
HAL Id: ensl-00421210
https://ens-lyon.hal.science/ensl-00421210

Preprint submitted on 1 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling complex streaming applications on the Cell
processor

Matthieu Gallet, Mathias Jacquelin, Loris Marchal

To cite this version:
Matthieu Gallet, Mathias Jacquelin, Loris Marchal. Scheduling complex streaming applications on
the Cell processor. 2009. �ensl-00421210�

https://ens-lyon.hal.science/ensl-00421210
https://hal.archives-ouvertes.fr


Scheduling complex streaming applications
on the Cell processor

Matthieu Gallet 1,3,4 Mathias Jacquelin 1,3,4 Loris Marchal 2,4

1 ENS Lyon 2 CNRS 3 Université de Lyon
4 LIP laboratory, UMR 5668, ENS Lyon – CNRS – INRIA – UCBL, Lyon, France

LIP Research Report RR-LIP-2009-29

Abstract

In this paper, we consider the problem of scheduling streaming applications described by
complex task graphs on a heterogeneous multicore processor, the STI Cell BE processor. We
first present a theoretical model of the Cell processor. Then, we use this model to express the
problem of maximizing the throughput of a streaming application on this processor. Although
the problem is proven NP-complete, we present an optimal solution based on mixed linear
programming. This allows us to compute the optimal mapping for a number of applications,
ranging from a real audio encoder to complex random task graphs. These mappings are then
tested on two platforms embedding Cell processors, and compared to simple heuristic solu-
tions. We show that we are able to achieve a good speed-up, whereas the heuristic solutions
generally fail to deal with the strong memory and communication constraints.

1 Introduction

The last decade has seen the arrival of multicore processors in every computer and electronic de-
vice, from the personal computer to the high-performance computing cluster. Nowadays, hetero-
geneous multicore processor are emerging. Future processors are likely to embed several special-
purpose cores –like networking or graphic cores– together with general cores, in order to tackle
problems like heat dissipation, computing capacity or power consumption. Deploying an applica-
tion on this kind of platform becomes a challenging task due to the increasing heterogeneity.

Heterogeneous computing platforms such as Grids have been available for a decade or two.
However, the heterogeneity is now likely to exist at a much smaller scale, within a machine, or
even a processor. Major actors of the CPU industry are already planning to include a GPU core

1



to their multicore processors [1]. Classical processors are also often provided with an accelerator
(like GPUs, graphics processing units), or with processors dedicated to special computations (like
ClearSpeed [7] or Mercury cards [18]), thus resulting in a heterogeneous platform. The best ex-
ample is probably the IBM RoadRunner, the current leader of the Top500 ranking [21], which is
composed of an heterogeneous collection of classical AMD Opteron processors and Cell proces-
sors.

The STI Cell BE processor is an example of such an heterogeneous architecture, since it em-
beds both a PowerPC processing unit, and up to eight simpler cores dedicated to vectorial com-
puting. Moreover, the Cell processor is widely available and affordable. This is why we focus our
study on this heterogeneous multicore processor.

Deploying an application on such a heterogeneous platform is not an easy task, especially when
the application is not purely data-parallel. In this work, we focus on applications which exhibit
some regularity, so that we can design efficient static scheduling solutions. We thus concentrate our
work on streaming applications. These applications usually concern multimedia stream processing,
like video edition softwares, web radios or Video On Demand applications [22, 14]. However,
streaming applications also exist in other domains, like real time data encryption applications, or
routing softwares, required by cell phones for example [20]. A stream is a sequence of data that
have to go through several processing tasks. The application is generally structured as a directed
acyclic task graph; this can be a simple chain of tasks, or a more complex structure, as illustrated
in the following.

To process a streaming application on a heterogeneous platform, we have to decide which
tasks will be processed on which processing elements, that is, to find a mapping of the tasks
onto the platform. This is a complex problem since we have to take platform heterogeneity, task
computing requirements, and communication volume into account. The objective is to optimize
the throughput of the application: for example in the case of a video stream, we are looking for a
solution that maximizes the number of images processed per time-unit.

Several stream solutions have already been developed or adapted for the Cell processor. DataCutter-
Lite [13] is an adaptation of the DataCutter framework for the Cell processor, but it is limited
to simple streaming applications described as linear chains, so it cannot deal with complex task
graphs. StreamIt [12, 2] is a language developed to model streaming applications; a version of the
Streamit compiler has been developed for the Cell processor, however it does not allow the user to
specify the mapping of the application, and thus to precisely control the application. Some other
frameworks allow to handle communications and are rather dedicated to matrix operations, like
ALF [16], Sequoia [9], CellSs [6] or BlockLib [3].

In previous work, we have studied how to map complex workflows onto a set of heterogeneous
resources, in the context of computing Grids. In particular, in [10], we explain how to compute
an optimal mapping, that is a mapping reaching the optimal throughput. This is achieved using
steady-state scheduling [5]: the activity of each resource (processing element or communication
links) is bounded using linear constraints, and a mixed linear program (with integer and ratio-
nal variables) gathering these constraints has to be solved to derive the optimal mapping. In the
present paper, we show that steady-state scheduling meets the needs of an efficient scheduler for
streaming application on heterogeneous processors, although new issues have to be solved due to

2



the completely different granularity of the tasks.
The rest of this paper is organized as follows: Section 2 presents in details the Cell processor

together with a model of its operation, as well as our hypotheses for streaming applications. Then,
we expose a theoretical complexity study of the problem in Section 3. Section 4 introduces some
implementation choices that have an impact on the constraints for a good mapping. Section 5 then
presents our optimal solution, obtained through the resolution of a mixed linear program. Finally,
Section 6 presents the results of our experiments.

2 Platform and application model

In this section, we detail our view of the Cell processor, and introduce useful notations. In a second
step, we also present the model of the streaming application.

2.1 Cell processor model

As said in the introduction, the Cell is a heterogeneous multicore processor. It has jointly been
developed by Sony Computer Entertainment, Toshiba, and IBM [17], and embeds the following
components:

• Power core. Also known as the PPE (standing for Power Processing Element) and respecting
the Power ISA 2.03 standard. This core is two-way multithreaded and its main role is to
control the other cores, and to be used by the OS due to its similarity with existing Power
processors. We do not a priori limit our study to only one Cell processor, so we consider
platforms which may include nP PPE cores PPE 0, . . . ,PPEnP

.

• Synergistic Processing Elements (SPE) cores. These cores constitute the main innovation
of the Cell processor and are small 128-bit RISC processors specialized in floating point,
SIMD operations. These differences induce that some tasks are by far faster when processed
on a SPE, while some other tasks can be slower. Each SPE has its own local memory (called
local store) of size LS = 256 kB, and can access other local stores and main memory only
through explicit asynchronous DMA calls. While the current Cell processor has eight SPEs,
only six of them are available in the Sony PlayStation 3.Therefore, we consider any number
nS of SPEs in our model, denoted by SPE 0, . . . , SPEnS

.

• Main memory. Only PPEs have a transparent access to main memory. The dedicated mem-
ory controller is integrated in the Cell processor and allows a fast access to the requested
data. Since this memory is by far larger than the SPE’s local stores, we do not consider its
limited size as a constraint for the mapping of the application.

• Element Interconnect Bus (EIB). This ring bus links all parts of the Cell processor to each
other. The EIB has an aggregated bandwidth BW = 200 GB/s, and each component is
connected to the EIB through a bidirectional interface, with a bandwidth bw = 25 GB/s in
each direction.

3



All these components are displayed in a schematic view on Figure 1(a). To simplify formulas,
we gather all processing elements under the same notation PE i, so that the set of PPEs is PPEs =
{PE 0, . . . ,PEnP−1}, while SPEs = {PEnP

, . . . ,PEnP +nS−1} is the set of SPEs. Let n be the
total number of processing elements, i.e., n = nP + nS . We have two classes of processing
elements, which fall under to the unrelated computation model: a PPE can be fast for a given task
Tk and slow for another one Tl, while a SPE can be slower for Tk but faster for Tl.

EIBPPE 0

M
E
M

O
R
Y

SPE 2

SPE 6SPE 7SPE 1SPE 0

SPE 5 SPE 3SPE 4

(a) Schematic view of the Cell processor.

EIB

bw
out

bw
in

bw
out

bw
in

bw
out

bw
in

bw
out

bw
in

bw
out

bw
in

bw
out

bw
in

bw
out

bw
in

bw
out

bw
in

bw
out

bw
in

bw
out

bw
in

M
E
M

O
R
Y

SPE 0 SPE 1 SPE 7 SPE 6

SPE 4 SPE 2 SPE 3SPE 5

PPE 0

(b) Theoretical view of the Cell processor.

Figure 1: Cell processor.

Communication model. Since the aggregated bandwidth of the EIB bus is equal to the sum of
the bandwidth of all the interfaces (when we have all 8 interfaces), we assume in the following that
this bus is not a constraint and that no contention occurs between communications. This is opti-
mistic, since the structure of the bus may prevent irregular communication patterns to fully use its
bandwidth, but we keep this model as a starting point. We will see in the evaluation that this model
is precise enough to accurately compute an optimal schedule. As all communication elements are
fully bidirectional, we use a bidirectional bounded-multiport model, with linear communication
cost: a data of size S is sent (or received) in time S/b, where b is the bandwidth used for this
communication, and the sum of incoming (respectively outgoing communications) of any element
does not exceed its bandwidth in that direction. Note that memory accesses have to be counted as
communications since they use the same interfaces.

Due to the limited size of the DMA stack on each SPE, each SPE can issue at most 16 simul-
taneous DMA calls. Similarly, each SPE has a separate stack for communications between itself
and a PPE, which can handle at most eight simultaneous DMA calls.

Each core owns a dedicated communication interface (a DMA engine for the SPEs and a mem-
ory controller for the PPEs), and communications can thus be overlapped with computations.

Summarized theoretical model for the complexity study. In the following theoretical study,
the Cell processor is therefore modeled by a set of processing elements as described on Figure 1(b).
Each processing elements is provided with two communications interfaces in charge of the incom-
ing and outgoing communications, with limited bandwidth Bin

q = Bout
q = bw . As we have seen

above, this is the only contention point for communications. Communications can be overlapped
with computations. Moreover, computation costs are modeled using the unrelated-machine model.

4



2.2 Application model

In this work, we target streaming applications. A stream is a sequence of instances, such as images
in the case of a video stream. Our objective is to maximize the throughput of the application, that
is the number of instances processed per time-unit.

As a simple example of a streaming application, we can think of a stream which must go
through a simple chain of tasks, as depicted on Figure 2(a): in this application all instances of the
stream must go through two tasks, such as two filters to apply to all images of a video stream.
Streaming applications may be more complex, as described on Figure 2(b), and we model the
structure of the application with a Directed Acyclic Graph GA = (VA, EA). The set VA of nodes
corresponds to tasks T1, . . . , TK . The set EA of edges models the dependencies between tasks,
and the associated data: the edge from Tk to Tl is denoted by Dk,l. A data Dk,l, of size datak,l

(in bytes), models a dependency between two task Tk and Tl, so that the processing of the ith
instance of task Tl requires the data corresponding to the ith instance of data Dl,k produced by Tk.
Moreover, it may well be the case that Tl also requires the results of a few instances following the
ith instance. In other words, Tl may need information on the near future (i.e., the next instances)
before actually processing an instance. For example, this happens in video encoding softwares,
when the program only encodes the difference between two images. We denote by peekk the
number of such instances, that is, we need instances i, i + 1, . . . , i + peekk of Dk,l to process the
ith instance of Tl. This number of following instances is important not only when constructing the
actual schedule and synchronizing the processing elements, but also when computing the mapping,
because of the limited size of local memories where temporary data are stored.

We also take into account communication between tasks and the main memory; we note readk

the number of bytes read in memory by each instance of task Tk, and writek the number of bytes
task Tk writes to memory.

Finally, since computing speeds of PPEs and SPEs are unrelated, wPPE(Tk) (respectively
wSPE(Tk)) denotes the time required for a PPE (resp. an SPE) to complete a single instance
of Tk. As all SPEs and all PPEs are identical, these two values totally describe the computation
requirements. Note that the processing times of tasks (as well as the size of the data exchanged by
tasks) are instance independent.

3 Problem definition and complexity analysis

3.1 Definitions: mapping and schedule

As explained above, our goal is to deploy a complex streaming application, described by a task
graph, on a heterogeneous multicore architecture, under the objective of throughput maximization.
To completely described the deployment of the application, we have to provide both a mapping

and a schedule. The mapping describes where each task will be processed, whereas the schedule
specifies when. Figure 2(c) shows one possible mapping for the task graph depicted on Figure 2(b)
on four processing elements PE 1, PE 2, PE 3, and PE 4. Using this mapping, all instances of task
T1 are processed by PE 1, all instances of tasks T2, T5, and T6 are processed by PE 2, etc. With

5



input stream

output stream

T1

T2

(a) Simple streaming application.

T1

T4T3

T7T6T5

T2

T9

T8

(b) Other streaming application.

PE 4

PE 2

PE 1

PE 3T1

T4T3

T7T6T5

T2

T9

T8

(c) A possible mapping.

Figure 2: Applications and mapping.

such a mapping, all instances of a given task Tk are thus processed on the same processing element.
We could also use a more general scheme, with different instances of the same task processed on
different processing elements. This could help improving the throughput, but it would require to
described the mapping of each instance of each task. We have studied this problem earlier, and
provided a polynomial-time algorithm to solve it under some constraints on the task graph [4].
However, using a general mapping scheme has several drawbacks: it requires a complex flow
control in order to route all messages, it induces larger buffers, and it involves a lot more commu-
nications when a task Tk with peekk > 0 (i.e., a task which needs data from several instances to
process a single instance) is replicated on several processing elements. Therefore, using a general
mapping is not suited with the target architecture, which requires simple control and small com-
munications, due to the limited size of the local memories. In this study, we thus concentrate on
schedules describes by a simple mapping of tasks to processing elements.

D1,2

peek 3 =1

T3

T2

D1,3

T1

PE 2

PE 1

(a) Application and mapping.
peek

1
= peek

2
= 0 and peek

3
= 1

T2

T1

D
1,2

D
1,3

T3T2

T1

D
1,2

D
1,3

T3T2

T1

D
1,2

D
1,3

T1

T2

T1

D
1,2

D
1,3

T1

D
1,2

D
1,3

0 1 2 3 4

PE 2

PE 1

T

5period

(b) Periodic schedule.

Figure 3: Mapping and schedule

Given a mapping, we can reconstruct a complete periodic schedule as illustrated on Figure 3.

6



After a few periods for initialization, each processing element enters a steady state: a processing
element in charge of a task Tk simultaneously processes one instance of Tk, sends the result Dk,l

of the previous instance to the processing element in charge of each successor task Tl, and receives
the data Dj,k of the next instance from the processing element in charge of each predecessor task
Tj . The exact construction of this periodic schedule is detailed in [4] for general mappings. In
our case, the construction of the schedule is more straightforward: a processing element PE i in
charge of a task Tk simply processes it as soon as its input data is available, i.e., as soon as PE i

has received the data for the current instance and potentially the peekk following ones. Note that
since we use a bounded-multiport model for communication, we do not need to precisely schedule
the communications inside a period. All communications can happen simultaneously as soon as
the average bandwidth needed during the period does not exceed the bandwidth bound on each
interface. We denote by T the duration of a period in the obtained schedule. In this schedule, a
new instance is processed every T time-units, thus the throughput of this schedule is ρ = 1/T .

3.2 Complexity of the problem

In the previous section, we have seen that the mapping of an application onto the computing plat-
form totally defines the schedule and its throughput ρ. In this section, we discuss the complexity
of the problem of finding a mapping with optimal throughput. In this section, we forget about
memory constraints, and constraints on the number of DMA transfers, as explained in Section 2.1:
those constraints are not needed to prove that the problem is difficult. The associated decision
problem is formally defined as follows.

Definition 1 (Cell-Mapping). Given a directed acyclic application graph GA, a Cell processor

with nP PPE cores and nS SPE cores and a bound B, is there a mapping with throughput ρ ≥ B?

Theorem 1. Cell-Mapping is NP-complete in the strong sense.

Proof. First note that we can check in polynomial time if a mapping has a given throughput:
we simply have to make sure that the occupation time of each resource (processing element or
communication interface) for processing one instance is not larger than 1/B. Thus, this problem
belongs to the NP class.

We prove the NP-completeness using a straightforward reduction from the Minimum Multipro-
cessor Scheduling problem restricted to two machines, which is known to be NP-complete even
with a fixed number of machines [11]. An instance I1 of Minimum Multiprocessor Scheduling
with two machines consists in n tasks T1, . . . , Tn provided with a length l(k, i) for each task Tk

and each processor i = 1, 2, and a bound B′. The goal is to find an allocation f of the tasks on the
processors such that

∑

k,f(k)=i l(k, i) ≤ B for each processor i = 1, 2.
We construct an instance I2 of our problem with one PPE (corresponding to processor 1) and

one SPE (corresponding to processor 2). The streaming application consists in a simple chain
of n tasks: VA = {T1, . . . , Tn} and there is a dependency Dk,k+1 for all k = 1, . . . n − 1. The
computation times are wPPE(Tt) = l(t, 1) and wSPE(Tt) = l(t, 2), and communication costs are
neglected: datak,k+1 = 0 for all k = 1, . . . n − 1. Finally, we set B = 1/B′. The construction of
I2 is obviously polynomial.

7



Assume that I1 has a solution f . Then, f defines a mapping of the tasks onto the processing
elements. Using this mapping, the maximum occupation time of each processing element is at
most B. Therefore, the throughput of this mapping is at least 1/B = B′. f is thus a solution for
instance I1. Similarly, a solution for I2 is to a solution for I1.

The proof does not make use of communications:the problem is NP-complete even without
any communication costs. Note that the restriction of Minimum Multiprocessor Scheduling with a
fixed number of machines admits a fully polynomial approximation scheme (FPTAS) [15]. How-
ever, when considering a general application, communications have to be mapped together with
computations, and the previous FPTAS cannot be applied. In spite of the NP-completeness of the
problem, and thanks to the limited number of processing elements, we will show in Section 5 that
a solution using Mixed Integer Programing allows to compute the optimal solution in a reasonable
time.

4 Implementation choices

In this section, we relate the implementation choices made when designing our scheduler that
impacts the optimization problem: we need to clarify these choices before we can express the
constraints on memory, and the constraints on the number of communications from and to SPEs.
There are two main issues: how to handle asynchronous communications and how to compute a
bound on the buffer sizes.

4.1 Communications and DMA calls

The Cell processor has very specific constraints, especially on communications between cores.
Even if SPEs are able to receive and send data while they are doing some computation, they are
not multi-threaded and the computation must be interrupted to initiate a communication (but the
computation is resumed immediately after the initialization of the communication). There are two
ways to transfer data from a core to another:

1. The sender writes data into the destination local store;
2. The receiver reads data from the source local store. This method is a bit faster, so it is

preferred to the former.
Due to the absence of auto-interruption mechanism, the thread running on each SPE has reg-

ularly to suspend its computation and check the status of current DMA calls. Moreover, as pre-
sented in Section 2.1, the DMA stack on each SPE has a limited size. A SPE can issue at most 16
simultaneous DMA calls, and can handle at most 8 simultaneous DMA calls issued by the PPEs.
Furthermore, when building a steady-state schedule, we do not want to precisely order commu-
nications among processing elements, since it would require a lot of synchronizations. On the
contrary, we assume that all the communications of a given period may happen simultaneously.
These communications correspond to edges Dk,l of the task graph when tasks Tk and Tl are not
mapped on the same processing element. With the previous limitation on concurrent DMA calls,

8



this induces a strong limitation on the mapping: each SPE is able to receive at most 16 different
data, and to send at most 8 data to PPEs per period.

4.2 Determining buffer sizes

Since SPEs have only 256 kB of local store, memory constraints on the mapping are tight. We
need to precisely model them by computing the exact buffer sizes required by the application.

Mainly for technical reasons, the code of the whole application is replicated in the local stores
of SPEs (of limited size LS) and in the memory shared by PPEs. We denote by code the size of the
code which is deployed on each SPE, so that the available memory for buffers is LS−code. A SPE
processing a task Tk has to devote a part of its memory to the buffers for incoming data Dj,k, as
well as for outgoing data Dk,l. Note that both buffers have to be allocated into the SPE’s memory
even if one of the neighbor tasks Tj or Tl is mapped on the same SPE. In a future optimization, we
could save memory by avoiding the duplication of buffers for neighbor tasks mapped on the same
SPE.

As we have seen in Section 3.1, before computing an instance of a task Tk, a processing element
has to receive all the corresponding data, that is the data Dj,k produced by each predecessor task
Tj , both for the current instance and for the peekk following instances. Thus, the results of several
instances need to be stored during the execution, because processing elements are not synchronized
on the same instance. In order to compute the number of stored data, we first compute the index
of the period in the schedule when the first instance of Tk is processed. The index of this period is
denoted by firstPeriod(Tk), and is expressed by:

firstPeriod(Tk) =

{

0 if Tk has no predecessor,
max
Dj,k

(

firstPeriod(Tj)
)

+ peekk + 2 otherwise.

All predecessors of an instance of task Tk are processed after maxDj,k

(

firstPeriod(Tj)
)

+
1 periods. We have also to wait for peekk additional periods if some following instances are
needed, plus one period for the communication from the processing element handling the data,
hence the result. By induction on the structure of the task graph, this allows to compute firstPeriod

for all tasks. For example, with the task graph and mapping described on Figure 3, we have
firstPeriod(1) = 0, firstPeriod(2) = 2, and firstPeriod(3) = 4. Again, we could have avoided
the additional period dedicated for communication when tasks are mapped on the same processor
(e.g., we could have firstPeriod(3) = 3), but we let this optimization for future work to keep our
scheduling framework simple.

Once the firstPeriod(Tk) value of a task Tk is known, buffer sizes can be computed. For
a given data Dk,l, the number of temporary instances of this data that have to be stored in the
system if firstPeriod(Tl) − firstPeriod(Tk). Thus, the size of the buffer needed to store this data
is buff k,l = datak,l × (firstPeriod(Tl) − firstPeriod(Tk)).

9



5 Optimal mapping through mixed linear programming

In this section, we present a mixed linear programming approach that allows to compute a mapping
with optimal throughput. This study is adapted from [10], but takes into account the specific
constraints of the Cell processor. The problem is expressed as a linear program where integer
and rational variables coexist. Although the problem remains NP-complete, in practice, some
softwares are able to solve such linear programs [8]. Indeed, thanks to the limited number of
processing elements in the Cell processor, we are able to compute the optimal solution for task
graphs of reasonable size (up to a few hundreds of tasks).

Our linear programming formulation makes use of both integer and rational variables. The
integer variables are described below. They can only take values 0 or 1.

• α’s variables which characterize where each task is processed: αk
i = 1 if and only if task Tk

is mapped on processing element PE i.
• β’s variables which characterize the mapping of data transfers: βk,l

i,j = 1 if and only if data
Dk,l is transfered from PE i to PE j (note that the same processing element may well handle
both task if i = j).

Obviously, these variables are related. In particular, βk,l
i,j = αk

i ×αl
j , but this redundancy allows

us to express the problem as a set of linear constraints. The objective of the linear program is to
minimize the duration T of a period, which corresponds to maximizing the throughput ρ = 1/T .
The intuition behind the linear program is detailed below. Remember that processing elements
PE 0,. . . ,PEnP−1 are PPEs whereasPEnP

,. . . ,PEn are SPEs.
• Constraints (1a) define the domain of each variable: α and β lie in {0, 1}, while T is rational.
• Constraint (1b) states that each task is mapped on exactly one processing element.
• Constraint (1c) asserts that the processing element computing a task holds all necessary input

data.
• Constraint (1d) asserts that a processing element can send the output data of a task only if it

processes the corresponding task.
• Constraint (1e) ensures that the computing time of each PPE is no larger that T , and Con-

straint (1f) does the same for each SPE.
• Constraint (1g) states that all incoming communication have to be completed within time T ,

and Constraint (1h) does the same for outgoing communications.
• Constraint (1i) ensures that all temporary buffers allocated on the SPEs fit into their local

stores.
• Constraint (1j) states that a SPE can perform at most 16 simultaneous incoming DMA calls,

and Constraint (1k) makes sure that at most eight simultaneous DMA calls are issued by
PPEs on each SPE.

10

















































































































MINIMIZE T UNDER THE CONSTRAINTS

(1a) ∀Dk,l,∀PE i and PE j, αk
i ∈ {0, 1}, βk,l

i,j ∈ {0, 1}

(1b) ∀Tk,
∑n−1

i=0 αk
i = 1

(1c) ∀Dk,l,∀j, 0 ≤ j ≤ n − 1,
∑n−1

i=0 (βk,l
i,j ) ≥ αl

j

(1d) ∀Dk,l,∀i, 0 ≤ i ≤ n − 1,
∑n−1

j=0 (βk,l
i,j ) ≤ αk

i

(1e) ∀i, 0 ≤ i < nP ,
∑

Tk
(αk

i wPPE(Tk)) ≤ T

(1f) ∀i, nP ≤ i < n,
∑

Tk
(αk

i wSPE(Tk)) ≤ T

(1g) ∀i, 0 ≤ i < n, αk
i readk +

∑

Dk,l

∑

0≤j<n,j 6=i(β
k,l
j,i datak,l) ≤ T × bw

(1h) ∀i, 0 ≤ i < n, αk
i writek +

∑

Dk,l

∑

0≤j<n,j 6=i(β
k,l
i,j datak,l) ≤ T × bw

(1i) ∀i, nP ≤ i < n,
∑

Tk

(

αk
i

(

∑

Dk,l
buff k,l +

∑

Dl,k
buff l,k

))

≤ LS − code

(1j) ∀j, nP ≤ j < n,
∑

0≤i<n,i6=j

∑

Dk,l
βk,l

i,j ≤ 16

(1k) ∀i, nP ≤ i < n,
∑

0≤j<nP

∑

Dk,l
βk,l

i,j ≤ 8

(1)

We denote ρopt = 1/Topt , where Topt is the value of T in any optimal solution of Linear
Program (1), with O(n2) variables and O(n2) constraints. The following theorem states that ρopt

is the maximum achievable throughput.

Theorem 2. An optimal solution of Linear Program (1) describes a mapping with maximal through-

put.

Proof. Consider an optimal solution of Linear Program (1), with throughput ρopt = 1/Topt .
Thanks to the constraints of the linear program, this solution defines a valid mapping with pe-
riod Topt . As we have seen before, this corresponds to a schedule with throughput ρopt .

We now consider any possible mapping of the application onto the processing elements, and
the associated schedule. We define αk

i = 1 if task Tk is mapped on processing element PE i in
this mapping, and 0 otherwise. We also define βk,l

i,j = αk
i × αl

j . We finally consider the period T
achieved by the schedule associated with this mapping. Since T is a valid period for this mapping,
these variables satisfies all constraints of Linear Program (1). α, β and T are then a solution of the
linear program. Thus, T ≤ Topt and this mapping has a throughput 1/T which is not larger than
the ρopt .

6 Experimental validation

To assess the quality of both our model and our scheduling strategy, we conduct several experi-
ments. We used two hardware platforms: a Sony PlayStation 3, and an IBM QS22. The Sony
PlayStation 3 is a video game console built around a single Cell processor, with only 6 usable
SPEs and a single Power core. The IBM QS22 is a high performance computing server built on

11



top of two Cell processors connected through a high performance interface and sharing main mem-
ory. Using both Cell processors generates many new difficulties, both for software development
(moving threads on particular PPEs) and platform modeling (especially for communication con-
tention between both Cell processors). Therefore, we first focus on optimizing the performance
for a single Cell processor, and we will adapt our study to several processors in a future work.
Thus, in the experiments, the number of PPE is nP = 1 and the number of SPEs nS may vary
from zero to eight (or six on the PlayStation 3). For our experiments, we use ILOG CPLEX [8]
to solve the linear program introduced in the previous section. In order to reduce the computation
time for solving the linear program, we used the ability of CPLEX to stop its computation as soon
as its solution is within 5% of the optimal solution. While this significantly reduces the average
resolution time, it still offers a very good solution. Using this feature, the time for solving a linear
program was always kept below one minute (mostly around 20 seconds), which is negligible in
front of the duration of a stream application.

6.1 Scheduling software

Together with these hardware platforms, we also need a software framework to execute our sched-
ules while handling communications. If there already exist some frameworks dedicated to stream-
ing applications [12, 13], none of them is able to deal with complex task graphs while allowing to
statically select the mapping. Thus, we have decided to develop one1. Our scheduler only requires
as input parameters the description of the task graph, its mapping on the platform, and the code of
each task. Even if it was designed to use the mapping returned by the linear program, it can also
use any other mapping, such as the heuristic strategies described below.

We now briefly describe our scheduler, which is mainly divided into two main phases: the com-

putation phase, during which the scheduler selects a task and processes it, and the communication

phase, during which the scheduler performs asynchronous communications. These steps, depicted
on Figure 4, are executed by every processing element. Moreover, since communications have to
be overlapped with computations, our scheduler cyclically alternates between those two phases.

The computation phase, which is shown on Figure 4(a), begins with the selection of a runnable
task according to the provided schedule, then it waits for the required resources (input data and
output buffers) to be available. If all required resources are available, the selected task is processed,
otherwise, it moves to the communication phase. Whenever new data is produced, the scheduler
signals it to every dependent processing elements.

The communication phase, depicted in Figure 4(b), aims at performing every incoming com-
munication, most often by issuing DMA calls. Therefore, the scheduler begins by watching every
previously issued DMA call in order to unlock the output buffer of the sender when data had been
received. Then, the scheduler checks whether there is new incoming data. In that case, and if
enough input buffers are available, it issues the proper “Get” command.

To obtain a valid and efficient implementation of this scheduler, we had to overcome several
issues due to the very particular nature of the Cell processor. First, the main issue is heterogeneity:

1An experimental version of our scheduling framework is available online, at http://graal.ens-lyon.
fr/~mjacquel/cell_ss.html

12



Select a Task

Wait for Resources

Process Task

Signal new Data

Communicate

C
o

m
p

u
ta

ti
o

n
P

h
a

se

Communicate

(a) Computation Phase.

No more comm.

No

No

C
o

m
m

u
n

ic
a

ti
o

n
P

h
a

se

Compute

For each inbound comm.

Check input data

Watch DMA

Check input buffers

Get Data

(b) Communication Phase.

Figure 4: Scheduler state machine.

the Cell processor is made of two different types of cores, which induces additional challenges for
the programmer:

• SPE are 32-bit processors whereas the PPE is a 64-bit architecture;
• Different communication mechanisms have to be used depending on which types of pro-

cessing elements are implied in the communication. To properly issue our “Get” opera-
tions, we made use of three different intrinsics: mfc_get for SPE to SPE communications,
spe_mfcio_put for SPE to PPE communication, and memcpy for communication be-
tween PPE and main memory.

Another difficulty lies in the large number of variables that we need to statically initialize in each
local store before starting the processing of the stream: the information on the mapping, the buffer
for data transfer, and some control variables such as addresses of all memory blocks used for
communications. This initialization phase is again complicated by the different data sizes between
32-bit and 64-bit architectures, and the runtime memory allocation.

All these issues show that the Cell processor is not designed for such a complex and decentral-
ized usage. However, our success in designing a complex scheduling framework proves that it is
possible to use such a heterogeneous processor for something else than pure data-parallelism.

6.2 Applications

We test our scheduling framework on three random task graphs, obtained with the DagGen gener-
ator [19]. This allows us to test our strategy against task graphs with different depths, widths, and
branching factors. Two of the three generated task graphs are described on Figures 5(a) and 5(b),
and the last one is a simple chain graph with 50 tasks. For these graphs, we generated 6 variants
of different communication-to-computation ratio (CCR), resulting in 24 different random appli-
cations. We compute the CCR of a scenario as the total number of transfered elements divided
by the number of operations on these elements. In the experiments, the CCR goes from 0.775
(computation-intensive scenario) to 4.6 (communication-intensive scenario).

13



T1: T0

cost ppe: 

cost spe: 

peek: 0

stateless

T2: T1

cost ppe: 

cost spe: 

peek: 1

stateless

T3: T2

cost ppe: 

cost spe: 

peek: 0

stateless

T4: T3

cost ppe: 

cost spe: 

peek: 0

stateless

T5: T4

cost ppe: 

cost spe: 

peek: 1

stateless

T6: T5

cost ppe: 

cost spe: 

peek: 0

stateful

T50: T49

cost ppe: 

cost spe: 

peek: 0

stateful

T7: T6

cost ppe: 

cost spe: 

peek: 0

stateless

T8: T7

cost ppe: 

cost spe: 

peek: 0

stateful

T9: T8

cost ppe: 

cost spe: 

peek: 0

stateless

T13: T12

cost ppe: 

cost spe: 

peek: 1

stateless

T10: T9

cost ppe: 

cost spe: 

peek: 1

stateless

T11: T10

cost ppe: 

cost spe: 

peek: 1

stateless

T12: T11

cost ppe: 

cost spe: 

peek: 0

stateless

T14: T13

cost ppe: 

cost spe: 

peek: 0

stateless

T18: T17

cost ppe: 

cost spe: 

peek: 0

stateful

T19: T18

cost ppe: 

cost spe: 

peek: 1

stateless

T16: T15

cost ppe: 

cost spe: 

peek: 0

stateless

T17: T16

cost ppe: 

cost spe: 

peek: 0

stateless

T15: T14

cost ppe: 

cost spe: 

peek: 0

stateful

T20: T19

cost ppe: 

cost spe: 

peek: 0

stateless

T21: T20

cost ppe: 

cost spe: 

peek: 0

stateful

T22: T21

cost ppe: 

cost spe: 

peek: 1

stateless

T23: T22

cost ppe: 

cost spe: 

peek: 1

stateful

T24: T23

cost ppe: 

cost spe: 

peek: 0

stateless

T25: T24

cost ppe: 

cost spe: 

peek: 0

stateless

T26: T25

cost ppe: 

cost spe: 

peek: 1

stateless

T27: T26

cost ppe: 

cost spe: 

peek: 0

stateful

T30: T29

cost ppe: 

cost spe: 

peek: 1

stateless

T29: T28

cost ppe: 

cost spe: 

peek: 1

stateless

T31: T30

cost ppe: 

cost spe: 

peek: 1

stateless

T32: T31

cost ppe: 

cost spe: 

peek: 1

stateless

T28: T27

cost ppe: 

cost spe: 

peek: 1

stateless

T34: T33

cost ppe: 

cost spe: 

peek: 0

stateful

T37: T36

cost ppe: 

cost spe: 

peek: 1

stateless

T33: T32

cost ppe: 

cost spe: 

peek: 1

stateless

T36: T35

cost ppe: 

cost spe: 

peek: 1

stateless

T35: T34

cost ppe: 

cost spe: 

peek: 1

stateless

T39: T38

cost ppe: 

cost spe: 

peek: 1

stateless

T38: T37

cost ppe: 

cost spe: 

peek: 0

stateless

T40: T39

cost ppe: 

cost spe: 

peek: 0

stateless

T41: T40

cost ppe: 

cost spe: 

peek: 1

stateless

T42: T41

cost ppe: 

cost spe: 

peek: 1

stateless

T43: T42

cost ppe: 

cost spe: 

peek: 1

stateless

T44: T43

cost ppe: 

cost spe: 

peek: 0

stateful

T45: T44

cost ppe: 

cost spe: 

peek: 0

stateless

T46: T45

cost ppe: 

cost spe: 

peek: 1

stateless

T47: T46

cost ppe: 

cost spe: 

peek: 1

stateless

T48: T47

cost ppe: 

cost spe: 

peek: 0

stateless

T49: T48

cost ppe: 

cost spe: 

peek: 0

stateful

(a) Random
graph 1

T1: T0

cost ppe: 

cost spe: 

peek: 0

stateless

T2: T1

cost ppe: 

cost spe: 

peek: 1

stateful

T3: T2

cost ppe: 

cost spe: 

peek: 1

stateless

T4: T3

cost ppe: 

cost spe: 

peek: 1

stateless

T5: T4

cost ppe: 

cost spe: 

peek: 0

stateless

T6: T5

cost ppe: 

cost spe: 

peek: 2

stateless

T7: T6

cost ppe: 

cost spe: 

peek: 2

stateful

T8: T7

cost ppe: 

cost spe: 

peek: 1

stateless

T11: T10

cost ppe: 

cost spe: 

peek: 0

stateless

T13: T12

cost ppe: 

cost spe: 

peek: 2

stateless

T9: T8

cost ppe: 

cost spe: 

peek: 2

stateless

T12: T11

cost ppe: 

cost spe: 

peek: 2

stateless

T10: T9

cost ppe: 

cost spe: 

peek: 0

stateless

T94: T93

cost ppe: 

cost spe: 

peek: 0

stateless

T14: T13

cost ppe: 

cost spe: 

peek: 0

stateful

T18: T17

cost ppe: 

cost spe: 

peek: 1

stateless

T20: T19

cost ppe: 

cost spe: 

peek: 1

stateless

T21: T20

cost ppe: 

cost spe: 

peek: 0

stateless

T15: T14

cost ppe: 

cost spe: 

peek: 1

stateful

T17: T16

cost ppe: 

cost spe: 

peek: 0

stateless

T19: T18

cost ppe: 

cost spe: 

peek: 2

stateless

T22: T21

cost ppe: 

cost spe: 

peek: 2

stateless

T16: T15

cost ppe: 

cost spe: 

peek: 2

stateless

T29: T28

cost ppe: 

cost spe: 

peek: 2

stateless

T30: T29

cost ppe: 

cost spe: 

peek: 2

stateless

T32: T31

cost ppe: 

cost spe: 

peek: 1

stateless

T24: T23

cost ppe: 

cost spe: 

peek: 0

stateless

T23: T22

cost ppe: 

cost spe: 

peek: 1

stateful

T25: T24

cost ppe: 

cost spe: 

peek: 2

stateless

T26: T25

cost ppe: 

cost spe: 

peek: 0

stateless

T28: T27

cost ppe: 

cost spe: 

peek: 0

stateless

T27: T26

cost ppe: 

cost spe: 

peek: 2

stateless

T31: T30

cost ppe: 

cost spe: 

peek: 1

stateless

T34: T33

cost ppe: 

cost spe: 

peek: 0

stateful

T40: T39

cost ppe: 

cost spe: 

peek: 2

stateless

T33: T32

cost ppe: 

cost spe: 

peek: 1

stateless

T35: T34

cost ppe: 

cost spe: 

peek: 0

stateless

T37: T36

cost ppe: 

cost spe: 

peek: 2

stateless

T39: T38

cost ppe: 

cost spe: 

peek: 0

stateless

T41: T40

cost ppe: 

cost spe: 

peek: 1

stateless

T36: T35

cost ppe: 

cost spe: 

peek: 1

stateless

T38: T37

cost ppe: 

cost spe: 

peek: 0

stateless

T43: T42

cost ppe: 

cost spe: 

peek: 0

stateless

T42: T41

cost ppe: 

cost spe: 

peek: 0

stateful

T44: T43

cost ppe: 

cost spe: 

peek: 1

stateless

T45: T44

cost ppe: 

cost spe: 

peek: 0

stateless

T46: T45

cost ppe: 

cost spe: 

peek: 0

stateless

T47: T46

cost ppe: 

cost spe: 

peek: 0

stateful

T48: T47

cost ppe: 

cost spe: 

peek: 0

stateful

T50: T49

cost ppe: 

cost spe: 

peek: 0

stateless

T49: T48

cost ppe: 

cost spe: 

peek: 1

stateless

T51: T50

cost ppe: 

cost spe: 

peek: 1

stateful

T57: T56

cost ppe: 

cost spe: 

peek: 1

stateless

T59: T58

cost ppe: 

cost spe: 

peek: 2

stateful

T60: T59

cost ppe: 

cost spe: 

peek: 1

stateless

T54: T53

cost ppe: 

cost spe: 

peek: 1

stateless

T52: T51

cost ppe: 

cost spe: 

peek: 0

stateless

T53: T52

cost ppe: 

cost spe: 

peek: 1

stateful

T61: T60

cost ppe: 

cost spe: 

peek: 1

stateless

T55: T54

cost ppe: 

cost spe: 

peek: 0

stateful

T56: T55

cost ppe: 

cost spe: 

peek: 1

stateless

T58: T57

cost ppe: 

cost spe: 

peek: 1

stateless

T62: T61

cost ppe: 

cost spe: 

peek: 0

stateless

T63: T62

cost ppe: 

cost spe: 

peek: 2

stateless

T65: T64

cost ppe: 

cost spe: 

peek: 0

stateless

T66: T65

cost ppe: 

cost spe: 

peek: 0

stateful

T64: T63

cost ppe: 

cost spe: 

peek: 1

stateless

T67: T66

cost ppe: 

cost spe: 

peek: 0

stateful

T68: T67

cost ppe: 

cost spe: 

peek: 0

stateful

T69: T68

cost ppe: 

cost spe: 

peek: 1

stateful

T70: T69

cost ppe: 

cost spe: 

peek: 0

stateless

T73: T72

cost ppe: 

cost spe: 

peek: 0

stateless

T75: T74

cost ppe: 

cost spe: 

peek: 2

stateful

T72: T71

cost ppe: 

cost spe: 

peek: 2

stateless

T76: T75

cost ppe: 

cost spe: 

peek: 1

stateless

T71: T70

cost ppe: 

cost spe: 

peek: 0

stateless

T74: T73

cost ppe: 

cost spe: 

peek: 1

stateless

T77: T76

cost ppe: 

cost spe: 

peek: 0

stateless

T78: T77

cost ppe: 

cost spe: 

peek: 0

stateless

T79: T78

cost ppe: 

cost spe: 

peek: 2

stateless

T81: T80

cost ppe: 

cost spe: 

peek: 0

stateless

T82: T81

cost ppe: 

cost spe: 

peek: 1

stateless

T80: T79

cost ppe: 

cost spe: 

peek: 2

stateful

T85: T84

cost ppe: 

cost spe: 

peek: 1

stateless

T90: T89

cost ppe: 

cost spe: 

peek: 2

stateless

T84: T83

cost ppe: 

cost spe: 

peek: 2

stateful

T86: T85

cost ppe: 

cost spe: 

peek: 0

stateful

T87: T86

cost ppe: 

cost spe: 

peek: 1

stateless

T88: T87

cost ppe: 

cost spe: 

peek: 1

stateful

T91: T90

cost ppe: 

cost spe: 

peek: 1

stateless

T92: T91

cost ppe: 

cost spe: 

peek: 2

stateful

T83: T82

cost ppe: 

cost spe: 

peek: 1

stateless

T89: T88

cost ppe: 

cost spe: 

peek: 0

stateless

T93: T92

cost ppe: 

cost spe: 

peek: 0

stateless

(b) Random graph 2

Figure 5: Two random task graphs used in the experiments

14



6.3 Reference heuristics

Here, we present two simple heuristic strategies that we have designed in order to assess the per-
formance of our schedule based on linear programming. These strategies are designed for the
particular hardware platforms used in our tests; therefore, they can handle a Cell processor with
several SPEs and one PPE. Since we noticed that memory limitation of the SPEs is one of the
most significant factor for performance, these strategies focus on a reasonable usage of this limited
memory. The second one also takes the computation amount into account when mapping tasks to
processing elements. Both strategies are greedy strategies: they map the tasks one after the other,
and never go back on a previous decision.

The first heuristic, called GREEDYMEM, process the tasks in a topological order. Given a task,
it select the SPEs which have enough free memory to host the tasks and its buffers. Among those
SPEs, the one with the least loaded memory is chosen. If no SPE can host the task, it is allocated
on the PPE.

The second heuristic is called GREEDYCPU and is very similar to GREEDYMEM: among the
processing elements (SPEs and PPE) with enough memory to host a task, it selects the one with
the smallest computation load.

6.4 Experimental results

The results presented here are obtained on the QS22, using up to eight SPEs. We have also per-
formed the same experiments on the PlayStation 3, and the results are exactly the same as the one
on the QS22 (using six SPEs). Thus, we show only the results on the QS22.

6.4.1 Entering steady-state

First, we show that our scheduling framework succeeds in reaching steady-state, and that the
throughput is then similar to the one predicted by the linear program. Figure 6 shows the ex-
periments done with the task graph described in Figure 5(a), with a CCR of 0.775, on the QS22
using all eight SPEs. We notice that a steady-state operation is obtained after approximately 1000
instances. Note that one instance consists only of a few bytes, so the steady-state throughput is
obtained quickly compared to the total length of the stream. In steady state, the experimental
throughput achieves 95% of the throughput predicted by the linear program. The small gap is
explained by the overhead of our framework, and the synchronizations induced when communica-
tions are performed.

6.4.2 Comparing heuristics with linear program

Then, we compare the throughput of the mapping obtained through mixed linear programming with
the mappings computed by the heuristics. We compute the speed-up obtained by each mapping,
that is the achieved throughput normalized to the throughput when using only the PPE. Figure 7
shows the results for the three random task graphs, with CCR 0.775, for different numbers of SPEs
used.

15



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of instances

0

5

10

15

20

25

30

35

40

T
hr

ou
gh

pu
t(

in
st

an
ce

s
/s

ec
on

ds
)

Theoretical throughput
Experimental throughput

Figure 6: Throughput achieved depending on the number of instances.

0 1 2 3 4 5 6 7 8

Number of SPEs

1

1.5

2

Sp
ee

d-
up

fo
r

50
00

in
st

an
ce

s

GREEDYCPU
GREEDYMEM
Linear Programming

(a) Speed-up for random graph 1

0 1 2 3 4 5 6 7 8

Number of SPEs

1

1.5

2

Sp
ee

d-
up

fo
r

50
00

in
st

an
ce

s

GREEDYCPU
GREEDYMEM
Linear Programming

(b) Speed-up for random graph 2

0 1 2 3 4 5 6 7 8

Number of SPEs

1

1.5

2

2.5

3

Sp
ee

d-
up

fo
r

50
00

in
st

an
ce

s

GREEDYCPU
GREEDYMEM
Linear Programming

(c) Speed-up for random graph 3

Figure 7: Speed-up obtained on the QS22 depending on the number of SPEs used.

16



Mappings generated through linear programming achieves the best speed-up, and they also
offer the best scalability among every mappings. For these task graphs, we reach a speed-up
between 2 and 3 using 8 SPEs, while the heuristics reaches a maximum speed-up of 1.3. This
shows that it is crucial to take data transfers into account when designing mapping strategies.
However, our complex strategy based on linear programming and using a better model of the
platform is able to get good performance out of this complex architecture.

6.4.3 Influence of the communication-to-computation ratio

We now test the performance of the mapping computed with the mixed linear program, for different
values of the communication-to-computation (CCR). The speed-up when using the 8 SPEs of the
QS22 are presented on Figure 8. We see that the larger the CCR, the more difficult to get a good
speed-up. Indeed, when communications are predominant, it is hard to distribute tasks among
SPEs and to reach a decent throughput. Eventually, the best policy is to map all tasks to the PPE.

Sp
ee

d-
up

fo
r

10
00

0
in

st
an

ce
s

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Communication to computation ratio

1

1.5

2

2.5

3

3.5

4

Random graph 2
Random graph 3

Random graph 1

Figure 8: Speed-up of random task graphs according to the CCR, for the mapping computed
through linear programming using 8 SPEs on an QS22.

In conclusion, our experiments demonstrate the usefulness of our approach on the Cell. High
speed-ups are obtained whenever the CCR of the application is sufficiently low, and our mappings
offer better performance and scalability compare to the heuristics we have implemented.

7 Conclusion

In this paper, we have studied the scheduling of streaming applications on a heterogeneous mul-
ticore processor: the STI Cell processor. The first challenge was to come up with a realistic and
yet tractable model of the Cell processor. We have designed such a model, and we have used it to
express the optimization problem of finding a mapping with maximal throughput. This problem
has been proven NP-complete, and we have designed a formulation of the problem as a mixed
linear program. By solving this linear program with appropriate tools, we can compute a mapping
with optimal throughput.

17



In a second step, we have implemented a complete scheduling framework to deploy streaming
applications on the Cell processor. This framework allows the user to deploy any streaming appli-
cation, described by a potentially complex task graph, on a Cell processor, given any mapping of
the application to the platform. Thanks to this scheduling framework, we have been able to test
our scheduling strategy, and to compare it to simpler heuristic strategies. We have shown that our
strategy reaches 95% of the throughput predicted by the linear program, that our approach has a
good and scalable speed-up when using up to 8 SPEs, and that our strategy clearly outperforms
the simple heuristics, which are unable to deal with the complex mapping problem. Overall, this
demonstrates that scheduling a complex application on a heterogeneous multicore processor is a
challenging task, but that scheduling tools can help to achieve good performance.

This work has several natural extensions, and we have already started to study some of them.
First, several optimizations of the scheduling framework could be implemented to achieve even
better performance, such as limiting buffer sizes for neighbors tasks mapped on the same process-
ing elements. Then, we need to extend and refine the model we have presented in this paper to
more complex platforms. For example, we would like to be able to use both Cell processors of the
QS22, or even a cluster of QS22 machines. On the long view, we would like to adapt our model
and framework to other heterogeneous multicore platforms. Finally, we have seen that simple
heuristics fail to efficiently map the application on the platforms; thus it would be interesting to
design involved mapping heuristics which approach the optimal throughput.

References

[1] AMD Fusion. http://fusion.amd.com.

[2] Streamit project. http://groups.csail.mit.edu/cag/streamit/index.shtml.

[3] M. Ålind, M. Eriksson, and C. Kessler. BlockLib: a skeleton library for Cell broadband engine. In
IWMSE ’08: 1st international workshop on Multicore software engineering, pages 7–14, New York,
NY, USA, 2008. ACM.

[4] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Steady-state scheduling on heterogeneous
clusters. International Journal of Foundations of Computer Science, 16(2):163–194, 2005.

[5] Olivier Beaumont and Loris Marchal. Steady-state scheduling. In Introduction to Scheduling. Chap-
man and Hall/CRC Press, 2009. To appear.

[6] P. Bellens, J. Perez, R. Badia, and J. Labarta. CellSs: a programming model for the Cell BE architec-
ture. In SC’06: ACM/IEEE Super Computing Conference, pages 5–5, Nov. 2006.

[7] ClearSpeed. ClearSpeed technology. http://www.clearspeed.com/technology/index.
php.

[8] ILOG CPLEX: High-performance software for mathematical programming and optimization. http:
//www.ilog.com/products/cplex/.

18



[9] K. Fatahalian, T. Knight, M. Houston, M. Erez, D. Reiter Horn, L. Leem, J. Park, M. Ren, A. Aiken,
W. Dally, and P. Hanrahan. Sequoia: Programming the memory hierarchy. SC’06: ACM/IEEE Super

Computing Conference, 0:4, 2006.

[10] Matthieu Gallet, Loris Marchal, and Frédéric Vivien. Efficient scheduling of task graph collec-
tions on heterogeneous resources. In International Parallel and Distributed Processing Symposium

IPDPS’2009. IEEE Computer Society Press, 2009.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of NP-

Completeness. W. H. Freeman and Company, 1979.

[12] X. Hang. A streaming computation framework for the Cell processor. M.eng. thesis, Massachusetts
Institute of Technology, Cambridge, MA, Aug 2007.

[13] T. Hartley and U. Catalyurek. A component-based framework for the Cell broadband engine. In
IPDPS’09: International Parallel and Distributed Processing Symposium, Los Alamitos, CA, USA,
june 2009. IEEE Computer Society Press.

[14] Stephen L. Hary and Fusun Ozguner. Precedence-constrained task allocation onto point-to-point net-
works for pipelined execution. IEEE Trans; Parallel and Distributed Systems, 10(8):838–851, 1999.

[15] Ellis Horowitz and Sartaj Sahni. Exact and approximate algorithms for scheduling nonidentical pro-
cessors. J. ACM, 23(2):317–327, 1976.

[16] IBM. Accelerated library framework. http://www.ibm.com/developerworks/blogs/

page/powerarchitecture?entry=ibomb_alf_sdk30_1&S_TACT=105AGX16&S_

CMP=EDU, 2007.

[17] James A. Kahle, Michael N. Day, H. Peter Hofstee, Charles R. Johns, Theodore R. Maeurer, and
David J. Shippy. Introduction to the cell multiprocessor. IBM Journal of Research and Development,
49(4-5):589–604, 2005.

[18] Mercury. Mercury technology. http://www.mc.com/technologies/technology.aspx.

[19] F. Suter. Dag generation program. http://www.loria.fr/\~suter/dags.html, 2009.

[20] William Thies. Language and Compiler Support for Stream Programs. PhD thesis, Massachusetts
Institute of Technology, 2001.

[21] TOP500 Project. June 06 list. http://www.top500.org/lists/2009/06.

[22] Q. Wu, J. Gao, M. Zhu, N.S.V. Rao, J. Huang, and S.S. Iyengar. On optimal resource utilization for
distributed remote visualization. IEEE Trans. Computers, 57(1):55–68, 2008.

19


