers that each
slice is deployed to.

Algorithm 2: The partitioning algorithm for p computers.

procedure Partition(W(ttl), p, λ)1

begin2

/*Determine maxsl such that Pr(maxsl) = λ*/3

W(dpl) ← min(W(ttl), p × maxsl)4

q ← ⌈Z/maxsl⌉5

sl− ←
⌊

p

q

⌋
Z

p
, sl+ ←

⌈
p

q

⌉
Z

p6

r ← p mod q; s ← q − r7

Partition the computers into:8

r coteries of cardinality ⌊p/q⌋ + 1 each and working on slices of size sl+, and9

s coteries of cardinality ⌊p/q⌋ each and working on slices of size sl−.10

end11

36 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

5.2 The Orchestration Phase

The partition phase has left us with independent slices of work that will be executed by disjoint
coteries of computers. A slice, of size sl, will be partitioned into n chunks of common size ω = sl/n,
where the “checkpointing granularity” n is supposed to be given to us (cf. Section 5.3). For each
coterie Γ of computers, each chunk assigned to coterie Γ will be executed by all gΓ ∈ {⌊p/q⌋ , 1 +
⌊p/q⌋} computers in the coterie. Our challenge is to determine how to orchestrate the gΓ executions
of each chunk—i.e., to determine when (at which time step) and where (on which computer) to
execute which chunk—in a way that maximizes the expected amount of work completed by the
total assemblage of p computers. The remainder of our study is dedicated to this orchestration
phase.

5.2.1 General schedules

Let us motivate our approach to the orchestration problem via the following example, wherein
each slice is partitioned into n = 12 chunks, and each coterie contains g = 4 computers. Since
each coterie of computers operates independently of all others, we can specify the overall schedule
coterie by coterie. For each coterie Γ and its associated slice, we represent a possible schedule for
Γ’s executing the slice via a table such as Table 1; we call these tables execution charts. Rows
in these charts enumerate the computers in the associated coterie Γ, and columns enumerate the
indices of the chunks into which coterie Γ’s slice is chopped. Chart-entry Ci,j is the step at which
chunk j is processed by computer Pi.

`
`

`
`

`
`

`
`

`
`

`
`

Computer
Chunk

1 2 3 4 5 6 7 8 9 10 11 12

P1 1 6 9 12 2 5 8 11 3 4 7 10
P2 12 1 6 9 11 2 5 8 10 3 4 7
P3 9 12 1 6 8 11 2 5 7 10 3 4
P4 6 9 12 1 5 8 11 2 4 7 10 3

Table 1: An execution chart for a coterie of four computers. In this example, chunk 5 is executed
by P2 at step C2,5 = 11.

Any g × n integer matrix whose rows are permutations of [1..n] can be used as the execution
chart for a valid schedule for the slice, under which each Pi executes once each chunk j (specifically,
at step Ci,j). One can use such a chart to calculate the expected amount of work completed under
the schedule that the chart specifies. To wit, chunk j will not be executed under a schedule only
if all g computers in the coterie are interrupted before they complete the chunk. This occurs with
probability

g∏

i=1

Pr(Ci,jω) =

g∏

i=1

Pr (Ci,jsl/n) ,

so the expectation of the total work completed from the slice is

E(sl, n) = (sl/n)
n∑

j=1

(
1 −

g∏

i=1

Pr (Ci,jsl/n)

)

= sl

1 − 1

n

(
slκ

n

)g n∑

j=1

g∏

i=1

Ci,j

 . (16)

The last expression, (16), is specific to the linear-risk model and assume that Ci,jωκ ≤ 1 or,
equivalently, that Pr(Ci,jω) = Ci,jωκ. We will make this assumption in the remaining of this

Static Strategies for Worksharing with Unrecoverable Interruptions 37

section, each time we will write an expectation. 11 We can, therefore, derive the following upper
bound:

Proposition 1.

E(sl, n) ≤ Emax = sl ·
(

1 −
(

sl · κ (n!)1/n

n

)g
)

.

Proof. Let cpj =
∏g

i=1 Ci,j be the j-th column product in the chart. From the expression of
E(sl, n), we see that it is maximum when the sum of the n column products is minimum. But
the product of the column products is constant, because each row is a permutation of [1..n]: we
have

∏n

j=1 cpj = (n!)g. The sum is minimum when all products are equal (to (n!)
g
n), whence the

result.

Stirling’s formula gives a useful approximation of the upper bound when n is large:

Emax ≈ sl ·
(

1 −
(

sl.κ

e

)g)
.

5.2.2 Group schedules: introduction

Referring back to Table 1, we observe that chunks 1, 2, 3, and 4 are always executed at the same
steps, by different computers; the same is true for chunks 5, 6, 7, 8 as a group, and for chunks
9, 10, 11, 12 as a group. The twelve chunks of the slice thus partition naturally into three groups.
By respecifying the schedule of Table 1 as the group(-oriented) schedule of Table 2, we significantly

Group 1 Group 2 Group 3
chunks 1–4 chunks 5–8 chunks 9–12

1 2 3
6 5 4
9 8 7
12 11 10

Table 2: Execution chart for a group-oriented schedule. Rows represent time steps for the first
computer in each group associated with each column; the remaining computers’ schedules are
obtained by cyclic downward permutations of the rows.

simplify the specification. Note that the meanings of rows and columns have changed in this re-
orientation: compare Tables 1 and 2 as we describe the changes. In the group(-oriented) execution
chart of Table 2, each column corresponds to a group of chunks; entry (i, j) of the chart specifies
the step at which each computer executes its ith chunk within group j. The schedule for computer
Pj , where j ∈ {2, 3, 4}, is obtained by cyclically permuting (downward) the schedule for P1 j − 1
times. The important feature here is that this orchestration has each computer attempt to execute
each chunk exactly once.

We generalize this description. When n is a multiple of g, we can sometimes convert the full
g×n execution chart C, as exemplified by Table 1, to the g×n/g group(-oriented) execution chart

Ĉ exemplified by Table 2. There are n/g groups, each of size g, and chart-entry Ĉi,j denotes the
step at which group j of chunks is executed for the ith time. It is tacitly assumed that chunk-
indices within each group are cyclically permuted (downward) at each step, so that each chunk

ends up being processed by each computer. Thus, in order for a chart Ĉ to specify a valid group

11Under our partitioning scheme, this assumption is true for any coterie except the 2-computer coteries when
X < W(ttl) < 2X. Taking this case into account, however, would considerably complicate all the expectation
formulas and would forbid us to make any conclusion when comparing heuristics. Furthermore, the conclusions
we reach using this assumption—mainly those derived from Table 6—are backed by the experiments of Section 6
which consider all cases. These experiments provide an a posteriori justification for our simplifying assumption.

38 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

schedule, its total set of entries must be a permutation of [1..n]. When Ĉ does specify a valid
group schedule, the expected amount of work it completes, under the linear risk model, is:

E(sl, n) = sl

1 − g

n

(
sl · κ

n

)g n/g∑

j=1

g∏

i=1

Ĉi,j

 . (17)

The preceding expression exposes the importance of the constant

K(Σ) =

n/g∑

j=1

g∏

i=1

Ĉ
(Σ)
i,j

as a measure of a group schedule Σ’s performance; to wit,

E(sl, n,Σ) = sl − K(Σ) · g

κ

(
slκ

n

)g+1

. (18)

Thus: A smaller value of K(Σ) corresponds to a larger value of E(sl, n,Σ).
Group schedules are very natural, because they are symmetric: all computers play the same

role as the work is processed, differing only in the times at which they process different chunks.
Intuition suggests that the most productive schedules are symmetric: why should some of the
identical computers be treated differently by “nature” than others? Indeed, the following upper
bound on the expected work production of group schedules—which is the best we have been able
to prove—does not distinguish symmetric schedules from general ones—but we have not yet been
able to prove that no difference exists.

Proposition 2. For any group schedule Σ,

E(sl, n,Σ) ≤ Emax = sl − slg+1κg(n!)g/n

ng
.

Proof. Let cpj =
∏g

i=1 Gi,j be the j-th column product. As before, E(sl, n) is maximum when the
sum of the n

g
column products is minimum. The product of these column products is equal to a

constant (n!). The sum is minimum when all products are equal to (n!)
g
n , hence the same result

as for Proposition 1.

Note that Proposition 2 affords us an easy lower bound, Kmin on the K value of any group
schedule with the parameters g and n:

Kmin =

⌈
n

g
(n!)g/n

⌉
.

5.2.3 Group schedules: specific schedules

Our group schedules strive to maximize expected work completion by having every computer
attempt to compute every chunk. Of course, there are many ways to achieve this coverage, and
the form of the risk function will make some ways more advantageous than others with respect to
maximizing expected work completion. As an extreme example, in the case p = 2, for every risk
function, it is advantageous to have the remote computers process the work they share“in opposite
orders” (Theorem 4). We now specify and compare the performance of six group schedules whose
chunk-scheduling regimens seem to be a good match for the way the linear risk function “predicts”
interruptions. We specify each schedule Σ via its group execution chart Ĉ(Σ)—see Fig. 6—and we
represent the performance of each schedule Σ via its performance constant K(Σ). The beneficent
structures of these schedules is evidenced by our ability to present explicit symbolic expressions
for their K constants.

Static Strategies for Worksharing with Unrecoverable Interruptions 39

Group 1 Group 2 Group 3

1 2 3
4 5 6
7 8 9
10 11 12

(a) Cyclic: K = 3104

Group 1 Group 2 Group 3

1 2 3
6 5 4
9 8 7
12 11 10

(b) Reverse: K = 2368

Group 1 Group 2 Group 3

1 2 3
4 5 6
9 8 7
12 11 10

(c) Mirror: K = 2572

Group 1 Group 2 Group 3

1 2 3
6 5 4
7 8 9
12 11 10

(d) Snake: K = 2464
Group 1 Group 2 Group 3

1 2 3
8 6 4
9 7 5
10 11 12

(e) Fat snake: K = 2364

Figure 6: Five group schedules with their associated K values. For this instance, Kmin = 2348.

Cyclic scheduling (Fig. 6(a)). Under this simplest scheduling regimen, Σcyclic, groups are
executed sequentially, in a round-robin fashion. Specifically, the chunks of group j are executed
at steps j, j + n/g, j + 2n/g, and so on. We find that

K(Σcyclic) =

n/g∑

j=1

g−1∏

k=0

(j + kn/g) .

The weakness of Σcyclic is that chunks in low-index groups have a higher probability of being
completed successfully than do chunks in high-index groups—because chunks remain in the same
relative order throughout the computation. The remaining schedules that we consider aim to
compensate for this imbalance via different intuitively motivated strategies.

Reverse scheduling (Fig. 6(b)). A schedule Σreverse produced under this regimen executes the
chunks in each group once in the initially-specified order, and then executes them in the reverse
order n/g − 1 times. The schedule thereby strives to compensate for the imbalance in chunks’
likelihoods of being completed created by their initial order of processing. (Σreverse is the schedule
specified in Table 2.) Under Σreverse, the chunks in group j are executed at step j, and thereafter
at steps 2n/g − j + 1, 3n/g − j + 1, 4n/g − j + 1, and so on. We find that

K(Σreverse) =

n/g∑

j=1

j ×
g−1∏

k=1

((k + 1)n/g − j + 1) .

Mirror scheduling (Fig. 6(c)). The mirror schedule Σmirror, which is defined only when g is even,
represents a compromise between the cyclic and reverse scheduling strategies. Σmirror compensates
for the imbalance in likelihood of completion only during the second half of the computation.
Specifically, Σmirror mimics Σcyclic for the first g/2 phases of processing a group, and it mimics

40 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

Σreverse for the second g/2 phases. We find that

K(Σmirror) =

n/g∑

j=1

1
2 g−1∏

k=0

(j + kn/g) ((p − k)n/g − j + 1) .

Snake-like scheduling (Fig. 6(d)). Our fourth schedule, Σsnake, compensates for the imbalance
of the cyclic schedule by mimicking Σcyclic at every odd-numbered step and mimicking Σreverse at

every even-numbered step, thereby lending a snake-like structure to the execution chart Ĉ(Σsnake).
We find that

K(Σsnake) =

n/g∑

j=1

1
2 g−1∏

k=0

(j + 2kn/g) (2(k + 1)n/g − j + 1) .

Fat snake-like scheduling (Fig. 6(e)). Our final, fifth schedule, Σfat−snake, qualitatively adopts
the same strategy as does Σsnake, but it slows down the return phase of the latter schedule.
Consider, for illustration, three consecutive rows of Ĉ(Σfat−snake). The first row is identical to its
shape in Ĉ(Σcyclic). The return phase of Fat snake distributes elements of the two remaining rows
in the reverse order, two elements at a time. The motivating intuition is that the slower return
would further compensate for the imbalance in Σcyclic. We find that

K(Σfat−snake) =

n/g−1∑

j=0

1
3 g−1∏

k=0

(1 + j + 3kn/g) (3(k + 1)n/g − 2j − 1) (3(k + 1)n/g − 2j) .

We derive the following performance bounds for these five schedules

Proposition 3. The values of K(Σ) for our five scheduling algorithms satisfy the following lower
and upper bounds:

1

n
≤ K(Σcyclic)

g! (n/g)
g+1 ≤ 1

1

2g
≤ K(Σreverse)

g! (n/g)
g+1 ≤ 1

2 (n + g)

1

n
≤ K(Σmirror)

g! (n/g)
g+1 ≤ 1

g

n2
≤ K(Σsnake)

g! (n/g)
g+1 ≤ 1

1

(g − 1)n
≤ K(Σfat−snake)

g! (n/g)
g+1 ≤ g

Proof. The calculations are straightforward. For the Cyclic schedule, we have

Kcyclic =

n
g∑

j=1

g−1∏

k=0

(
j + k

n

g

)
.

We derive the lower bound by replacing index j by 0 in the summation (except in the term k = 0
where we replace j by 1):

Kcyclic ≥
n

g

(
g−1∏

k=1

k
n

g

)
= (g − 1)!

(
n

g

)g

=
1

n
g!

(
n

g

)g+1

.

Static Strategies for Worksharing with Unrecoverable Interruptions 41

Similarly, we let j = n
g

in each term of the summation to get the upper bound. We proceed in a
similar way for the other three variants.

We explicit the computations for Fat snake, as they are a bit less obvious. For the lower bound
we have:

Kfat−snake =

n
g
−1∑

j=0

g
3−1∏

k=0

(
1 + j + 3k

n

g

)(
3(k + 1)

n

g
− 2j − 1

)(
3(k + 1)

n

g
− 2j

)

≥
n
g
−1∑

j=0

g
3−1∏

k=0

(
1 + 3k

n

g

)(
3(k + 1)

n

g
− 2

n

g
+ 1

)(
3(k + 1)

n

g
− 2

n

g
+ 2

)

≥ n
g

∏ g
3−1

k=0

(
1 + 3k n

g

) (
(3k + 1) n

g

)(
(3k + 1) n

g

)

≥
(

n
g

)3 ∏ g
3−1

k=1

(
3k n

g

)(
(3k + 1) n

g

) (
(3k + 1) n

g

)

≥
(

n
g

)3 ∏ g
3−1

k=1

(
(3k − 1) n

g

) (
3k n

g

) (
(3k + 1) n

g

)

=
(

n
g

)g

(g − 2)!

For the upper bound we derive:

Kfat−snake =

n
g
−1∑

j=0

g
3−1∏

k=0

(
1 + j + 3k

n

g

)(
3(k + 1)

n

g
− 2j − 1

)(
3(k + 1)

n

g
− 2j

)

≤
n
g
−1∑

j=0

g
3−1∏

k=0

(
n

g
+ 3k

n

g

)(
3(k + 1)

n

g

)(
3(k + 1)

n

g

)

≤ n

g

g
3−1∏

k=0

(
(3k + 1)

n

g

)(
(3k + 3)

n

g

)(
(3k + 3)

n

g

)

≤
(

n

g

)g+1

g
3−2∏

k=0

(3k + 2)(3k + 3)(3k + 4)

 (g − 2)g2

=

(
n

g

)g+1

(g − 2)!(g − 2)g2 ≤
(

n

g

)g+1

(g)!g

From the size of its bounds on K(Σsnake), Proposition 3 suggests that schedule Σsnake may be
the most efficient of the five group-scheduling algorithms we have considered, especially when
we checkpoint often, i.e., when n is large. We will evaluate this possibility via the experiments
reported at the end of this subsection. While still focusing on mathematical analyses of our
schedules, though, we use Stirling’s formula to derive more evocative bounds on K(Σsnake): Kmin ≤
K(Σsnake) ≤ Kupper, where

Kmin ≈ e

g

(
n

g

)g+1

and Kupper = g!

(
n

g

)g+1

≈ e
√

2π√
g

(n

e

)g+1

.

We conclude this subsection by adding a last element to our set of group schedules. The
resulting “greedy” procedure strives to iteratively balance the probability of success for each group
of chunks. As we do not get any asymptotic estimation for Greedy, we content ourselves with a
numerical estimate.

Greedy scheduling (Table 3). The greedy scheduling algorithm, Σgreedy, iteratively assigns a
step to each group of chunks so as to balance the current success probabilities as much as possible.

42 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

At each step, Σgreedy constructs one new row of the execution chart Ĉ(greedy). Remember that,
after k steps, the probability that a chunk in group j will be interrupted is proportional to the

product Π
k

i=1Ĉ
(greedy)
ij of the entries in column j of the chart. The idea is to sort current column

products and to assign the smallest time-step to the largest product, and so on. Table 3 illustrates
a computation with n = 12 and g = 4. In this example, Σgreedy is identical to Σreverse, hence
achieves the same performance constant K(Σgreedy) = K(Σreverse) = 2368.

Step 1 1 2 3
CCP 1 2 3

Step 2 6 5 4
CCP 6 10 12

Step 3 9 8 7
CCP 54 80 84

Step 4 12 11 10
CCP 6 880 12

Table 3: A computation by Σgreedy. CCP denotes the Current Column Product.

For the record, and for the curious reader: Table 4 provides an example for which none of
our group schedules is optimal, and Table 5 shows an example for which Σgreedy differs from, and
outperforms, Σreverse.

1 2 3
4 5 6
7 8 9

1 2 3
6 5 4
7 8 9

1 2 3
6 5 4
9 8 7

1 2 3
8 6 4
9 7 5

1 2 3
8 5 4
9 7 6

K(Σcyclic) = 270 K(Σsnake) = 230 K(Σreverse) = K(Σgreedy) = 218 K(Σfat snake) = 216 Koptimal = Kmin = 214

Table 4: Comparing group schedules for n = 9 and g = 3. (Σmirror is missing because g is odd).
Here Σreverse and Σgreedy are identical. The optimal schedule achieves the bound Kmin.

Numerical evaluation. We ran all six of our scheduling heuristics on all problems where g ∈
[2, 100], n ∈ [2∗g, 1000], and g divides n; altogether, this corresponds to 4032 instances. We report
in Table 6 two series of statistics. In the Relative series, we form the ratio of the K value of a given
heuristic on a given instance over the lowest K value found for that instance among all the tested
heuristics. For the Absolute series, we form the ratio with Kmin. In Table 6 we also report the
best-of heuristic that, on each instance, runs the six other algorithms and picks the best answer.

Σgreedy is clearly the best heuristic: it finds the best schedule for 83% of the instances, and
its solutions are never more than 6% worse than the best solution found. More importantly, its
performance constant is never more than 23% larger than the lower bound Kmin, and, on average,
it is less than 7% larger than this bound. In fact, only Σfat−snake happens sometimes to find better
solutions than Σgreedy; however, these improvements are marginal, as one can see by comparing
the absolute performance of Σgreedy and best-of.

5.3 Choosing the Optimal Number of Chunks

To this point, we have assumed that the number n of chunks per computer was given to us.
In fact, we show now that (happily) one does not have to guess at this value. We begin to
flesh out this remark by noting that we can easily obtain an explicit expression for the expected
work completed by any group schedule under the charged-initiation model, from that schedule’s
analogous expectation under the free-initiation model.

Static Strategies for Worksharing with Unrecoverable Interruptions 43

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

1 2 3 4 5
6 7 8 9 10
15 14 13 12 11
20 19 18 17 16

1 2 3 4 5
10 9 8 7 6
15 14 13 12 11
20 19 18 17 16

K(Σcyclic) = 34104 K(Σmirror) = 27284 K(Σreverse) = 24396

1 2 3 4 5
10 9 8 7 6
11 12 13 14 15
20 19 18 17 16

1 2 3 4 5
14 12 10 8 6
15 13 11 9 7
16 17 18 19 20

1 2 3 4 5
10 9 8 7 6
15 14 13 12 11
20 19 18 16 17

K(Σsnake) = 25784 K(Σfat−snake) = 24276 K(Σgreedy) = 24390

1 2 3 4 5
13 10 6 9 7
18 15 14 11 8
20 16 19 12 17

K(ΣOptimal) = 23780

Table 5: Comparing group schedules for n = 20 and g = 4. Here the most efficient group schedules
are Σfat−snake, Σgreedy, and Σreverse (in this order). The lower bound, Kmin = 23780, is reached on
this example.

Theorem 7. (p remote computers: charged-initiation model)
Let C be a group schedule defined by the execution chart

Ci,j

∣∣
i∈{1,...,g},j∈{1,...,n/g} .

Then, whatever the (non-decreasing) risk function, we have:

E(c,n)(sl(c), C) =
sl(c)

sl(c) + nε
E(f,n)(sl(c) + nε, C).

Proof. To establish the result, we only need to explicit the expectation of W(cmp) under the

Relative Absolute Success rate
min max avg. stdv. min max avg. stdv.

Cyclic 1.1 3.786 2.143 0.664 1.1 3.786 2.239 0.592 00.00%
Reverse 1 1.295 1.055 0.065 1 1.295 1.117 0.061 12.42%
Mirror 1 2.468 1.504 0.393 1 2.468 1.575 0.338 12.37%
Snake 1 1.199 1.127 0.059 1 1.291 1.193 0.059 12.34%
Greedy 1 1.055 1.005 0.015 1 1.224 1.067 0.074 83.01%
Fat snake 1 1.442 1.123 0.115 1 1.530 1.192 0.143 17.07%

Best-of 1 1 1 0 1 1.224 1.061 0.069 100.00%

Table 6: Statistics on the K value of all heuristics for 2 ≤ g ≤ 100 and 2g ≤ n ≤ 1000 (minimum,
maximum, average value and standard deviation over the 4032 instances).

44 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

charged-initiation model:

E(c,n)(sl(c), C) =

n∑

j=1

sl(c)

n

(
1 −

g∏

i=1

Pr(c)

(
Ci,j

sl(c)

n

))

=

n∑

j=1

sl(c)

n

(
1 −

g∏

i=1

Pr(f)

(
Ci,j

(
sl(c)

n
+ ε

)))

=
sl(c)

sl(c) + nε

n∑

j=1

(
sl(c)

n
+ ε

)(
1−

g∏

i=1

Pr(f)

(
Ci,j

(
sl(c)

n
+ ε

)))

=
sl(c)

sl(c) + nε
E(f,n)(sl(c) + nε, C).

Now we can determine the value of n, making only the assumption that the expectation of
the group schedule within the charged-initiation model is a unimodal function of n. (It is quite
natural to assume that this expectation is non-decreasing with n under the free-initiation model.)
We can, then, use a binary search to seek the optimum value of n. Specifically, for each tested
value m we compare the values of the expectation for m and m+1 to determine if the expectation
is still increasing in m, in which case m is smaller than the optimum n. The binary search can be
safely performed in the interval [1..X/ε].

6 Experiments

We have performed a suite of simulation experiments in order to gain insight into the performance
of the group heuristics on simulated platforms that are subject to unrecoverable interruptions. We
report only on the observed behavior of Σgreedy for two reasons, first because of its preeminence
in the experiment reported in Table 6 and, second, because our simulations show only small
differences among our six heuristics. The source code for all six group heuristics can be found at
http://graal.ens-lyon.fr/~abenoit/code/failure.c.

6.1 The Experimental Plan

We use randomly generated platforms made of p computers. In all experiments, we set κ = 1, and
we choose the times for interruptions randomly between 0 and 1, following a uniform distribution.
The size of the workload, W(ttl), varies between 1 and p. W(ttl) = 1 represents the case in which
all computers can potentially do all the work before being interrupted; W(ttl) = p represents the
case in which we can do no better than deploy one different slice of size 1 on each computer (which
will then compute until it is interrupted), using no replication at all.

The key parameters in our experiment are: the number of computers, p; the total amount of
work, W(ttl); the number of chunks per unit of work, n; and the start-up cost, ε. In the first four
series of experiments, three of these parameters are fixed while the fourth one varies. When fixed,
these parameters take the following values:

• p = 5, 10, 25, 50, or 100;
• W(ttl) = 0.3p or 0.7p;
• n = 47, 97, 147, or 197;
• ε = 0.1000, 0.0100, 0.0010, or 0.0001.

These parameters are defined over large ranges of values in order to assess the heuristics in very
different configurations, even very unfavorable ones.

We compare several heuristics:

Σbrute– This brute replication heuristic replicates the entire workload onto all computers. Each
computer executes work in the order of receipt, starting from the first chunk, until it is
interrupted.

http://graal.ens-lyon.fr/~abenoit/code/failure.c

Static Strategies for Worksharing with Unrecoverable Interruptions 45

Σno-rep– This no replication heuristic distributes the work in a round-robin fashion, with no repli-
cation. Thus, each computer is allocated W(ttl)/p units of work (rounded by the chunk
size).

Σcyclic-rep– This cyclic replication heuristic distributes the work in a round-robin fashion, as does
Σno-rep, but it keeps distributing chunks, starting from chunk 1 again, until each computer
has a total (local) workload of 1. Note that when the number of chunks is a multiple of
p, this heuristic is identical to Σno-rep, since the chunks assigned to a computer during the
replication phase were already assigned to it previously.

Σrandom-rep– This random replication heuristic distributes a total workload of 1 to each computer,
but it chooses the chunks and their order randomly, while ensuring that all chunks deployed
on the same computer are distinct. However, the same chunk can be assigned to several
computers.

Σgreedy– This group greedy heuristic is the schedule Σgreedy of Section 5.2.2. Since our number of
chunks n may not be a multiple of g, the last group of computers may not have a full g

chunks to process. The scheduling heuristic works as if the last group contained g chunks,
hence potentially inserting idle time-slots in the schedule. During the schedule execution
these idle time-slots are obviously skipped (a computer is not kept idle when it still has work
to process).

The values for n where picked so has not to favor the group-heuristics by almost certainly
ensuring that the last group of computers never has a full g chunks to process.

Σomniscient– This last omniscient heuristic is an idealized static heuristic that knows exactly when
each computer is interrupted. This idealized knowledge obviates replication: each computer
is statically allocated a single chunk whose length, plus the length of the start-up cost ε is
exactly equal to the time before failure of the computer. Therefore, this heuristic returns
the maximal work that could be done, knowing the failure times.

We do not report the absolute amount of work done by the heuristics as this would be mean-
ingless, as the amount of work distributed, and the amount of work that can be processed before
all computers fail, both vary vastly between experiments. We therefore consider, on each instance
and for each heuristic, the ratio between the work completed by that heuristic and the work com-
pleted by Σomniscient. With our measure, Σomniscient always achieves a performance of 1 and we do
not display it on figures. (In the cases where Σomniscient does not complete any work—namely, cases
where all computers fail at times smaller than the start-up costs—the performance of all heuristics
is set to 1.)

6.2 Experimental Results

For each considered set of parameters, 100 different failure-configurations were randomly built
(computer failure times). We report the average of these results.

6.2.1 Experiment (E1): Fixed p, n, and ε

In this first experiment, we analyse the impact of the workload on the heuristics. The total amount
of work W(ttl) varies between 1 and the number of computers p, which are the two extreme cases.
The other parameters are fixed.

Figure 7 presents some representative results. (All graphs are presented in the appendix on
Figures 14 through 23.)

When W(ttl) = 1, opportunities for replication are maximum. As anyone could have foreseen,
in this case Σrandom-rep often dominates Σno-rep. Replication is therefore worth considering in the
general case. Replication, however, should be done in a meaningful way: Σbrute almost always
achieve very poor performance.

46 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

Another obvious conclusion is that when W(ttl) = p, there is no room for replication and Σno-rep
is equivalent to Σcyclic-rep and Σgreedy.

In all cases, Σcyclic-rep achieves better performance than Σno-rep. This is significant when W(ttl)

is small with respect to pX. These two heuristics are equivalent when the total number of chunks is
a multiple of the number of computers. On each instance the best performance is always achieved
by Σgreedy.

When there is very little room for replication, i.e., W(ttl) is close to p, Σno-rep, Σcyclic-rep, and
Σgreedy achieve similar performance.

This experiment was not supposed to focus on the influence of ε or of the number of chunks.
However, one can easily see that the performance is always bad when the number of chunks is too
large considering the start-up costs (for instance, when ε = 0.01, with 47 chunks the start-up cost
accounts for roughly a third of the size of each chunk).

6.2.2 Experiment (E2): Fixed W(ttl), cs, and ε

In this second experiment, we study the behavior of the heuristics when the number of computers
varies, from 1 up to 100. For the comparison to be fair and different from (E1), the total amount
of work W(ttl) is always kept proportional to the number p of computers (either W(ttl) = 0.3p or
W(ttl) = 0.7p).

Figure 8 presents a representative excerpt of the experiments. (All results are presented in the
appendix, on Figures 24 through 27).

Heuristic Σbrute sees its relative performance dramatically drop when the number of computers
grows. Otherwise, the only other heuristic impacted by the number of computers is Σcyclic-rep
whose performance increases when, roughly, there are more than 10 computers. Otherwise, the

conclusions are mainly the same than for experiments (E1): when
W(ttl)

p is small Σgreedy and

Σcyclic-rep outperform Σno-rep; when
W(ttl)

p is large the three heuristics have similar performance
but Σgreedy is always the best heuristic; Σrandom-rep has a significantly lower performance. A new

conclusion is that, when
W(ttl)

p is larger, there is less room for replication, efficient use of resources
is more complicated, and the heuristics have overall worse performance.

The main conclusion of this experiment is that the performance of the heuristics scale very
well to large platforms.

6.2.3 Experiment (E3): Fixed W(ttl), p, and ε

In this experiment the only varying parameter is the number of chunks per unit of work, which
takes any odd values less than 200.

Figure 9 presents a representative excerpt of the experiments. (All results are presented in the
appendix, on Figures 28 through 32).

When the start-up cost is negligible, one should use a large number of chunks, since having
small chunks reduces the loss occurred when a computer fails. However, when the start-up cost
increases, one should be more cautious because the start-up cost then impacts negatively the
performance of the solution. For large start-up costs, the decrease of performance is dramatic.
This is less obvious in the intermediate case of ε = 0.001 but, even in this case, after reaching a
maximum, the performance decreases when the number of chunks increases. The general shape of
the curves corroborate the unimodal assumption proposed at the end of Section 5.3.

Of course, special care should be taken about the exact number of chunks if using Σcyclic-rep
whose performance fluctuates, depending on whether the number of computers is prime with the
number of chunks.

As the studied parameter is not the overall number of chunks but the number of chunks per
unit of work, the number of computers has no significant impact on the performance (except,
obviously, for Σcyclic-rep).

Static Strategies for Worksharing with Unrecoverable Interruptions 47

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

(a) 5 computers, ε = 0.0100, 47 chunks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

(b) 5 computers, ε = 0.0100, 97 chunks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

(c) 25 computers, ε = 0.0010, 147 chunks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

(d) 25 computers, ε = 0.0001, 197 chunks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

(e) 100 computers, ε = 0.0001, 147 chunks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

(f) 100 computers, ε = 0.0001, 197 chunks.

Figure 7: (E1): representative sampling of studied configurations.

48 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

(a) W(ttl) = 30, ε = 0.1000, and 97 chunks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

(b) W(ttl) = 70, ε = 0.1000, and 97 chunks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

(c) W(ttl) = 30, ε = 0.0100, and 97 chunks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

(d) W(ttl) = 70, ε = 0.0100, and 97 chunks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

(e) W(ttl) = 30, ε = 0.0010, and 97 chunks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

(f) W(ttl) = 70, ε = 0.0010, and 97 chunks.

Figure 8: (E2): representative sampling of studied configurations (p = 100).

Static Strategies for Worksharing with Unrecoverable Interruptions 49

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

(a) W(ttl) = 7.5, ε = 0.1000.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

(b) W(ttl) = 17.5, ε = 0.1000.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

(c) W(ttl) = 7.5, ε = 0.0100.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

(d) W(ttl) = 17.5, ε = 0.0100.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

(e) W(ttl) = 7.5, ε = 0.0001.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

(f) W(ttl) = 17.5, ε = 0.0001.

Figure 9: (E3): representative sampling of studied configurations (p = 25).

50 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

6.2.4 Experiment (E4): Fixed W(ttl), p, and cs

In this set of experiments, we study the impact of the start-up cost on the solution, which can
take values between 0 and 1.

Figure 10 presents a representative excerpt of the experiments. (All results are presented in
the appendix, on Figures 33 through 37).

When the start-up cost ε increases, starting from 0, one observes a dramatic drop in perfor-
mance. Indeed, when ε is large, that is, when ε ≥ 0.05 (roughly), very few chunks can be executed
on a computer before it fails. In these configurations, the performance mainly depends on the
size of chunks with respect to the failure times in the instance. There is no way to design good
heuristics on average (compared to Σomniscient) and all heuristics have poor performance. This even
gets worse with the increase of the number of chunks per unit of work. As ε gets closer to 1, the
proportion of cases where even Σomniscient do not complete any work increases. In these cases, all
heuristics have a performance of 1, hence the sharp increase in heuristic performance. Needless to
say that these cases have no practical merits.

6.2.5 Experiment (E5) and (E6): Automatic Inference of Chunk Size

Finally, we did two different set of experiments to assess the quality of the heuristics when the
number of chunks is automatically inferred using the scheme proposed in Section 5.3.

Experiment (E5) replicates Experiment (E1) except that, for each instance and each heuristic,
the chunk size is no longer given but automatically inferred. Figure 11 presents an aggregated view
of the 76,000 generated instances. (All results are presented in the appendix, on Figures 62 and
63). On Figure 11, for each heuristic we plot the average performance when only considering the
x% best instances for that heuristic. The performance for 100% is thus the average performance
over all instances: 85.2% of the omniscient optimal for Σgreedy and 79.7% for Σno-rep. Therefore, on
average, Σgreedy closed 37.8% of the gap between Σno-rep and the optimal. Furthermore, in more
than 21% of the instances Σgreedy achieves quasi-optimal performance (over 99.5%). Σcyclic-rep
achieves close performance.

In Experiment (E6), presented on Figure 12, we fixed the overall workload to 10 units (W(ttl) =
10) and we had the number of computers take any integral value between 10 and 100 (with the
same four choices for the value of ε as previously). This scheme enables to assess the impact of the
ratio of potential replication, pX

W(ttl)
. We randomly built 1000 instances of each set of parameters.

Σcyclic-rep and Σgreedy always have better performance than Σno-rep, and the difference is very
significant as soon as the ratio of potential replication is greater than 2. Σgreedy has better and
more regular performance than Σcyclic-rep. Σcyclic-rep takes almost no advantage of the possibility of
replication when the potential for replication is small (smaller than 2); Σgreedy takes advantage.

6.3 Summarizing the Experiments

From these experiments, we see that replication, when cleverly done, can improve the performance
of heuristics. Our Σgreedy heuristic always delivers good performance, is never outperformed by
any other heuristic (on each configuration, on average, it delivers the best performance), and,
on favorable cases, it performs significantly better than any other heuristics. This heuristic is
therefore an obvious winner.

7 Going Beyond the Linear Risk Model

So far, we have almost exclusively focused on the linear risk model. Some of our results, however,
can be extended to general risk functions (we have directly written Theorems 4 and 7 in a general
context). We will first extend two of our results to the general case (Section 7.1). Inferring from
these theoretical results, we will extend our group heuristics to the general context and evaluate
them (Section 7.2).

Static Strategies for Worksharing with Unrecoverable Interruptions 51

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

(a) W(ttl) = 7.5, 47 chunks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

(b) W(ttl) = 17.5, 47 chunks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

(c) W(ttl) = 7.5, 97 chunks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

(d) W(ttl) = 17.5, 97 chunks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

(e) W(ttl) = 7.5, 147 chunks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

(f) W(ttl) = 17.5, 147 chunks.

Figure 10: (E4): representative sampling of studied configurations (p = 25).

52 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

Figure 11: Experiment (E5): performance with
automatic inference of chunk sizes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

W
(c

m
p)

 /
W

to
t

Ratio of potential replication pX / W(ttl)

Figure 12: Experiment (E6): impact of the ra-
tio of potential replication, pX

W(ttl)
.

7.1 Asymptotically Optimal Scheduling under General
Risk and the Free-Initiation Model

We prove that, with one or two remote computers, a schedule using equal-size chunks is asymp-
totically optimal.

7.1.1 One Remote Computer

Theorem 8. (One remote computer: free-initiation model and general risk)
Say that one wishes to deploy W(ttl) units of work to a single remote computer in at most n
chunks, for some strictly positive integer n. The scheduling regimen below, which partitions the
overall workload into n equal-size chunks, is asymptotically optimal:

∀i ∈ [1, n] ,Wi ←
〈

i − 1

n
W(ttl),

i

n
W(ttl)

〉
.

In other words, the expectation of W(cmp) of this equal-size regimen tends to the expectation of an
optimal regimen as n grows without bound.

Note that, if there exists a minimal amount of work V by which the computer is certain to
be interrupted (with probability 1), then one can improve the regimen with equal-size chunks by

having chunks of size
min{W(ttl),V }

n rather than of size
W(ttl)

n . (Under the linear-risk model V = X.)

Proof. In this proof, we denote by S(n) the regimen using n equal-size chunks we want to establish
the asymptotic optimality of. We denote by O(n) an optimal regimen using (at most) n chunks.
Under regimen O(n), we denote the chunks W ′

1, ..., W ′
n, and we denote by ω′

i the size of chunk
W ′

i. Without loss of generality, we can assume that, for any i in [1..n], chunk W ′
i is equal to〈∑i−1

k=1 ω′
k,

∑i
k=1 ω′

k

〉
.

Let us consider any strictly positive integer m. We are going to compare the performance of
the scheduling regimens O(n) and S(m). For that purpose, we introduce three more notations.

First, we denote by α the size of a chunk of S(m): α =
W(ttl)

m . Then, for any i ∈ [1..m − 1], let
s(i) be the index of the first chunk of S(m) which starts no sooner than the end of the i-th chunk
of O(n). Formally:

s(i) = 1 +

⌈∑i
k=1 ω′

k

α

⌉
.

Static Strategies for Worksharing with Unrecoverable Interruptions 53

Symmetrically, for any i ∈ [1..m], let p(i) be the index of the last chunk of S(m) which ends no
later than the beginning of the i-th chunk of O(n). Formally:

p(i) =

⌊∑i−1
k=1 ω′

k

α

⌋
.

If at least one chunk of S(m) is fully included in W ′
i, s(i − 1) is the index of the first such chunk,

and p(i + 1) the index of the last such chunk.

The overall expectation of W(cmp) for O(n) is:

E(W(ttl),O(n)) =

n∑

i=1

ω′
i

1 − Pr

i∑

j=1

ω′
j

 . (19)

Let us now consider any chunk W ′
i of O(n) (that is, any i ∈ [1..n]). Its contribution to the overall

expectation is:

ei = ω′
i

1 − Pr

i∑

j=1

ω′
j

 . (20)

If ω′
i < 2α, obviously ei < 2α. Otherwise, ω′

i ≥ 2α and there exists at least one chunk of S(m)
which is included in the chunk Wi. Then, p(i + 1) ≥ s(i − 1) (we extend s by letting s(0) = 0).
We can then establish:

ω′
i =

i∑

j=1

ω′
j −

i−1∑

j=1

ω′
j

=

i∑

j=1

ω′
j − p(i + 1)α

 + (p(i + 1)α − (s(i − 1) − 1)α)

+

(s(i − 1) − 1)α −
i−1∑

j=1

ω′
j

< α + (p(i + 1) − s(i − 1) + 1)α + α.

Using this result and Equation (20) we can bound the value of ei:

ei < (2α + (p(i + 1) − s(i − 1) + 1)α)

1 − Pr

i∑

j=1

ω′
j

≤ 2α +

p(i+1)∑

j=s(i−1)

α

1 − Pr

i∑

j=1

ω′
j

≤ 2α +

p(i+1)∑

j=s(i−1)

α (1 − Pr (jα)) .

The last inequation holds because p(i + 1)α is no greater than
∑i

j=1 ω′
j and because Pr is a non

decreasing function.

54 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

We can now rewrite Equation (19):

E(W(ttl),O(n)) =
∑

1≤i≤n

ω′
i
<2α

ei +
∑

1≤i≤n

ω′
i
≥2α

ei

<
∑

1≤i≤n

ω′
i
<2α

2α +
∑

1≤i≤n

ω′
i
≥2α

2α +

p(i+1)∑

j=s(i−1)

α (1 − Pr (jα))

≤ 2nα +
m∑

j=1

α (1 − Pr (jα))

≤ 2n

m
W(ttl) + E(W(ttl),S(m)).

Therefore, for any positive integers n and m:

E(W(ttl),O(n)) − 2n

m
W(ttl) < E(W(ttl),S(m)) ≤ E(W(ttl),O(m)). (21)

E(W(ttl),O(n)) is obviously a non-decreasing, upper-bounded (by W(ttl)), sequence and it thus con-
verges. By replacing n by ⌊√m⌋ in Equation (21), one easily sees that the sequence E(W(ttl),S(m))
is converging with the same limit.

7.1.2 Two Remote Computers

Theorem 9. (Two remote computers: free-initiation model and general risk)
Say that one wishes to deploy W(ttl) units of work on two computers, in at most n chunks, for some
strictly positive integer n. Then, the following regimen, which schedules the same set of equal-size
chunks on both computers, is asymptotically optimal:

∀i ∈ [1, n] ,W1,i = W2,n−i+1 ←
〈

i − 1

n
W(ttl),

i

n
W(ttl)

〉
.

In other words, the expectation of W(cmp) of the above regimen tends to the expectation of an
optimal regimen as n grows without bound.

Proof. This proof is mainly a combination of the result of Theorem 4 and of the proofs of Theorem 6
and 8.

In this proof, we denote by S(n) the regimen using n chunks we want to establish the asymptotic
optimality of. We denote by O(n) an optimal regimen using (at most) n chunks.

Thanks to Theorem 4, we know the general shape of schedule O(n). Without loss of generality,
we can indeed assume that O(n) has the shape described on Figure 4(a). We can then use the first
two transformations of Figure 4. We first complete the workload of each computer (Figure 4(b))
and then subdivide the chunks for chunk boundaries to coincide (Figure 4(c)). This way we
transform O(n) into a scheduling regimen O′(n) with at most l = 2n + 1 chunks per computer
and whose expectation is no smaller than that of O (following the arguments already used in the
proof of Theorem 6):

E(W(ttl),O(n)) ≤ E(W(ttl),O′(n)).

Under regimen O′(n), we denote by W ′
1,1, ..., W ′

1,l the chunks of computer P1 and by W ′
2,1, ...,

W ′
2,l those of computer P2. Then, for any i ∈ [1..l], W ′

2,l−i+1 = W ′
1,i.

Let us now consider any strictly positive integer m. We are going to compare the performance
of the scheduling regimens O′(n) and S(m).

For that purpose, we introduce three more notations. First, we denote by α the size of a chunk

of S(m): α =
W(ttl)

m . Then, for any i ∈ [1..m − 1], let s(i) be the index of the first chunk of S(m)

Static Strategies for Worksharing with Unrecoverable Interruptions 55

which starts no sooner than the end of the i-th chunk of O′(n) (on computer P1). Formally:

s(i) = 1 +

⌈∑i
k=1 ω′

1,i

α

⌉
.

Symmetrically, for any i ∈ [1..m], let p(i) be the index of the last chunk of S(m) which ends no
later than the beginning of the i-th chunk of O′(n) (on computer P1). Formally:

p(i) =

⌊∑i−1
k=1 ω′

1,i

α

⌋
.

The overall expectation of W(cmp) for O′(n) is:

E(W(ttl),O′(n)) =

l∑

i=1

ω′
1,i

1 − Pr

i∑

j=1

ω′
1,j

 Pr

W(ttl) −
i−1∑

j=1

ω′
1,j

 . (22)

Let us now consider any chunk W ′
1,i of O′(n) (that is, any i ∈ [1..m]). Its contribution to the

overall expectation is:

ei = ω′
1,i

1 − Pr

i∑

j=1

ω′
1,j

 Pr

W(ttl) −
i−1∑

j=1

ω′
1,j

 . (23)

If ω′
1,i < 2α, obviously ei < 2α. Otherwise, ω′

1,i ≥ 2α and there exists at least one chunk of S(m)
which is included in the chunk W1,i. Then, p(i + 1) ≥ s(i − 1) (we extend s by letting s(0) = 0).
We can then establish:

ω′
1,i =

i∑

j=1

ω′
1,j −

i−1∑

j=1

ω′
1,j

=

i∑

j=1

ω′
1,j − p(i + 1)α

 + (p(i + 1)α − (s(i − 1) − 1)α)

+

(s(i − 1) − 1)α −
i−1∑

j=1

ω′
1,j

< α + (p(i + 1) − s(i − 1) + 1)α + α.

Using this result and Equation (23) we can bound the value of ei:

ei < (2α + (p(i + 1) − s(i − 1) + 1)α)

×

1 − Pr

i∑

j=1

ω′
1,j

 Pr

W(ttl) −
i−1∑

j=1

ω′
1,j

≤ 2α +

p(i+1)∑

j=s(i−1)

α

1 − Pr

i∑

j=1

ω′
1,j

 Pr

W(ttl) −
i−1∑

j=1

ω′
1,j

≤ 2α +

p(i+1)∑

j=s(i−1)

α
(
1 − Pr (jα) Pr

(
W(ttl) − (j − 1)α

))
.

The last inequation holds because Pr is a non decreasing function, because p(i+1)α is no greater

than
∑i

j=1 ω′
1,j , and because (s(i − 1) − 1)α is no smaller than

∑i−1
j=1 ω′

1,j .

56 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

We can now rewrite Equation (22):

E(W(ttl),O′(n)) =
∑

1≤i≤l

ω′
1,i

<2α

ei +
∑

1≤i≤l

ω′
1,i

≥2α

ei

<
∑

1≤i≤l

ω′
1,i

<2α

2α

+
∑

1≤i≤l

ω′
1,i

≥2α

2α +

p(i+1)∑

j=s(i−1)

α
(
1 − Pr (jα) Pr

(
W(ttl) − (j − 1)α

))

≤ 2lα +

l∑

j=1

α
(
1 − Pr (jα) Pr

(
W(ttl) − (j − 1)α

))

≤ 4n + 2

m
W(ttl) + E(W(ttl),S(m)).

Therefore, for any positive integers n and m:

E(W(ttl),O(n)) − 4n + 2

m
W(ttl) ≤ E(W(ttl),O′(n)) − 4n + 2

m
W(ttl)

< E(W(ttl),S(m)) ≤ E(W(ttl),O(m)). (24)

E(W(ttl),O(n)) is obviously a non-decreasing, upper-bounded (by W(ttl)), sequence and it thus con-
verges. By replacing n by ⌊√m⌋ in Equation (24), one easily sees that the sequence E(W(ttl),S(m))
is converging with the same limit.

7.2 Heuristics and Simulations

We have shown that schedules using equal-size chunks were asymptotically optimal on systems
with one or two remote computers. It is then natural to extend our group heuristics, defined in
Section 5.2, for the case with general risk functions. This extension is straightforward as we only
need to replace, for the group-greedy heuristic, the linear probability function with the function
we wish to study. (Obviously, we also need to use the correct risk function when inferring the
adequate number of chunks using the scheme of Section 5.3.)

To assess the quality of our heuristics in the general context, we use traces.

7.2.1 Traces and Methodology

We evaluate our algorithms using 8 traces recording, per computer, the lengths of the different
time intervals during which the computer was available:

0. the SDSC trace, described in [23, p. 33], contains 5678 availability durations from a desktop
grid of PC’s located at the San Diego Super Computer Center (SDSC);

1. the UCB trace, described in [4], contains 19276 availability durations from 53 DEC worksta-
tions from the University of California, Berkeley;

2. the XtremWeb trace, described in [23, p. 33], contains 8756 availability durations from a
desktop grid including a cluster and some PC’s located at the University of Paris South;

3. the Cetus trace, described in [30], contains 1898 availability durations from 31 Sun worksta-
tions from the University of Tennessee;

4. the LONG trace, described in [30], contains 10958 availability durations from workstations
located at different sites;

5. the Princeton trace, described in [30], contains 79 availability durations from 16 Dec Alpha
workstations from the Princeton university;

6. the Condor trace, described in [28], contains 1125 availability durations from the Condor
pool at the University of Wisconsin;

Static Strategies for Worksharing with Unrecoverable Interruptions 57

7. the CSIL trace, described in [28], contains 927 availability durations from the CSIL computer
science student lab at the University of California, Santa Barbara.

We first normalize these traces so that for each trace the longest availability interval is exactly
equal to 1 (this only matters when we want to average statistics over different traces). Then, from
these traces we build failure probability functions as follows:

Pr(trace, t) =

Number of availability durations in trace that are shorter than t

Number of availability durations in trace
.

We generate instances of computer failure times by uniformly and randomly picking availability
durations in the studied trace. Therefore, we implicitly assume that, when making a scheduling
decision, we only consider computers that just became available.

7.2.2 Simulation Results

We ran the heuristics setting parameter λ to 1.00 (see Section 5.1), parameters p and ε according
to Section 6.1, and parameter W(ttl) taking all integral values in [1..p]. The aggregated simulation
results are presented on Figure 13. (Ventilated graphs are presented in the appendix on Figures 64
through 67.) Overall, and under each studied scenario, Σgreedy achieves far better results than
Σcyclic-rep and Σno-rep. The difference between Σgreedy and the other heuristics becomes more and
more important as the number of computers increases or as the size of the start-up cost decreases.
The performance of Σcyclic-rep is close to that of Σno-rep.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

Σbrute

Σno-rep

Σcyclic-rep

Σgreedy

(a) For each of the four heuristics, the curve y = f(x) shows the
average performance y of the heuristics when only considering the
x% cases most favorable to that heuristics.

Heuristic average stdv
Σbrute 21.7 24.2
Σno-rep 53.6 22.1
Σcyclic-rep 56.5 22.2
Σgreedy 70.8 23.2

(b) Statistics over all 608000 in-
stances.

Figure 13: Performance of the heuristics with risk functions defined by computer-availability traces.

8 Conclusion

We have presented a model for studying the problem of scheduling large divisible workloads on
p identical remote computers that are vulnerable (with the same risk function) to unrecoverable
interruptions (Section 2). Our goal has been to find schedules for allocating work to the computers
and for scheduling the checkpointing of that work, in a manner that maximizes the expected
amount of work completed by the remote computers. Most of the results we report assume that
the risk of a remote computer’s being interrupted increases linearly with the amount of time that

58 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

the computer has been available to us; a few results provide scheduling guidelines for more general
risks.

We have completely solved this scheduling problem for the case of p = 1 remote computer
(Section 3). Our solution provides exactly optimal schedules—whose expected work completion is
exactly maximum—both for the free-initiation model, wherein checkpointing incurs no overhead,
and the charged-initiation model, wherein checkpointing does incur an overhead. For the case of
p = 2 remote computers, we provide schedules whose expected work completion is asymptotically
optimal, as the size of the workload grows without bound; we also provide some guidelines for
deriving exactly optimal schedules (Section 4). The complexity of the development in Section 4
suggests that the general case of p remote computers will be prohibitively difficult, even with
respect to deriving asymptotically optimal schedules. Therefore, we settle in this general case
for deriving a number of well-structured heuristics, whose quality can be assessed via explicit
expressions for their expected work outputs (Section 5). Simulations suggest that one of our
six heuristics—regrettably, the computationally most complicated one—is the clear winner in
terms of performance. An extensive suite of simulation experiments suggests that all of our
heuristics provide schedules with good expected work output, and that the “clear winner” in
the competition of Section 5 does, indeed, dominate the others (Section 6). We extended to
general risk functions the asymptotic optimality result for two computers and then the p-computer
heuristics. Extensive simulations using actual traces of computers’ availabilities suggest that the
clear winner of Sections 5 and 6 also dominate other solutions in the presence of general risk
functions (Section 7).

Much remains to be done regarding this important problem, but three directions stand out
as perhaps the major outstanding challenges. One of these is to extend our study to include
heterogeneous assemblages of remote computers, whose constituent computers differ in speed and
other computational resources. When the assemblages are heterogeneous, but even when they are
homogeneous, it would be significant to allow the assemblage’s computers to be subject to differing
probabilities of being interrupted.

Acknowledgment. The work of A. Benoit and Y. Robert was supported in part by the ANR
StochaGrid project. The work of A. Rosenberg was supported in part by US NSF Grants CNS-
0842578 and CNS-0905399.

The authors thank Joshua Wingstrom who give them access to the availability traces.

References

[1] Micah Adler, Ying Gong, and Arnold L. Rosenberg. Asymptotically optimal worksharing
in HNOWs: How long is “sufficiently long?”. In 36th Annual Simulation Symposium, pages
39–46, 2003.

[2] Micah Adler, Ying Gong, and Arnold L. Rosenberg. On “exploiting” node-heterogeneous
clusters optimally. Theory of Computing Systems, 42(4):465–487, 2008.

[3] Cosimo Anglano, John Brevik, Massimo Canonico, Dan Nurmi, and Rich Wolski. Fault-aware
scheduling for bag-of-tasks applications on desktop grids. In GRID ’06, pages 56–63. IEEE
Computer Society, 2006.

[4] Remzi H. Arpaci, Andrea C. Dusseau, Amin M. Vahdat, Lok T. Liu, Thomas E. Anderson,
and David A. Patterson. The interaction of parallel and sequential workloads on a network
of workstations. In SIGMETRICS ’95/PERFORMANCE ’95, pages 267–278. ACM, 1995.

[5] Baruch Awerbuch, Yossi Azar, Amos Fiat, and Frank Thomson Leighton. Making commit-
ments in the face of uncertainty: How to pick a winner almost every time. In 28th ACM
SToC, pages 519–530, 1996.

Static Strategies for Worksharing with Unrecoverable Interruptions 59

[6] Mohammad Banikazemi, Vijay Moorthy, and Dhabaleswar K. Panda. Efficient collective com-
munication on heterogeneous networks of workstations. In Intl. Conf. on Parallel Processing
(ICPP), pages 460–467, 1998.

[7] Cyril Banino, Olivier Beaumont, Larry Carter, Jeanne Ferrante, Arnaud Legrand, and Yves
Robert. Scheduling strategies for master-slave tasking on heterogeneous processor platforms.
IEEE Trans. Parallel Distributed Systems, 15(4):319–330, 2004.

[8] Gerassimos D. Barlas. Collection-aware optimum sequencing of operations and closed-form
solutions for the distribution of a divisible load on arbitrary processor trees. IEEE Trans.
Parallel Distrib. Syst., 9(5):429–441, 1998.

[9] Olivier Beaumont, Larry Carter, Jeanne Ferrante, Arnaud Legrand, and Yves Robert.
Bandwidth-centric allocation of independent tasks on heterogeneous platforms. In 16th Intl.
Parallel and Distributed Processing Symp. (IPDPS). IEEE Computer Society Press, 2002.

[10] Olivier Beaumont, Loris Marchal, and Yves Robert. Scheduling divisible loads with return
messages on heterogeneous master-worker platforms. In Intl. Conf. on High Performance
Computing HiPC’2005, volume 3769 of LNCS, pages 498–507. Springer Verlag, 2005.

[11] Michael A. Bender and Cynthia A. Phillips. Scheduling dags on asynchronous processors. In
19th ACM SPAA, pages 35–45, 2007.

[12] Veeravalli Bharadwaj, Debasish Ghose, Venkataraman Mani, and Thomas G. Robertazzi.
Scheduling Divisible Loads in Parallel and Distributed Systems. Wiley-IEEE Computer Society
Press, 1996.

[13] Sandeep N. Bhatt, Fan R. K. Chung, Frank Thomson Leighton, and Arnold L. Rosenberg.
An optimal strategies for cycle-stealing in networks of workstations. IEEE Trans. Computers,
46(5):545–557, 1997.

[14] Rajkumar Buyya, David Abramson, and Jonathan Giddy. A case for economy grid architec-
ture for service-oriented grid computing. In 10th Heterogeneous Computing Workshop. IEEE
Computer Society, 2001.

[15] Y.-C. Cheng and T.G. Robertazzi. Distributed computation for a tree network with com-
munication delays. IEEE Transactions on Aerospace and Electronic Systems, 26(3):511–516,
1990.

[16] Walfredo Cirne and Keith Marzullo. The computational co-op: Gathering clusters into a
metacomputer. In 13th Intl. Parallel Processing Symp. (IPPS), pages 160–166, 1999.

[17] Pierre-Franεcois Dutot. Master-slave tasking on heterogeneous processors. In 17th Intl. Par-
allel and Distributed Processing Symp. (IPDPS), 2003.

[18] Ian Foster and Carl Kesselman, editors. The Grid 2: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann Publishers, 2004.

[19] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: Enabling scalable
virtual organizations. Intl. J. High Performance Computing Applications, 15(3):200–222,
2001.

[20] Pierre Fraigniaud, Bernard Mans, and Arnold L. Rosenberg. Efficient trigger-broadcasting in
heterogeneous clusters. J. Parallel Distrib. Comput., 65(5):628–642, 2005.

[21] Li Gao and Grzegorz Malewicz. Toward maximizing the quality of results of dependent tasks
computed unreliably. Theory Comput. Syst., 41(4):731–752, 2007.

60 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

[22] Ram Kesavan, Kiran Bondalapati, and Dhabaleswar K. Panda. Multicast on irregular switch-
based networks with wormhole routing. In 3rd IEEE Symp. on High-Performance Computer
Architecture, pages 48–57, 1997.

[23] Derrick Kondo. Scheduling Task Parallel Applications For Rapid Turnaround on Enterprise
Desktop Grids. PhD thesis, University of California at San Diego, July 2005.

[24] Derrick Kondo, Henri Casanova, Eric Wing, and Francine Berman. Models and scheduling
mechanisms for global computing applications. In 16th Intl. Parallel and Distr. Processing
Symp. (IPDPS), 2002.

[25] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Leboisky. Seti@home-massively
distributed computing for seti. Computing in Science & Engineering, 3(1):78–83, 2001.

[26] Michael J. Litzkow, Miron Livny, and Matt W. Mutka. Condor - a hunter of idle workstations.
In ICDCS, pages 104–111, 1988.

[27] Grzegorz Malewicz, Arnold L. Rosenberg, and Matthew Yurkewych. Toward a theory for
scheduling dags in internet-based computing. IEEE Trans. Computers, 55(6):757–768, 2006.

[28] Daniel Nurmi, John Brevik, and Rich Wolski. Modeling machine availability in enterprise
and wide-area distributed computing environments. In Euro-Par 2005 Parallel Processing,
volume 3648 of LNCS, pages 432–441, 2005.

[29] Gregory F. Pfister. In Search of Clusters. Prentice-Hall, 1995.

[30] J.S. Plank and W.R. Elwasif. Experimental assessment of workstation failures and their
impact on checkpointing systems. In Fault-Tolerant Computing, 1998, pages 48–57, June
1998.

[31] Arnold L. Rosenberg. Guidelines for data-parallel cycle-stealing in networks of workstations
i: On maximizing expected output. J. Parallel Distrib. Comput., 59(1):31–53, 1999.

[32] Arnold L. Rosenberg. Guidelines for data-parallel cycle-stealing in networks of workstations ii:
On maximizing guaranteed output. Intl. J. Foundations of Computer Science, 11(1):183–204,
2000.

[33] Arnold L. Rosenberg. Sharing partitionable workloads in heterogeneous nows: Greedier is not
better. In IEEE Intl. Conf. on Cluster Computing (CLUSTER 2001), pages 124–131, 2001.

[34] Arnold L. Rosenberg. Optimal schedules for cycle-stealing in a network of workstations with
a bag-of-tasks workload. IEEE Trans. Parallel Distrib. Syst., 13(2):179–191, 2002.

[35] Arnold L. Rosenberg. Changing challenges for collaborative algorithmics. In A. Zomaya,
editor, Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models
with Emerging Technologies, pages 1–44. Springer, 2006.

[36] Bharadwaj Veeravalli, Debasish Ghose, and V. Mani. Optimal sequencing and arrangement
in distributed single-level tree networks with communication delays. IEEE Trans. Parallel
Distrib. Syst., 5(9):968–976, 1994.

[37] Bharadwaj Veeravalli, Debasish Ghose, and V. Mani. Multi-installment load distribution
in tree networks with delays. IEEE Transactions on Aerospace and Electronic Systems,
31(2):555–567, 1995.

[38] S.W. White and D.C. Torney. Use of a workstation cluster for the physical mapping of
chromosomes. SIAM NEWS, pages 14–17, March 1993.

[39] Joshua Wingstrom and Henri Casanova. Probabilistic allocation of tasks on desktop grids.
In Proceedings of PCGrid. IEEE CS Press, 2008.

Static Strategies for Worksharing with Unrecoverable Interruptions 61

[40] Yang Yang and Henri Casanova. Umr: A multi-round algorithm for scheduling divisible
workloads. In 17th Intl. Parallel and Distributed Processing Symp. (IPDPS), page 24, 2003.

62 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

A Experiments with linear risk functions
(selected heuristics)

On the following graphs, the only group-heuristic whose performance is reported is Σgreedy.

A.1 Experiments E1

Static Strategies for Worksharing with Unrecoverable Interruptions 63

47 chunks 97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

Figure 14: Experiment (E1) using 5 computers.

64 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

147 chunks 197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

Figure 15: Experiment (E1) using 5 computers (continued).

Static Strategies for Worksharing with Unrecoverable Interruptions 65

47 chunks 97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

Figure 16: Experiment (E1) using 10 computers.

66 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

147 chunks 197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

Figure 17: Experiment (E1) using 10 computers (continued).

Static Strategies for Worksharing with Unrecoverable Interruptions 67

47 chunks 97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

Figure 18: Experiment (E1) using 25 computers.

68 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

147 chunks 197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

Figure 19: Experiment (E1) using 25 computers (continued).

Static Strategies for Worksharing with Unrecoverable Interruptions 69

47 chunks 97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

Figure 20: Experiment (E1) using 50 computers.

70 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

147 chunks 197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

Figure 21: Experiment (E1) using 50 computers (continued).

Static Strategies for Worksharing with Unrecoverable Interruptions 71

47 chunks 97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

Figure 22: Experiment (E1) using 100 computers.

72 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

147 chunks 197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

Figure 23: Experiment (E1) using 100 computers (continued).

Static Strategies for Worksharing with Unrecoverable Interruptions 73

A.2 Experiments E2

74 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

Figure 24: Experiment (E2) with 47 chunks.

Static Strategies for Worksharing with Unrecoverable Interruptions 75

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

Figure 25: Experiment (E2) with 97 chunks.

76 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

Figure 26: Experiment (E2) with 147 chunks.

Static Strategies for Worksharing with Unrecoverable Interruptions 77

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

Figure 27: Experiment (E2) with 197 chunks.

78 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

A.3 Experiments E3

Static Strategies for Worksharing with Unrecoverable Interruptions 79

W(ttl) = 1.5 W(ttl) = 3.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

Figure 28: Experiment (E3) using 5 computers.

80 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

W(ttl) = 3 W(ttl) = 7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

Figure 29: Experiment (E3) using 10 computers.

Static Strategies for Worksharing with Unrecoverable Interruptions 81

W(ttl) = 7.5 W(ttl) = 17.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

Figure 30: Experiment (E3) using 25 computers.

82 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

W(ttl) = 15 W(ttl) = 35

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

Figure 31: Experiment (E3) using 50 computers.

Static Strategies for Worksharing with Unrecoverable Interruptions 83

W(ttl) = 30 W(ttl) = 70

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

Figure 32: Experiment (E3) using 100 computers.

84 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

A.4 Experiments E4

Static Strategies for Worksharing with Unrecoverable Interruptions 85

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

47 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

147 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

Figure 33: Experiment (E4) with 5 computers.

86 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

47 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

147 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

Figure 34: Experiment (E4) with 10 computers.

Static Strategies for Worksharing with Unrecoverable Interruptions 87

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

47 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

147 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

Figure 35: Experiment (E4) with 25 computers.

88 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

47 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

147 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

Figure 36: Experiment (E4) with 50 computers.

Static Strategies for Worksharing with Unrecoverable Interruptions 89

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

47 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

147 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

Figure 37: Experiment (E4) with 100 computers.

90 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

B Experiments with linear risk functions
(all heuristics)

On the following graphs, the performance of all the heuristics is displayed, including all our group
heuristics.

B.1 Experiments E1

Static Strategies for Worksharing with Unrecoverable Interruptions 91

47 chunks 97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

Figure 38: Experiment (E1) using 5 computers.

92 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

147 chunks 197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

Figure 39: Experiment (E1) using 5 computers (continued).

Static Strategies for Worksharing with Unrecoverable Interruptions 93

47 chunks 97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

Figure 40: Experiment (E1) using 10 computers.

94 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

147 chunks 197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

Figure 41: Experiment (E1) using 10 computers (continued).

Static Strategies for Worksharing with Unrecoverable Interruptions 95

47 chunks 97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

Figure 42: Experiment (E1) using 25 computers.

96 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

147 chunks 197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

Figure 43: Experiment (E1) using 25 computers (continued).

Static Strategies for Worksharing with Unrecoverable Interruptions 97

47 chunks 97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

Figure 44: Experiment (E1) using 50 computers.

98 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

147 chunks 197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

Figure 45: Experiment (E1) using 50 computers (continued).

Static Strategies for Worksharing with Unrecoverable Interruptions 99

47 chunks 97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

Figure 46: Experiment (E1) using 100 computers.

100 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

147 chunks 197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

W
(c

m
p)

 /
O

pt
im

al

Total workload W(ttl)

Figure 47: Experiment (E1) using 100 computers (continued).

Static Strategies for Worksharing with Unrecoverable Interruptions 101

B.2 Experiments E2

102 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

Figure 48: Experiment (E2) with 47 chunks.

Static Strategies for Worksharing with Unrecoverable Interruptions 103

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

Figure 49: Experiment (E2) with 97 chunks.

104 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

Figure 50: Experiment (E2) with 147 chunks.

Static Strategies for Worksharing with Unrecoverable Interruptions 105

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

W
(c

m
p)

 /
O

pt
im

al

Number of computers

Figure 51: Experiment (E2) with 197 chunks.

106 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

B.3 Experiments E3

Static Strategies for Worksharing with Unrecoverable Interruptions 107

W(ttl) = 1.5 W(ttl) = 3.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

Figure 52: Experiment (E3) using 5 computers.

108 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

W(ttl) = 3 W(ttl) = 7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

Figure 53: Experiment (E3) using 10 computers.

Static Strategies for Worksharing with Unrecoverable Interruptions 109

W(ttl) = 7.5 W(ttl) = 17.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

Figure 54: Experiment (E3) using 25 computers.

110 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

W(ttl) = 15 W(ttl) = 35

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

Figure 55: Experiment (E3) using 50 computers.

Static Strategies for Worksharing with Unrecoverable Interruptions 111

W(ttl) = 30 W(ttl) = 70

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

W
(c

m
p)

 /
O

pt
im

al

Number of chunks per unit of work

Figure 56: Experiment (E3) using 100 computers.

112 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

B.4 Experiments E4

Static Strategies for Worksharing with Unrecoverable Interruptions 113

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

47 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

147 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

Figure 57: Experiment (E4) with 5 computers.

114 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

47 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

147 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

Figure 58: Experiment (E4) with 10 computers.

Static Strategies for Worksharing with Unrecoverable Interruptions 115

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

47 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

147 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

Figure 59: Experiment (E4) with 25 computers.

116 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

47 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

147 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

Figure 60: Experiment (E4) with 50 computers.

Static Strategies for Worksharing with Unrecoverable Interruptions 117

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

47 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

147 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

W
(c

m
p)

 /
O

pt
im

al

Start-up cost ε

Figure 61: Experiment (E4) with 100 computers.

118 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

B.5 Experiments E5

Static Strategies for Worksharing with Unrecoverable Interruptions 119

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(a) 5 computers.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(b) 10 computers.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(c) 25 computers.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(d) 50 computers.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(e) 100 computers.

Figure 62: Experiment (E5) using different numbers of computers.

120 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(a) ε = 0.1000.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(b) ε = 0.0010.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(c) ε = 0.0010.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(d) ε = 0.0001.

Figure 63: Experiment (E5) using different values of start-up cost.

Static Strategies for Worksharing with Unrecoverable Interruptions 121

C Experiments with general risk functions

122 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(a) 5 computers.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(b) 10 computers.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(c) 25 computers.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(d) 50 computers.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(e) 100 computers.

Figure 64: Experiments using different numbers of computers.

Static Strategies for Worksharing with Unrecoverable Interruptions 123

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(a) ε = 0.1000.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(b) ε = 0.0010.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(c) ε = 0.0010.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(d) ε = 0.0001.

Figure 65: Experiments using different values of start-up cost.

124 A. Benoit, Y. Robert, A.L. Rosenberg, F. Vivien

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(a) Trace 0.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(b) Trace 1.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(c) Trace 2.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(d) Trace 3.

Figure 66: Experiments using different different traces (a).

Static Strategies for Worksharing with Unrecoverable Interruptions 125

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(a) Trace 4.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(b) Trace 5.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(c) Trace 6.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 o

pt
im

al
 w

or
k

do
ne

Percentage of best cases considered

(d) Trace 7.

Figure 67: Experiments using different different traces (b).

	1 Introduction
	2 The Technical Framework
	2.1 The Computation and the Computers
	2.2 Modeling Interruptions and Expected Work
	2.2.1 The interruption model
	2.2.2 Expected work production

	3 Scheduling for a Single Remote Computer
	3.1 An Optimal Schedule under the Free-Initiation Model
	3.2 An Optimal Schedule under the Charged-Initiation Model

	4 Scheduling for Two Remote Computers
	4.1 Two Remote Computers under General Risk
	4.2 Two Remote Computers under Linear Risk
	4.2.1 Allocating work in a single chunk
	4.2.2 Asymptotically optimal schedules

	5 Scheduling for p Remote Computers
	5.1 The Partitioning Phase
	5.2 The Orchestration Phase
	5.2.1 General schedules
	5.2.2 Group schedules: introduction
	5.2.3 Group schedules: specific schedules

	5.3 Choosing the Optimal Number of Chunks

	6 Experiments
	6.1 The Experimental Plan
	6.2 Experimental Results
	6.2.1 Experiment (E1): Fixed p, n, and
	6.2.2 Experiment (E2): Fixed W(ttl), cs, and
	6.2.3 Experiment (E3): Fixed W(ttl), p, and
	6.2.4 Experiment (E4): Fixed W(ttl), p, and cs
	6.2.5 Experiment (E5) and (E6): Automatic Inference of Chunk Size

	6.3 Summarizing the Experiments

	7 Going Beyond the Linear Risk Model
	7.1 Asymptotically Optimal Scheduling under General Risk and the Free-Initiation Model
	7.1.1 One Remote Computer
	7.1.2 Two Remote Computers

	7.2 Heuristics and Simulations
	7.2.1 Traces and Methodology
	7.2.2 Simulation Results

	8 Conclusion
	A Experiments with linear risk functions (selected heuristics)
	A.1 Experiments E1
	A.2 Experiments E2
	A.3 Experiments E3
	A.4 Experiments E4

	B Experiments with linear risk functions (all heuristics)
	B.1 Experiments E1
	B.2 Experiments E2
	B.3 Experiments E3
	B.4 Experiments E4
	B.5 Experiments E5

	C Experiments with general risk functions

