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In this letter we study the coherent electronic transport through a metallic nanowire with magnetic
impurities. The spins of these impurities are considered as frozen to mimic a low temperature spin
glass phase. The transport properties of the wire are derived from a numerical Landauer technique
which provides the conductance of the wire as a function of the disorder configuration. We show
that the correlation of conductance between two spin configurations provides a measure of the
correlation between these spin configurations. This correlation corresponds to the mean field overlap
in the absence of any spatial order between the spin configurations. Moreover, we find that these
conductance correlations are sensitive to the spatial order between the two spin configurations, i.e

whether the spin flips between them occur in a compact region or not.

Spin glasses have been a focus of continuous interest
in condensed matter for more than three decades. In
spite of the relative simplicity of the models describing
their physics, a precise understanding of their properties
remains elusive. Spectacular progress has been made in
understanding their nature at the mean field level [1, 2],
in characterizing their exotic aging properties in mean
field models [3], including a proper description of the vi-
olation of the fluctuation-dissipation theorem, and ex-
perimentally in characterizing their memory and reju-
venation effects (see [4] for a recent review). However
the applicability of mean field ideas in real samples re-
mains debated [5], with alternative approaches stressing
the importance of the nature of excitations, and their
consequences on various out-of-equilibrium properties of
the phase[6].

A crucial quantity to characterize this spin glass
physics is the correlation between different states of spins

{~S
(1)
i }i and {~S

(2)
i }i in a given sample corresponding e.g

to two different times t1 and t2 in a same quench, or two
different quenches. For a single spin i, this correlation

is naturally given by the local overlap ~S
(1)
i .~S

(2)
i . For a

collection of spins, mean-field theory neglects any spatial
correlation of this local overlap : the correlation between
the two spin states is given by

Q12 =
1

N

N
∑

i=1

~S
(1)
i .~S

(2)
i . (1)

The distribution of this overlap between states reached
after successive cooling in a sample plays a central role
in the Parisi’s mean field theory. Note however that this
overlap (1), while perfectly adequate at the mean field
level, does not contain any information on the geometry
of the correlation. In the simplest case of Ising spins it
simply counts the number of spin flips between the two
spin states, without any information on whether these
spin flips occur in a compact region or randomly in the
sample. Information about the spatial structure of this

spin states correlation would require a more refined func-
tion.

Recently, building on previous theoretical work on sen-
sitivity of conductance fluctuations to perturbations like
magnetic impurities [7] and pioneering experiments on
conductance fluctuations in spin glasses [8, 9, 10], the
study of magneto-conductance of spin glass nanowires
was proposed as a unique probe of these correlations be-
tween spin glass configurations [11]. Indeed, the corre-
lation between conductances for two different mean-field
like spin states depends monotonously on the overlap be-
tween these two states. Hence measurement of this con-
ductance correlation can give access to the corresponding
overlap [11, 12]. This proposal calls for experimental and
numerical studies of the correlations of conductance in a
spin glass metallic system. It is the purpose of this let-
ter to develop a numerical study of these conductance
correlations, and in particular to address the question
of sensitivity of these conductance correlations to spatial
order between the corresponding spin states, originating
from e.g the nature of excitation in the spin glass (see
[13] for an alternative numerical approach focused on the
time evolution of conductance fluctuations). This ques-
tion is naturally of crucial importance for experimental
studies of quantum transport in spin glass nanowires. To
address this question, we present a numerical Landauer
approach allowing to accurately describe the weak local-
ization regime of experimental relevance. This approach
allows to go beyond the restrictions of analytical tech-
niques and consider random spin states with spatial cor-
relations between them.

To describe the electronic transport in the low temper-
ature phase of a spin glass metallic wire, we consider a
tight-binding Anderson model with magnetic disorder :

H =
∑

<i,j>,s

tijc
†
j,sci,s +

∑

i,s

vic
†
i,sci,s

+ J
∑

i,s,s′

~Si.~σs,s′c†i,sci,s′ , (2)
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where tij = t represents the hopping of an electron from
site i to j, vi is the scalar random potential uniformly
distributed in the interval [−W/2; W/2] and J is the in-
tensity of the magnetic disorder which is typically smaller
than W . The ~σ are Pauli matrices and s labels the spin
state of the electron. The magnetic impurities of the
spin glass contribute to two different random potentials:
a scalar diffusive potential vi (originating in part from
the random positions of the impurities) and a magnetic

disorder originating from the random spins ~Si. In this
description, all impurity spins ~Si are frozen and treated
as classical spins. We choose the classical spins ~Si ran-
domly in the sphere of radius S, and independent from
each other. This amounts to neglect any spatial order
in a given state, in agreement with neutron scattering
experiments [14]. Going beyond this simple description
by including more complex hidden spatial order goes be-
yond the scope of the present paper. Owing to the ex-
perimental findings of universal conductance fluctuations
in the spin glass phase[8, 9], we focus on the correspond-
ing regime where the wire’s length Lx is comparable or
smaller than the inelastic dephasing length Lφ, which
effectively includes contribution from free spins. With-
out loss of generality, we will restrict ourselves to a two-
dimensional ribbon of size (in units of lattice spacing)
Lx × Ly with Ly ≪ Lx.

For a given configuration of scalar disorder V ≡ {vi}i

and spins {~Si}i, we numerically determine the cor-
responding dimensionless conductance g = G × h/e2

through the Landauer formula [15]: g =
∑

n,m |tnm|2,
where n (resp. m) labels the propagating modes in the
contacts and tnm the corresponding transmission ampli-
tude. These transmission amplitudes are deduced from
the electron’s retarded Green’s functions GR using the
Fisher-Lee relation [16]. This Green’s function GR for
the system connected to two semi-infinite leads is ob-
tained by a recursive method [17]. The Fermi Energy
is chosen so that the total number of transverse propa-
gating modes is equal to 2 × Ly. In units of t = 1, the
amplitude of scalar disorder is chosen as W = 0.6 , while
the coupling J is varied from 0 (no magnetic disorder) to
0.4 (”strong” magnetic disorder). For fixed parameters,
the conductance g is a random function of both disor-
ders V and {~Si}i. We focus on the weak localization
regime, where the conductance g displays universal fluc-
tuations of order 1. Experimentally, these fluctuations
are measured as a function of a weak transverse mag-
netic flux, assuming the ergodic hypothesis (see [18] and
[19] for a numerical analysis). The amplitude of magneto-
conductance fluctuations in a spin glass sample is given
by the variance of the distribution of g[V, {~Si}i] as V is
varied. In the rest of the article, for each configuration of
spins the corresponding distribution will be sampled by
5000 independent realizations of the scalar potential V .

We start by identifying the regime of weak localiza-
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FIG. 1: Probability Density Function of the difference

g[V, {~S
(1)
i }]−g[V, {~S

(2)
i }] as V is varied. The result for various

pairs of mean-field like spin states are shown, parametrized
by the corresponding overlap between these spin states.
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FIG. 2: Conductance correlations as a function of spin config-
urations overlap for different longitudinal sizes, and normal-
ized by their value for Q12 = 1. In the inset, the conductance
fluctuations (Q12 = 1) are plotted as a function of Lx/Lm.

tion. In this regime, for a given random spin configu-
ration, the variance of the above distribution of conduc-

tance 〈(δg)2〉 = 〈
(

g[V, {~Si}i] − 〈g[V, {~Si}i]〉
)2

〉 (where 〈〉
corresponds to an average over V ) is given in the 1D
diffusive regime by

〈(δg)2〉 =
1

4
F (0) +

3

4
F

(

2Lx√
3Lm

)

+
1

4
F

(

2Lx

Lm

)

+
1

4
F

( √
2Lx√
3Lm

)

(3)

where we defined [20] F (x) = (6 + 6x2 − 6 cosh(2x) +
3x sinhx)/(x4 sinh2 x). The amplitude of these fluctua-
tions extrapolate from 8/15 for Lx ≪ Lm (orthogonal
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class with spin-degenerate states) to 1/15 for Lx ≫ Lm

(unitary class with double number of modes). The mag-
netic dephasing length Lm depends in particular on the
strength of magnetic disorder J . It is numerically deter-
mined through the use of formula (3). The inset of Fig.
2 shows the excellent agreement between the numerical
data for this conductance fluctuations and weak localiza-
tion formula (3) plotted as a function of x = Lx/Lm(J).

Having determined the weak localization regime, we
now turn to the study of correlations of the conduc-

tance between two different spin configurations {~S
(1)
i }i

and {~S
(2)
i }i. We consider the distribution as V is var-

ied of the difference g
[

V, {~S
(1)
i }

]

− g
[

V, {~S
(2)
i }

]

. This

distribution has naturally zero mean, and its variance
encodes statistical correlations between the two conduc-
tances

〈

(δg1 − δg2)
2
〉

= 2(
〈

(δg1,2)
2
〉

− 〈δg1δg2〉) where

gα = g
[

V, {~S
(α)
i }

]

. Similarly to the variance (3), they

are parametrized by four dephasing lengths [7, 11, 21] as
follows

〈δg1δg2〉 =
1

4
F
(

Lx/LD,S
m

)

+
3

4
F
(

Lx/LD,T
m

)

+
1

4
F
(

Lx/LC,S
m

)

+
3

4
F
(

Lx/LC,T
m

)

(4)

with F (y) given in (3) and the L
C/D,S/T
m correspond to

magnetic dephasing lengths for the Singlet/Triplet com-
ponents of Diffuson/Cooperon contributions built be-
tween spin configurations 1 and 2. We will study these
conductance correlations for different types of correla-
tions between the spin configurations.

Mean-Field like excitations. First, we consider spin
states with no spatial correlations between them. These
configurations are generated as follows : we start from a
configuration 1 where the orientations of spins are cho-
sen randomly and independently from each other. From
this first state, we generate other configurations by re-
generating with a probability p the orientations of each
spin. In this case, the overlap (1) is an adequate measure
of the correlation between these states. In practice with
this method we generated spin states with mutual over-
lap Q12 from 10−3 to 1. For these spin configurations,
we find a very good agreement with analytical studies[11]
: the correlation between the conductances is entirely
parametrized by their overlap Q12. In Figure 1 we plot
the probability density function (PDF) of the difference

g[V, {~S
(1)
i }] − g[V, {~S

(2)
i }] as V is varied. The PDF for

three different pairs of spin states with the same over-
lap Q12 ≃ 0.91 (dots, squares and triangles) are identical
with each other and different from the PDF for a pair
with Q12 = 0.98. These PDF are found to be reasonably
well Gaussian, parametrized solely by the above second
cumulant.

Then we compare the behaviour of this second cu-
mulant with eq.(4), using the analytical expressions to
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FIG. 3: Comparison between the correlation between conduc-
tances σ = 2(〈(δg)2〉V −〈δg1δg2〉V ) and the so-called Diffuson
Singlet contribution F (0)−F (Lx/LD,S

m ). This contribution is
found to be dominant in the region Q12 ≃ 1. In the inset we
plot this σ function for different value of overlap Q12 and for
J = 0.1. Plain lines are theoretical fits allowing to determine
LD,S

m (Q12, J). System size is 40 × 1600.

order J2 for the dephasing lengths [11] : L
D/C,S
m =

Lm/
√

1 ∓ Q12 and L
D/C,T
m = Lm/

√

1 ± Q12/3. We find
a reasonable agreement between this prediction and nu-
merical results, as shown in Fig. 2. Note that this com-
parison is done without any free parameter as the mag-
netic dephasing length Lm was determined from 〈(δg)2〉
(see Fig. 3) The behaviour of this variance also explains
the high sensitivity of P (g1 − g2 ≃ 0) on small depar-
tures from Q12 = 1 as shown in the inset of Fig. 1.
Indeed, the probability of similar conductances reads
P (0) = 1/

√
2πσ with σ = 2(〈(δg)2〉V − 〈δg1δg2〉V ).

From the above analytical expressions for L
C/D,S/T
m for

overlaps Q12 ≃ 1 the only diverging magnetic length is
found to be LD,S

m . Thus in this regime the expression
(4) is dominated by the corresponding contribution [21].
This allows for a direct determination of LD,S

m from the
Lx−dependance of σ in the region Q12 ≃ 1, as shown
in Fig. 3. We find an excellent agreement between the
corresponding dephasing rate 1/(LD,S

m )2 and its pertur-
bative analytical expression (1 − Q12)/(Lm)2 as shown
on Fig. 4.

Correlated excitations. We now consider the influence
of spatial correlation between two spin configurations.
Generation of correlated spin configurations is obtained
as follows: from an initial spin configuration we generate
a configuration n by reversing spins preferably inside a

box of size L
(n)
x ×Ly in the middle of the sample. We con-

sider boxes of increases length L
(n)
x = nL

(1)
x , such that

all states have the same overlap Q with the initial con-
figuration, but their spatial correlations with this initial
configuration decreases with n (the larger the box, the
smaller the probability that a given spin inside the box
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FIG. 4: Left: evolution of the Diffuson Singlet dephasing
rate of 1/(LD,S

m )2 as a function of the electronic dephasing
rate 1/(L2

m) for mean-field like, spin wave (dash dot), and
boxed excitations. The overlap is 0.9 for all of them, and the
size is 40 × 1600. The linear dependance corresponds to the
analytical expression 1/(LD,S

m )2 = (1 − Q12)/(L
2
m), valid in

the absence of spatial correlations between the spin states.
These results show the clear departure from this behavior for
strong spatial correlations, and the absence of any effective
overlap. Right: same evolution for random configurations and
for spin wave with two different spatial periods corresponding
to the same overlap (Q = 0.54). The stronger correlation
(longer period) corresponds to the larger deviation from the
linear law.

is modified). We also generated spin wave like excita-
tions: from the same initial spin configuration, each spin
is rotated by δφ(x, y) = xδφ0 around the z−axis (axis
perpendicular to the planar sample). δφ0 determines the
period of the spin wave, and thus the overlap between
both configurations. For the different pairs of correlated
spin configurations, we repeat the previous analysis of
conductance correlations. In particular, we determine
the Diffuson Singlet length LD,S

m for different values of
magnetic disorder amplitude J in the region Q12 ≃ 1.
The result is shown in the left part of Fig. 4 for the
overlap Q12 = 0.9. We find clear deviation from the be-
havior 1/(LD,S

m )2 = (1 − Q12)/(Lm)2 which is valid in
the absence of spatial correlations (Fig. 3). The devia-
tion from this linear behavior is largest for the strongest
spatial correlations between spin states, i.e for the small-
est box excitations (n = 1) and the spin wave excitations.
We also consider two spin wave excitations with differ-
ent period but the same overlap with an initial spin state
(Fig. 4). Here again, the resulting Diffuson Singlet mag-
netic length is smaller for the strongest spatial correlation
between the two spin states, corresponding to the largest
period. These results demonstrate the sensitivity of the
magnetic dephasing length LD,S

m on spatial correlations
between the magnetic disorder configurations, and thus
the influence of the geometry of random spin excitations
on the associated correlation of conductances. Note that

these results of Fig. 4 can in principle be tested exper-
imentally by varying the density of magnetic impurities
while working at fixed T/TSG, allowing for an unprece-
dented test of e.g the nature of excitations in a spin glass
state.

In this letter we presented a numerical Landauer anal-
ysis of transport in a mesoscopic metallic wire in the
presence of frozen magnetic impurities. We have found
that statistical properties of conductance correlations be-
tween two mean-field like spin configurations depend only
on the corresponding spin overlap, in agreement with the-
oretical analysis. These results open the route to direct
spin state correlations in mesoscopic spin glasses. We
have also shown the crucial importance of spatial corre-
lations between spin configurations in the electronic de-
phasing process. Studying these correlations along the
lines of Fig. 4 could be experimentally achieved by vary-
ing the electronic density in diluted magnetic semicon-
ductors. Unfortunately this would also modify the cou-
plings between the impurity spins, and hence the spin
configuration. A more promising route consists in ex-
ploring other multi-terminal geometries along the lines
of [8].
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work was supported by the ANR grants QuSpins and
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