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Recent studies attracted the attention on the inherent structure landscape (ISL) approach as a
reduced description of proteins allowing to map their full thermodynamic properties. However, the
analysis has been so far limited to a single topology of a two-state folding protein, and the simplifying
assumptions of the method have not been examined. In this work, we construct the thermodynamics
of four two-state folding proteins of different sizes and secondary structure by MD simulations using
the ISL method, and critically examine possible limitations of the method. Our results show that
the ISL approach correctly describes the thermodynamics function, such as the specific heat, on a
qualitative level. Using both analytical and numerical methods, we show that some quantitative
limitations cannot be overcome with enhanced sampling or the inclusion of harmonic corrections.

PACS numbers: 87.15.A-, 87.15Cc, 05.70.-a

I. INTRODUCTION

The biological and physical properties of proteins are compelling for many reasons. While just a small amount of
the nowadays hundreds of thousands known protein sequences are experimentally characterized, the variety of their
functions is overwhelming. Though the structure has been resolved only for a subset of these sequences, the number
of stable folds that are expressed in nature is seemingly small compared to the number of sequences. The relationship
between fold and function is far from obvious, and examples such as intrinsically unstructured proteins and multi-
functional folds resist simple schemes for classification. The question what really makes a protein functional hence
needs to be addressed in the context of its specific biological environment.

From a physical point of view, an attempt to find some unifying concepts for the interpretation of dynamics and
thermodynamics is the description of proteins in term of energy landscapes[2], in which the evolution of the system
is related to the dynamics on a high-dimensional rugged energy surface. The existence of local minima, connected by
saddles of different barrier height and rank, leads to a distribution of timescales that are reflected in the dynamics of
the proteins.

Although the energy landscape provides a reduced description, the complex interactions in proteins and their inter-
action with the environment, which involve multi-body interactions and subtle effects of charges, make its complete
characterization neither experimentally nor theoretically conceivable. This situation is somewhat reminiscent of other
complex systems such as glasses which, though being more homogeneous systems, share the property of displaying
a high-dimensional landscape leading to complex dynamics. The energy landscape picture is useful for a qualitative
analysis of protein properties, but for quantitative studies, an exhaustive sampling and and the full characteriza-
tion are practically infeasible for this high-dimensional representation. Therefore, in order to obtain comprehensive
quantitative predictions on generic protein properties from the information on the landscape, the picture needs to
be simplified. A recent work[1] has shown that a reduced description of the energy landscape, originally devised for
the analysis of super-cooled liquids by Stillinger and Weber[3], can successfully capture the essential thermodynamic
aspects of folding in the context of a simplified protein model. In particular, it was shown that the density of states
constructed from the local minima of the energy landscape, called inherent structures, can be used to compute the
most important thermodynamic observables. This finding is important because it provides a general scheme for theo-
retical studies of protein thermodynamics, showing how the relevant information can be quantitatively accessed from
its imprint on the potential energy surface. The approach has consequently been used in the context of studies of
the folding properties of a β-barrel forming protein[4], the construction of the free energy landscape by mechanical
unfolding[5], and the network of native contacts[6]. Other earlier works including inherent structure analysis but not
necessarily seeking to characterize the full thermodynamics of folding can be found in [7, 8].

However the validity of an analysis based on the inherent structure landscape (ISL) must be critically examined
because the method involves a fundamental assumption which could be questioned: The vibrational free energy within
the basin of attraction of an inherent structure is assumed to be independent of the basin. A recent study [6] tried to
go beyond this approximation by assuming that the vibrational free energy can depend on the energy of the inherent
structures. Still, the question is subtle as we show in the present work that, even when the vibrational free energy
depends on the inherent structure energy, the derivation of thermodynamic quantities such as the specific heat from



2

the ISL can be validly carried without any change in the procedure. Therefore an understanding of the limits of the
ISL approach requires a deeper analysis. This is the aim of the present work.

We proceed in two steps. In a first step (Section III), after briefly summarizing the ISL formalism and introducing
the protein model used in Section II, we test the validity of the ISL approach by comparing its results to the data
obtained from equilibrium molecular dynamics for a set of structures. We selected four previously unstudied two-state
folding proteins of varying size and secondary structure elements. In a second step (Section IV), we critically revisit
the major hypotheses of the ISL approach, as well as its practical limitations, such as the sampling of the phase space,
and suggest routes for improvements. Finally, we summarize our findings in Section V and give an outlook on possible
future studies that stem from our results.

II. METHODS

A. Inherent structure analysis

In this subsection, we briefly review the major results of [1, 9] on obtaining reduced thermodynamics from an
analysis of the inherent structures.

The method is general and not bound to a specific protein model, provided the phase space of the protein can be
explored by molecular dynamics, and that the energies of the visited states can be calculated. From simulations at
fixed temperature close to the folding temperature Tf , which insures that the system evolves in a large part of the
configuration space, the local potential minima, labelled by αi, are determined by conjugate gradient minimizations
performed at fixed frequency along a molecular dynamics trajectory. The global minimum α0 is defined as the
reference ground state with zero energy. Let {xi}, i = 1, 2, ..., 3N , denote the 3N Cartesian coordinates of the N -
particle system, and V ({xi}) its potential energy function. The probability to find a particular minimum αi with
potential energy eαi

can be written as

p(αi, T ) =
1

Z(T )

∫

B(αi)

d3Nx e−βV ({xi}) =
1

Z(T )
e−βeαi

∫

B(αi)

d3Nx e−β∆Vαi
({xi}) , (1)

where ∆Vαi
= V − eαi

, Z denotes the configurational part of the partition function and B(αi) is the basin of
attraction of the minimum αi. With the definition

e−βFv(αi,T ) :=

∫

B(αi)

d3Nx e−β∆Vαi
({xi}) , (2)

the unknown integral over the complex landscape of the basin of attraction B(αi) is summed in an free-energy like
function Fv(αi, T ) which in principle depends both on the nature of the basin and temperature. Notice that although
we use the index v like ”vibrational”, Fv(αi, T ) is obtained from the full nonlinear integral over B(αi), and not from
its harmonic approximation.
The inherent structure landscape approach makes two key assumptions[1] which enable to considerably reduce the
amount of information needed on the landscape while keeping its most important features.

• (A1) The function Fv(α, T ) for two minima α1, α2 that are distinct but close in energy, eα1
≈ eα2

, is the same
for both minima: Fv(α1, T ) ≈ Fv(α2, T ). Consequently, Fv(α, T ) ≈ Fv(eα, T ).

• (A2) The function Fv(eα, T ) does not vary significantly for different minima, i.e. Fv(eα, T ) ≈ Fv(T ).

Both assumptions were discussed in [9]. In section IV, we show that assumption (A2) can actually be relaxed to the less
strong form βFv(eα, T ) ≈ fv(eα)+βFv(0, T ) while most calculations remain feasible and some of the thermodynamic
variables unchanged. With these assumptions, the contribution from the function Fv factorizes in the numerator and
denominator of (1) so that it can be eliminated to give

p(αi, T ) =
1

ZIS(T )
e−βeαi , ZIS =

αmax
∑

α=α0

e−βeα , (3)

where the sum in the partition function includes all inherent structures found from the global minimum α0 to the
minimum αmax having the highest energy. Here, the energy scale is shifted such that the energy of the global
minimum α0 is zero. Introducing an energy density function for the inherent structures ΩIS(e) =

∑αmax

α=α0
δ(e − eα),

the probability to find a minimum in the interval [eα, eα + deα] at temperature T is

PIS(eα, T )deα =
1

ZIS
ΩIS(eα)e−βeα deα , ZIS =

∫ eαmax

eα0

deα ΩIS(eα)e−βeα . (4)
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For the model used in this work, the low energy minima are in practice sparsely separated in energy. As the ground
state is isolated, one obtains ZIS(T ) = 1/p0(T ) with the probability of the ground state p0(T ), so that the inherent
structure density of states can be estimated from the probability to be in the basin of attraction of a minimum in a
fixed temperature simulation at temperature TMD as

ΩIS(eα) =
eβMDeα

p0(TMD)
PIS(eα, TMD) . (5)

Though above we have chosen a continuous notation to simplify the equations, it should be noted that the density
built from an estimate of the probability density function of sampled minima for the present model in practice
always comprises discrete and continuous parts which can be integrated separately. Once the inherent structure
density of states is known, one can compute the inherent structure partition function ZIS from (4), from which all
thermodynamics functions can be derived, including the free energy FIS and the internal energy UIS . Given that most
states of the system can be sampled close to the folding temperature, it is sufficient to simulate the system at a single
temperature TMD to construct the inherent structure landscape, in contrast to the full thermodynamics where one
needs to sample different ranges of temperatures. Therefore, the ISL approach can be computationally very efficient.
In the following, we will restrict ourselves to the computation of specific heat CV,IS being a quantity of fundamental
importance in a physical system, as it is sensitive to fluctuations and, for instance, shows a clear signature of phase
transitions. It can be deduced from numerical derivatives of the partition function ZIS through

CV = T

(

∂S

∂T

)

V

, (6)

and hence

CV,IS = T

(

∂2(β−1 log(ZIS)

∂T 2

)

V

. (7)

B. Model and selected proteins

Since our goal is to analyze the validity of the ISL approach and not to derive quantitative data for a particular
protein, we decided to choose a simplified model, which allows the sampling of phase space at a reasonable compu-
tational cost. However the model must be rich enough to properly describe the complex features of its physics, and
should be able to distinguish between proteins which differ, for instance, in their secondary structure. We use frus-
trated off-lattice Gō-models identical to the ones introduced in [1] because they provide a good compromise between
all-atom simulations and simplified models that do not fully describe the geometry of a protein. These models provide
a representation with a single particle per residue centered at the location of each Cα-atom. For details on the model
and the parameters, we refer to [1, 9] and a brief review in the appendix A. Although the validity of such models to
provide a faithful representation of protein folding is a recurrent subject of debate, off-lattice Gō-models have been
successfully used to study folding kinetics [10] and the mechanical resistance of proteins [11]. From a physical point
of the view, despite a strong bias towards the ground state, these models have a complex energy landscape with a
large number of local minima well suited for the analysis in terms of inherent structures.
As the results of the ISL approach depend on the density of states of the inherent structures, for a reliable test of
the method it is important to examine examples which could differ in their properties, i.e. to investigate proteins of
different size and structure. To test the inherent structure approach beyond the previously employed immunoglobulin
(IG) binding domain of protein G (2GB1), we selected four two-state folding proteins of varying size and folds from
the PDB database[12]: the trp-cage mini-protein construct (1L2Y, 20 residues, α-helical), the ww domain FPB28
(1E0L, 37 residues, β-sheets), the src-SH3 domain (1SRL, 56 residues, β-sheets) and ubiquitin (1UBQ, 76 residues,
α − β-fold). The motivation for these choices is discussed in Section III for each protein (see insets of figures 1-4
for structural representations of these four proteins drawn with pyMol[13]). The positions of the Cα-atoms of the
PDB files is chosen as a reference for the construction of the Gō-model. In the case of NMR resolved structures,
the first structure is selected as the reference. The native contacts of the model were established according to the
distances between atoms belonging to different residues. A native contact is formed if the shortest distance belonging
to atoms of two different residues is smaller than 5.5Å. The number of native contacts according to this criterion
are: Nnat = 91 for the ww domain, Nnat = 225 for ubiquitin, Nnat = 216 for src-SH3 and Nnat = 36 for trp-cage.
This definition is simple and includes some arbitrariness. There exist other methods for probing contacts between
side-chains, e.g. by invoking the van der Waals radii of residue atoms and solvent molecules[14]. Though using the
latter method preserves the main structure of the contact map, it leads to quantitative differences in the the number
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FIG. 1: Results for src-SH3. Left: Inherent structure density of states ΩIS(eα). The inset shows a close up on the low-energy
range. The size of the energy bins for the density estimate is ∆ E = 0.2 kBTf . Right: Comparison of the specific heat
from equilibrium trajectories CV (T ) (points), from which the specific heat of a harmonic oscillator in 3N dimensions has been
subtracted, and CV,IS(T ) from inherent structure analysis (solid red line); see text for further explanations.

and location of contacts along the sequence. Consequently, one can expect that the topology of the energy surface
and key thermodynamic properties such as the folding temperature are also altered when the definition of the contact
map is varied. For the purpose of the present study which does not attempt to give a quantitative description of side
chain contacts, and focusses on global properties of the landscape rather than its detailed relation to the network of
contacts, the cutoff-based approach is acceptable.
Molecular dynamics simulations were performed using the Brooks-Brünger-Karplus algorithm [15] with a time-step
of dt = 0.1 and a friction constant of γ = 0.01, 0.025 (all units in this section are dimensionless, see [1] for details).
To ensure equilibration, the system was thermalized starting from the native state (PDB coordinates) for t = 2 · 105.
The simulation time for a single temperature point and a single initial condition was t = 2 ·107, and the data obtained
for both inherent structure sampling (fixed temperature) and thermodynamic sampling (variable temperature) were
averaged over various initial sets of velocities. Minimization was performed using the conjugate gradient method with
the Polak-Ribière algorithm. To estimate the vibrational free energy at the minimum, mass weighted normal mode
analysis was performed using LAPACK diagonalization routines. The second-order derivatives of the potential energy
function at the minimum were calculated by numerical differentiation of the analytical first-order derivatives.

III. REDUCED AND FULL THERMODYNAMICS OF A SET OF MODEL PROTEINS

In this section, the validity of the ISL approach is tested by comparing the equilibrium thermodynamics deduced
from molecular dynamics simulations to the reduced thermodynamics from inherent structure sampling. As discussed
in Section II, we evaluate the specific heat CV as a function of temperature as a representative example of the
thermodynamic observables.

A. src-SH3

The src-SH3 domain was chosen since it has the same number of residues as IG binding domain of protein G studied
in [1, 9], but contrasts to the latter in terms of structure. The src-SH3 domain is mostly composed of β-sheets and does
not contain an α-helical-secondary structure element (only five residues form a small right-handed helix segment).
The inherent structure density of states, shown on the left-hand side of figure 1, was obtained from various simulations
close to the folding temperature (TMD ≈ Tf ) and built from ≈ 72000 minima according to (5). After computing an
energy histogram using 1000 bins to yield an estimate of the inherent structure probability density, energy bins with
only a single count have been discarded from the analysis to avoid a bias that could be introduced by insufficiently
sampled isolated minima. The right hand side of figure 1 shows a comparison between the temperature dependence
of the specific heat calculated from inherent structures, CV,IS(T ), and the temperature dependence of the specific
heat calculated from equilibrium molecular dynamics simulations at variable temperature CV (T ). The equilibrium
thermodynamics has been determined by averaging the results of 10 initial conditions per temperature step except
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FIG. 2: Results for ubiquitin, see caption of figure 1 for annotation.The size of the energy bins for the density estimate is
∆ E = 0.24 kBTf .

for points close to the transition where the results of 20 initial conditions have been used. Despite this averaging, the
variance, indicated by error-bars on the y-axis, is large in the vicinity of the folding transition as the waiting time for
a transition to occur becomes comparable to the simulation time. For a harmonic system, CV (T ) = NdofkB/2 where
Ndof is the number of degrees of freedom. At low temperatures T ≪ Tf , harmonic contributions are dominating, and
the difference between CV (T ) and CV,IS(T ) is approximately 3NkB, which is subtracted from CV (T ) in figure 1.

Figure 1 shows that the ISL approach is able to capture the main features of the thermodynamics of the Gō-model
of the src-SH3 domain. The value of the folding temperature is correctly determined by the ISL approach, but
CV,IS underestimates the maximum by more than 20% if the highest point of CV (T ) is selected as a reference. This
discrepancy at the maximum had previously also been observed for the inherent structure analysis of the IG binding
domain of protein G [1]. On the other hand, towards higher temperatures, CV,IS(T ) decays slower than CV (T ).

B. ubiquitin

Ubiquitin, with its 76 amino-acids, is a protein with a fairly rich secondary structure since it contains a α helix and
5 β sheets. Similarly to the src-SH3 domain, the ubiquitin Gō-model presents a sharp folding transition associated
with a large peak in the specific heat (see right-hand side of figure 2). The specific heat CV (T ) was estimated from
averages on 8 initial conditions per temperature step, and ΩIS(eα) was obtained using ≈ 79000 minima from several
independent trajectories close to the folding temperature using a histogram of 2000 bins. The agreement between the
full thermodynamics and the ISL approach is better than for src-SH3, though similar trends of discrepancies can be
observed.

C. ww domain

To contrast with sharp two-state transitions of protein G (56 residues), src-SH3 (56 residues) and ubiquitin (76
residues), we selected smaller structures, the ww domain (37 residues) and the trp-cage (20 residues), to examine the
performance of the inherent structure approach for less structured proteins, showing a broader transition. For such
small protein domains, the validity of the Gō-model can be questioned as the model is built from the geometrical
structure of the folded state. For small molecules the discrimination between folded and unfolded states becomes subtle
due to fluctuations covering a large part of the accessible configurational space in a broad range of temperatures. The
point in selecting these structures is not to asses the validity of the Gō-model itself, but to test the ISL approach
in very stringent cases to highlight possible limitations. The density of states ΩIS(eα) was obtained from ≈ 79000
minima from several independent trajectories slightly above the folding transition (see figure 3) using a histogram of
2000 bins. In contrast to the two previous cases, the histogram of minima does not show a clear separation of basins
of local minima associated to the folded/unfolded state. We observe a difference in the apparent shape of the density
of states (left-hand side of figure 3), which is globally concave in contrast to the convex densities obtained for src-SH3
and ubiquitin. The same shape was also found for protein G in [1], for which the relation between the concave shape
and the two-hump structure of PIS(eα, T ) was discussed in the vicinity of the folding temperature. Moreover, by
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FIG. 3: Results for the ww domain, see caption of figure 1 for annotation. The size of the energy bins for the density estimate
is ∆ E = 0.05 kBTf .
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FIG. 4: Results for trp-cage, see caption of figure 1 for annotation. The size of the energy bins for the density estimate is
∆ E = 0.02 kBTf .

comparing the insets of the left-hand side of figs. 1-3, one observes that the low energy range of ΩIS(eα) is more
discrete, and states tend to lie less densely packed.
The temperature dependence of CV (T ) was obtained by averaging over 12 initial conditions. An interesting feature
of the curve is the shoulder in the low temperature range which indicates a partially unfolded structure associated
to the breaking of a small number of contacts. Comparing the results of CV (T ) and CV,IS(T ), it is apparent that
though the specific heat reconstructed from inherent structure thermodynamics correctly captures the global shape of
CV (T ), including the existence of the shoulder, important deviations can be observed. Similarly to the cases analyzed
above, CV,IS(T ) underestimates CV (T ) at lower temperatures while giving an overestimation at high temperatures.
In contrast to the results for larger proteins, we also observe a significant shift of the transition temperature.

D. trp-cage

With only 20 residues, the last protein fragment studied in this series is also the smallest, and mainly consists of
a single α-helix. Its inherent structure density of states ΩIS(eα) was estimated from ≈ 90000 minima sampled from
several independent trajectories close to the folding temperature using a histogram of 2000 bins. For such a small
system, the low lying energy states are largely separated from each other, and the resulting density of states presents
large gaps in a relatively broad range of energies. The continuum representation assumed for the inherent structure
landscape is certainly questionable in such a case. The equilibrium thermodynamics were constructed from averages
on 10 runs over different initial conditions. It is interesting to notice that the value of the specific heat computed
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with reduced thermodynamics is still fairly close to the actual specific heat, although we notice again that the peak
is underestimated and a high temperature tail is observed as in the previous cases. In contrast to the results for the
ww domain, the folding temperature of the trp-cage protein domain is correctly found by the analysis of inherent
structures.

E. Discussion

Our studies of four proteins, combined with the earlier results on protein G [1, 9], allow us to describe some trends
in the inherent structure analysis of Gō-model proteins.
For the density of states given by (5), a general exponential dependence, ΩIS(eα) ∝ exp(−eα/kBT0) is observed for
all proteins, with slightly different slopes for the low energy states, corresponding to states occupied in the folded
configuration, and for the high energy states, occupied in the unfolded configuration. The value of T0 associated to
the low energy range is a good estimate of the folding temperature, as previously reported for the case of protein G
[1]. Figure 5 (left-hand panel), which compares the density of states of the inherent structures for the four proteins
shows that, when being presented in reduced units as a function of eα/kBTf , the functional form of these densities
is highly similar. For the large proteins that we studied, src-SH3 and ubiquitin (as well as protein G), the slope is
slightly larger in the high energy range than in the low energy range. The converse is true for the small protein
domains ww and trp-cage. A formal calculation of the reduced specific heat CV,IS from a bi-exponential density of
inherent structure energies shows that this property is related to the sharpness of the folding transition. A density
of states that is curved downwards for the energies associated to unfolded configurations leads to the broad folding
transition expected for small protein domains.

The calculation of the specific heat CV,IS shows that the ISL approach is able to determine the specific heat of a
protein with reasonable accuracy, including the overall shape of the folding transition. To obtain such an agreement
the ground state probability p0(TMD) must be sufficiently well sampled to ensure that the density of inherent states
is correctly normalized.

However, our studies of several proteins shows that limitations exist since systematic deviations from the full
thermodynamics are apparent. At low temperatures, and up to the transition temperature, CV,IS(T ) underestimates
the specific heat. The peak of CV,IS(T ) is less pronounced than expected from the equilibrium trajectories, and tends
to broaden towards higher temperatures (T > Tf ) where CV,IS is larger than CV (T ). These deviation are shown in
a comparative illustration in the right-hand side panel of figure 5 for the four proteins. Our data also reveals that
the Gō model, with its strong bias towards the native state, does not yield qualitatively differences depending on the
secondary structure of the protein under consideration.
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log(ωq) of the vibrational free energy βFNMA in the harmonic approxi-

mation, calculated from a sample of 1000 minima. Left: Src-SH3 domain. Right: ww domain. An arbitrary offset was added
to shift the origin of the ordinate.

Owing to the results found for various proteins which show systematic deviations from the results of equilibrium
thermodynamics, it is important to examine the assumptions made in approximating the inherent structure of states,
which we do in the following section.

IV. THE LIMITATIONS OF THE ISL APPROACH

A. Local normal mode analysis

In Section II we introduced the major assumptions (A1) and (A2) of the ISL approach. The derivation of thermody-
namic quantities such as the specific heat is carried out as if the free energy contribution within a basin of attraction,
defined by (2), did not depend on the particular inherent structure αi. It is difficult to test this assumption as it
would in principle require the determination of the complete basin on the energy landscape, including the calculation
of all the saddle points that determine the frontier of the basin as well as the shape of the basin within this frontier.
Still, one can at least compute Fv(α) in the harmonic approximation, as done also in [6].

Assuming that the contribution to the integral (2) can be approximated by local normal modes in the vicinity of
the energy minimum, the effective free energy can be written as

βFNMA(α, T ) =

3N−6
∑

q=1

log

(

~ωq(α)

kBT

)

=

3N−6
∑

q=1

log(ωq(α)/ωq(0)) −

3N−6
∑

q=1

log(kBT/~ωq(0))

= fNMA(α) + βFNMA(0, T ) , (8)

where ωq(0) are the normal mode frequencies at the ground state α = 0. This expression allows us to calculate
a harmonic approximation to Fv(α, T ) by calculating the normal modes for each minimum that we sample, and
subsequently summing their different contributions according to (8). Figure 6 shows the α-dependent part fNMA(α)
as a function of the energy minimum for the two examples of src-SH3 domain (left) and ww domain (right). The
minima were obtained along a single trajectory close to the folding temperature. The distribution of the minima along
the energy axis reflects the character of the probability distribution function for the two proteins, one being divided
into two basins (src-SH3 domain), the other being a single distribution (ww domain).

As a first important observation, we note that the variation of fNMA(α) with eα cannot be assumed to be negligible
as assumed in (A2), according to which FNMA should be approximately constant in eα. Both proteins show the same
trend toward a decreasing effective free energy with increasing eα. For the src-SH3 domain, a nonlinear dependence
can be observed in the high energy range in agreement with previously reported results on protein G [6].
A second point to be noticed is that, for a given eα, a distribution of values of fNMA(α) can be found (variance on
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the y-axis in figure 6). While such a variance (or fluctuation) could be attributed to the limited numerical accuracy of
the normal modes at high energies, this is also true for the low energy part for which the numerical scheme provides
accurate results, as can be checked on the vanishing six lowest eigenmodes. Consequently, it appears that the first
approximation (A1), i.e. F (α, T ) ≈ F (eα, T ) does not hold as assumed, leaving the possibility that the observed
deviations in section III could be caused by this simplification.

B. Free energy correction

The results of the previous subsection seem to challenge the validity of the ISL approach performed under the
assumptions (A1) and (A2). At a first glance, the main problem seems to arise from the approximation (A2) that
Fv(α, T ) does not depend on the particular basin considered, which is obviously untrue. On the other hand, although
there is clearly a variance associated to Fv for the same energy range eα in disagreement with approximation (A1),
one can observe a general evolution of Fv(α, T ) with eα, which suggests that approximating Fv(α, T ) by Fv(eα, T )
may be acceptable. However, we show below that, if the free energy within a basin can be written as a sum

βFv(α, T ) = fv(eα) + βFv(0, T ) , (9)

with fv(eα = 0) := 0 at the ground state, the calculation of CV,IS can be carried out without any change, so that
approximation (A2) appearing to be to particularly bad at a first glance may not be the decisive one. It should be
noticed that, as discussed in the previous section, the property (9) is verified if the motion in each basin of attraction
can be described by a combination of harmonic vibrations.
Starting again from (1), and proceeding as in section II A, we can eliminate the part of Fv(α, T ) that depends on
temperature only in the expression for the partition function and the probability distribution function, keeping only
the α-dependent part. One gets

Z(T ) = e−βFv(0,T )

∫

ΩIS(eα)e−βeαe−fv(eα) deα , (10)

ZIS(T ) =

∫

ΩIS(eα)e−βeαe−fv(eα)deα . (11)

The principle of the calculation is to compute ZIS(T ) form a measurement of the probability density function PIS(T )
estimated from MD simulations at a given temperature TMD. This can be achieved through the intermediate calcula-
tion of a density of states of inherent structures ΩIS(eα), which is temperature independent and from which ZIS(T )
can be obtained at all temperatures. In equation (11), we notice that the inclusion of the term e−fv(eα) is equivalent
in definition an ”effective” density of states ΩIS(eα)e−fv(eα) from which the classical thermodynamic expression can
be derived as shown below. In the calculation of section II A, the density of states is given by equation (4). This

density Ω
(0)
IS and all other observable calculated in section II A will henceforth denote with and index (0). In the new

scheme including the α-dependent part of the free energy in the harmonic approximation, the probability density
PIS(eα, T ) becomes

PIS(eα, T ) =
1

ZIS(T )
ΩIS(eα)e−βeαe−fv(eα) . (12)

yielding the inherent structure density

ΩIS(eα) =
PIS(eα, TMD)

p0(TMD)
eβMDeαefv(eα) . (13)

The latter expression shows that if the variation of Fv(α, T ) with eα cannot be ignored, the previously derived density

of states Ω
(0)
IS (eα) is not the correct one. The two are related by

ΩIS(eα) = Ω
(0)
IS (eα)efv(eα) . (14)

A similar result was also reported in [6] which considered the particular case of a piecewise linear dependence on eα.
Though the densities differ, substituting (14) in equations (11) or (4), we immediately have ZIS(T ) = Z0

IS(T ), and the

inherent structure observables such as UIS = 〈eα〉 and CV,IS =
(

〈e2
α〉 − 〈eα〉

2
)

/kBT 2 are unchanged, i.e. UIS = U
(0)
IS
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and CV,IS = C
(0)
V,IS even when fv 6= 0.

As a consequence, using equation (10), the full free energy F (T ) of the protein can be written as

F (T ) = −kBT log(Z(T )) = −kBT log(ZIS(T )) + Fv(0, T )

= −kBT log(Z
(0)
IS (T )) + Fv(0, T ) = F

(0)
IS + Fv(0, T ) . (15)

Therefore, in the ISL formalism, taking into account the variation of Fv(α, T ) as in equation (9) does not alter the free
energy and cannot be expected to be at the origin of the quantitative differences between CV derived from the ISL
formalism and the full numerical results presented in section III. We conclude that the origin of these discrepancies
is likely to be found in the non-separability between the α and the T dependency within the basins. Such an non-
separability can be expected as soon as the anharmonicity of the different basins is taken into account. This is certainly
relevant for proteins, in particular as the denaturation involves frequent transitions between basins of different shape
and volume associated to the semi-rigid folded and the highly flexible unfolded state.
When Fv(α, T ) cannot be separated into α- and T -dependent contributions to simplify the calculation of the partition
function, the remaining possible approximation that can tackle the computational difficulty would be the saddle
point approximation of the free energy [3]. This approximation is acceptable in the thermodynamic limit for large
systems, but cannot be justified in the present problem as the number of particles involved is still small and the
interactions between particles are heterogeneous. While the harmonic approximation seems to be invalid for the
present problem which involves large conformational changes due to the denaturation transition, results on super-
cooled liquids [17] indicate that the correction of the heterogeneity of the basins at low temperatures is small and the
decoupling approximation of vibrational and inherent structure contributions appears to be possible at least in these
temperature regimes.

C. Effect of limited sampling efficiency

The main practical difficulty of the ISL method comes from the need to properly sample all the inherent structures
in order to get a meaningful density of states ΩIS(eα) in all energy ranges. In the present scheme of inherent structure
sampling, a single temperature is selected to simulate the dynamics of the protein for a finite period of time. The
choice of a temperature close to the folding temperature is natural as the protein samples both the folded and the
unfolded configurations at this temperature. There are however two questions that have to be answered: i) How
long should we follow a protein MD trajectory to get a sufficient sampling? ii) Is it possible to combine data from
simulations at a few different temperatures instead of keeping T fixed?
Let us first analyze the effect of the sampling time. It should be chosen long enough to cover the slowest intrinsic
timescale of the system, and various trajectories with different initial conditions or realizations of the thermostat
should be used to ensure that the order of events does not alter the shape of the distribution. An estimate of the time
range that sampling must cover is provided by the folding/unfolding time of the protein, to guarantee that the protein
explores both configurational subspaces. A possible check of the choice of the simulation time is to compute the
specific heat with an increasing number of samples, and stop when the improvement brought by additional samples is
negligible. Still, as computer time is limited, it cannot be ensured that all relevant states are sufficiently well sampled
to yield a converged probability density. In particular, the high energy minima are sampled only with low probability,
such that the high energy cut-off in the density of states is likely to be underestimated in finite time sampling. In
this section, we analyze the impact of this cutoff on a model density to see how the inherent structure specific heat
is possibly affected.

To analyze the effect of the sampling independently of a particular case, let us assume a ”model” inherent structure
density of states taken as a single exponential

Ω
(0)
IS (eα) =

{

eeα/a 0 ≤ eα ≤ emax

0 emax < eα
,

similar to the shape of the densities that can be found in limited ranges of energies for the numerical results in section
III. The partition function than can be readily calculated as

Z
(0)
IS =

∫ emax

0

deα ΩIS(eα) e−βeα =
eemax(a−1−β) − 1

a−1 − β
. (16)

Likewise, we can calculate the first two moments 〈eα〉 and 〈e2
α〉 to find the specific heat as a function of the temperature,

the parameter a and cutoff in energy emax

C
(0)
V,IS(T ; a, emax) =

〈e2
α〉 − 〈eα〉

2

kBT 2
, (17)
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FIG. 7: Left: The specific heat CV,IS as a function of temperature and the cutoff parameter emax. Right: Location of the
maxima of CV,IS for different values of the cutoff emax.

and analyze the result graphically as a function of the energy cutoff emax in figure 7. As can be inferred from left-hand
side of figure 7, maxT [CV,IS(T ; a, emax)] increases with higher cut-off emax. Using symbolical computation [18], we
can further inspect the result to find the local maxima of the the specific heat for fixed cutoff emax. On the right-hand
side of figure 7, we observe that a lower cutoff in the density of states shifts the maximum of the specific heat towards
higher temperatures. In addition to the shift, the curve becomes broader and the value at the maximum decreases.
This situation is similar to the physical scenario when protein folding is altered by confinement (see e.g. [19]). The
high energy states disappear from the density of states as the system is prohibited to explore these by external forces.
For the present purpose of the inherent structure analysis, although derived for a highly idealized model density, the
results indicate that insufficient sampling at high energies can significantly alter the global shape of the transition.
We have checked that these conclusions remain unchanged for a piecewise constant density of states. For instance,
for the ww domain, one finds emax/a ≈ 60 which is higher than the range of values for which a shift of the maximum
can be expected from figure 7. Consequently, the origin of this shift cannot be attributed to inefficient sampling in
the high energy range.
Because the high energy minima are less frequently visited, it is tempting to try to sample the minima from a high
temperature molecular dynamics trajectory. On the other hand, as the method relies on the probability to occupy
the ground state which determines 1/ZIS(T ), it is also necessary to properly sample the ground state, i.e. to select
a simulation temperature which is below Tf . To reconcile these two exclusive conditions, one solution is to combine
results sampled at two different temperatures to calculate ΩIS(eα), which should be temperature independent. This
is possible because, according to (3)

PIS(eα, T1)

PIS(eα, T2)
=

ZIS(T2)

ZIS(T1)
e−(β1−β2)eα , (18)

with β1,2 = 1/(kBT1,2), so that the ratio of ZIS(T2)/ZIS(T1) can be calculated from the probabilities to occupy a
basin at temperatures T1 and T2. A molecular dynamics trajectory obtained at a temperature T1 < Tf can be used to
determine ZIS(T1) from the probability to occupy the ground state, and subsequently a second simulation at a higher
temperature T2 can sample high energy basins more efficiently. For all basins which are properly sampled in both
molecular dynamics runs, the ratio ZIS(T2)/ZIS(T1) can be evaluated with (18). Although it should not depend on
the particular basin that was used for its calculation, this ratio actually fluctuates around a mean value which can be
used to determine ZIS(T2) from ZIS(T1). Then (3), applied at the higher temperature T2, can be used to compute
ΩIS(eα) in the high energy range. Moreover, in the intermediate energy range, the basins are properly sampled by
the two trajectories at temperatures T1 and T2, which gives two ways to evaluate ΩIS(eα) for those basins, and thus
provides a way to check the consistency of the method.
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FIG. 8: Results from the sampling of inherent structures of the ww domain at two different temperatures T1 = 1.03 Tf

(≈ 79000 minima, red) and T2 = 1.41 Tf (≈ 18000 minima, blue) Left: Probability of occupation of the inherent structures
versus eα. Right: Density of inherent states energy (in logarithmic scale), calculated from the simulation at T1 (red) and
calculated at T2 using the ratio ZIS(T2)/ZIS(T1).

Figure 8 shows the results for the ww domain from different molecular dynamics simulations, simulated respectively
at T1/Tf = 1.03 and T2/Tf = 1.41. For the simulations at T2, the ground state is not sampled in the finite interval
of time of the simulations, but ΩIS can nevertheless be obtained through the evaluation of ZIS(T2) deduced from
ZIS(T1) = 1/p0(T1) for all values of eα for which the histograms of the left-hand side of figure 8 overlap. The right-
hand side of figure 8 shows that the values of the density of inherent state energies computed from data at T1 and
T2 are in rather good agreement in the whole energy range where the basins are sampled at the two temperatures.
There is however a discrepancy between the two results, with a systematic deviation towards lower values of ΩIS(eα)
for high inherent state energies when the density of states is calculated with data sampled at high temperatures. This
is counterintuitive as one could tend to believe that sampling the basins at low temperatures would, on the contrary,
underestimate the density of basins at high energy. This systematic deviation, which has been observed in all our
calculations could point out a limitation of the ISL method as presently applied, i.e. with a calculation which is only
valid if βFv(α, T ) is the sum of a term that depends on eα and a term that depends on temperature (see (9) ). When
the specific heat is calculated with the value of ΩIS(eα) extended in the high energies range with this method, the
function is still very close to the value obtained with only the data at temperature T1 and the agreement with the
numerical value of CV (T ) is not improved. This shows that the discrepancy between the exact results and those
deduced from the ISL approach are not due to technical difficulties such as an insufficient sampling in some energy
range, but that they are rather inherent to the method itself together with its assumptions.

V. DISCUSSION

We applied the inherent structure landscape (ISL) approach to four different proteins of varying size and secondary
structure elements using a coarse-grained off-lattice protein model, and calculated their inherent structure density
of states. Using these densities, we derived the specific heat from the reduced inherent structure thermodynamics,
and compared it to the value obtained from equilibrium molecular dynamics as a function of temperature. Our
results show that the ISL approach can correctly capture the shape of the temperature dependence of the specific
heat, including some characteristic features such as the hump observed at T ≈ 0.4Tf for the ww domain. This is
remarkable since the result is deduced from molecular dynamics simulations at a single temperature, close to Tf , and
nevertheless predicts the main features of the specific heat in a large temperature range, including low temperatures
for which very long simulations would be necessary to reach exhaustive sampling of the phase space. This shows
that many features of protein thermodynamics are encoded in the inherent structure landscape. Still, the approach is
not perfect as we observed quantitative differences between CV,IS(T ) and CV (T ) which are particularly significant
for small protein domains. The deviations show a systematic trend, the specific heat being underestimated below Tf

and overestimated above. This lead us to reexamine the approximations that enter the construction of the reduced
thermodynamics from inherent structures for the model that we considered. The first approximation assumes that
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the correction to the density of states due to the structure of the basin associated to a minimum fv(α) depends on
the energy level of the minimum only, and not of the individual minimum. An evaluation of fv(α) using a harmonic
approximation based on local normal modes (section IVA) shows that this is only approximately correct. For a
given eα, the values of fv(α) are actually distributed around an average value, with fluctuations that grow for higher
values of eα and that appear to be larger for small proteins. This could explain some of the discrepancies between
the ISL results and the equilibrium data. Moreover, the calculation of fv(α) indicates that the second assumption
that the correction can be considered to be α-independent is certainly not valid. However, we showed that if βFv(α)
splits into a temperature-dependent and an α-dependent part, which is the case in the harmonic approximation, most
of the thermodynamic results deduced from a direct application of the ISL approach are not affected. This is true
in particular for the the specific heat. In view of the persisting quantitative differences between reduced inherent
structure and equilibrium thermodynamics, we therefore conclude that the correction of the free energy in term of
a harmonic approximation is not sufficient. It is likely that the nonlinear terms in the free energy associated to a
basin cannot be ignored, and play a significant role. This is not surprising because, especially in the high temperature
range, the protein fluctuates by exploring many basins, and consequently cannot be assumed to be well described by
a harmonic approximation.
In future studies, it would be useful to analyze the role of the structure of the full basin on the thermodynamic results
beyond the approximation by local normal modes around the minima. This is a true challenge owing to the complexity
of the energy landscape. A starting point for such a study might be the examination of the distribution of first rank
saddle points associated to the different minima on the potential energy surface. A second aspect which is suggested
by the present work is to apply the ISL approach for protein folding in the context of more complex energy landscapes
that arise in more realistic potential energy functions. The results on the small proteins analyzed in this study show
that the global separation of the probability density into two basins associated to folded and unfolded states is not
a necessary requirement to construct the reduced thermodynamics. It appears therefore likely that the formalism
remains useful in cases where the energy landscape is less biased towards the ground state than in the Gō-model. An
application of the ISL method to other protein models therefore appears to be desirable and promising.
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APPENDIX A: MODEL HAMILTONIAN AND PARAMETERS

In this work, we analyze the properties of an off-lattice Gō-type [1, 9] in which the smallest building unit is a single
amino acid. Effective interactions between amino acids are based on the reference positions of the Cα-carbons of each
residue. These interactions are ”color-blind” in the sense that they do not distinguish between the type of amino
acids. The potential energy of the system comprises five terms:

V =

N−1
∑

i=1

1

2
Kh(di − di0)

2 +

N−2
∑

i=1

1

2
Kb(θi − θi0)

2

+

native
∑

i>j−3

ǫ

[

5

(

r0ij

rij

)12

− 6

(

r0ij

rij

)10
]

+

non−native
∑

i>j−3

ǫ

(

C

rij

)12

+

N−3
∑

i=1

Kd

(

1 − cos
(

2φi −
π

2

))

(A1)

Here, rij denotes the Euclidean distance between residues i, j. The 3N − 6 degrees of freedom of the system are most
conveniently expressed via internal coordinates: N − 1 Euclidean bond distances di along the backbone, N − 2 bond
angles formed between two consecutive bond directions, and N−3 dihedral angles measured between the normal vectors
of planes spanned by atoms (i, i+1, i+2) and (i+1, i+2, i+3). Bond distance and bond angle interactions are modelled
through harmonic forces with coupling strengths Kh and Ka respectively. The zero indices indicate that the quantities
(angles, distances) are evaluated in the reference state, i.e., the position from the NMR/crystallographic structure.
The dihedral angle potential does not assume a minimum in the reference position defined by the experimentally
resolved structure: it favors angles close to π/4 and 3π/4 irrespective of the secondary structure element (helix, sheet,
turn) the amino acid belongs to. While such values can be found in α-helices, they statistically do not appear largely
in other secondary structure elements. As a consequence, the reference state defined by an NMR or crystallographic
structure can give rise to a competition between the helix for which the reference state is close to its minimum
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energy, and other parts which experience forces due to the angular constraint. The constraint was introduced as a
source of additional ”frustration” affecting the dynamics and thermodynamics of the model towards a more realistic
representation [1]. Attractive non-bonded native interactions are modelled by steep (12,10)-Lennard-Jones potentials
accounting for non-local contacts between residues due to side chains. The database of contacts is established as
described in section II. In addition, non-native repulsive interactions are added to those residues which do not form a
contact and which lie at least four residues apart. The dimensionless parameters used in this study are [1]: Kb = 200.0,
Ka = 40.0, Kd = 0.3, ǫ = 0.18, C = 4.0.

[1] N. Nakagawa and M. Peyrard; Proc. Natl. Acad. Sci. USA 103, 5279 (2006)
[2] P.W. Fenimore, H. Frauenfelder, B.H. McMahon and R.D. Young; Proc. Nat. Acad. Sci. USA 101, 14408 (2004)
[3] F.H. Stillinger and T.A. Weber; Phys. Rev. A 25, 978 (1982)
[4] J. Kim and T. Keyes; J. Phys. Chem. B 111, 2647 (2007)
[5] A. Imparato, S. Luccioli, A. Torcini; Phys. Rev. Lett. 99, 168101 (2007)
[6] D.M. Ming, M. Anghel and M.E. Wall; Phys. Rev. E 77, 021902 (2008)
[7] Z. Guo and D. Thirumalai; J. Mol. Biol. 263, 323 (1996)
[8] A. Baumketner, J.-E. Shea and Y. Hiwatari; Phys. Rev. E 67, 011912 (2003)
[9] N. Nakagawa and M. Peyrard; Phys. Rev. E 74, 041916 (2006)

[10] J. Karanicolas and C.L. Brooks III; Proc. Nat. Acad. Sci. USA 100, 3954 (2003)
[11] D.K. West, D.J. Brockwell, P.D. Olmsted. S.E. Radford and E. Paci; Biophys. J. 90, 287 (2006)
[12] http://www.rcsb.org
[13] W.L. DeLano (2002); The PyMOL Molecular Graphics System.; http://www.pymol.sourceforge.org
[14] V. Sobolev et al.; Bioinformatics 15, 327 (1999)
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