
HAL Id: ensl-00436329
https://ens-lyon.hal.science/ensl-00436329v1

Submitted on 26 Nov 2009 (v1), last revised 13 Jan 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Low Precision Table Based Complex Reciprocal
Approximation

Jean-Michel Muller, Pouya Dormiani, Milos Ercegovac

To cite this version:
Jean-Michel Muller, Pouya Dormiani, Milos Ercegovac. Low Precision Table Based Complex Recipro-
cal Approximation. 43rd Asilomar Conference on signals, systems and computers, Nov 2009, Pacific
Grove, California, United States. �ensl-00436329v1�

https://ens-lyon.hal.science/ensl-00436329v1
https://hal.archives-ouvertes.fr

Low Precision Table Based Complex Reciprocal Approximation

Pouya Dormiani
Computer Science Department

University of California at Los Angeles
Los Angeles, CA 90024, USA

Email: pouya@cs.ucla.edu

Miloš D. Ercegovac
4731H Boelter Hall

Computer Science Department
University of California at Los Angeles

Los Angeles, CA 90024, USA
Email: milos@cs.ucla.edu

Jean-Michel Muller
CNRS-Laboratoire CNRS-ENSL-INRIA-UCBL LIP

Ecole Normale Supérieure de Lyon
46 Allée d’Italie

69364 Lyon Cedex 07, France
Email: Jean-Michel.Muller@ens-lyon.fr

Abstract—A recently proposed complex valued division

algorithm[1] designed for efficient hardware implementations

requires a prescaling step by a constant factor. Techniques for

obtaining this prescaling factor have been mentioned by the

authors, which serves to justify the feasibility of the algorithm

but is inadequate for obtaining efficient implementations. Table

based solutions are formulated in this paper for obtaining the

prescaling factor, a low precision reciprocal approximation for a

complex value, using techniques adopted from univariate function

approximations. Two separate designs are proposed, one using a

single table (a reference design) and another using generalized

multipartite tables. The main contribution of this work is the

extension of generalized multipartite table methods to a function

of two variables. The multipartite tables derived were up to 67%

more memory efficient than their single table counterparts.

I. INTRODUCTION

Two classes distinguished in [2] are used in general to
evaluate functions,
• Compute-bound: Evaluates the function computationally

using, for example, iterative techniques such as digit-
recurrence or multiplicative methods [3]. Combinational
logic and registers dominate the hardware cost in these
schemes.

• Table-Bound: Store the evaluated function in a table
indexed via the function arguments. Multiple tables may
be used in which the value could be directly stored
or reconstructed. This method relies on memories such
as ROMs (Read Only Memory) which constitute the
majority of hardware costs. In the discussions that follow
we will use the terms table and ROM interchangeably.

The class of compute-bound methods are more flexible as they
can scale to perform high precision approximations by trading
performance for accuracy through evaluating the approxima-
tion on the fly during execution. Indeed the division algorithm
in [1] is itself a compute-bound approach for evaluating
complex valued division. Hybrid schemes where logic and
ROMs are intermixed to achieve a desired memory and latency
tradeoff are also possible.

We denote x̂ as an approximation to x where x̂ is a lower
precision value of x obtained by truncation, rounding etc.
which has fewer significant digits and larger unit in the last
position (ulp). We distinguish an approximation to a function f

using notation f̃ , for example by an approximating polynomial
obtained via Taylor expansion about a point. We use the
notation ı =

√
−1, and given x = xR + ı xI , �(x) = xR,

�(x) = xI , we define two norms �x �∞ = max(|xR |, |xI |)
and |x | =

�
(xR)2 + (xI)2. An approximation to a complex

value is defined as an approximation to the real and imaginary
parts respectively, i.e., x̂ = x̂R + ı x̂I .

Given a value d = dR + ı dI with reciprocal f(d) = 1/d,
we define a prescaling factor K which is a reciprocal approx-
mation with error characterized by

���K − 1/d̂

���
∞

< �K (1)

with

K =
�̃
f(d̂) (2)

1

d̂
=

d̂R − ıd̂I

(d̂R)2 + (d̂I)2
(3)

i.e., K is an approximation to the evaluation of f̃(d̂). Complex
reciprocal approximations play an important role in a digit-
recurrence based complex division algorithm presented in [1]
which computes x/y by prescaling the computation with K

such that Kx

Ky
is the actual value computed. Since the purpose

in finding K is to build efficient tables for this algorithm, its
desired accuracy is characterized here in the same manner as
expressed in [1], which requires that

�Kd− 1 �∞ < �S (4)

where �S is a known constant for a given choice of algorithm
parameters. Table I shows various �S values for given param-
eters of the division algorithm which are derived from Eq. (5)
given in [1] for a radix r algorithm with digits in {−a, . . . , a}
and σ fractional bits in the residual estimate.

2 a �S +
1

2
+ 2

−σ ≤ 1

r

�
a +

1

2
+ 2

−σ

�
(5)

Real valued reciprocal approximations have been studied in
literature [4][5][6], but the complex reciprocal approximation
is a bivariate function. This paper formulates some table based
solutions for obtaining the complex reciprocal approximation
K by extending techniques developed for univariate functions.
To the best of our knowledge table based methods for two
variable functions have not been studied in computer arith-
metic literature. Looking at Table I one can see that the
desired accuracy of K is very low. Our approach of using
linear programs (LP) to obtain these tables does not scale to

r a σ �S ≤
2 1 4 7/64
4 2 5 13/512
4 3 3 3/64
8 6 4 11/512
8 7 3 3/128

TABLE I
UPPER BOUND FOR �S VALUES GIVEN SPECIFIC PARAMETERS OF THE

COMPLEX DIVISION ALGORITHM PRESENTED IN [1].

obtain high precision approximations and is only useful for
low precision reciprocal approximations–the LP size grows
exponentially.

A. Problem Formulation

For a given value d = dR + ıdI with constraint
1

2
≤ � d �∞ < 1 (6)

and precision n such that d is representable in two’s comple-
ment form by

d
R

= d
R
0 .d

R
1 d

R
2 . . . d

R
n

, d
I

= d
I
0 .d

I
1d

I
2 . . . d

I
n

(7)

Let d̂ be obtained by rounding to nearest d to the qth fractional
position such that,

d̂
R

= rnd(d
R

, q), d̂
I

= rnd(d
I
, q) (8)

��� d− d̂

���
∞
≤ 1

2
2
−q (9)

where ulp(d̂) = 2−q. Using d̂ we would like to obtain a K

such that constraints (1) and (4) are satisfied for some given
�S from Table I.

II. SINGLE TABLE DESIGN

In a single table design the estimate d̂ is used to address
one large table which stores the corresponding reciprocal
approximation rounded to t fractional positions, i.e.,

K = rnd

�
1

rnd(d, q)
, t

�

Error analysis shown in [7] is used to derive the following
constraint which relates q, t and �S ,

2
−t

+ 2
−q+1

< �S (10)

Because d̂ is obtained by rounding to nearest it could possibly
take on the value � d̂ �∞ = 1, and its representation requires
an extra bit to the left of the binary point. For now, assume
that � d̂ �∞ < 1 (we will later incorporate � d̂ �∞ = 1 as a
special case). First we look at some properties of the reciprocal
function f–we will refer to f interchangeably as a univariate
function when its argument is a complex value i.e., f(d), and
also as a bivariate function with arguments f(dR, dI).

f(d) =
1

dR + ı dI
=

dR − ı dI

(dR)2 + (dI)2

1) f(−d) = −f(d)

2) f(dR, dI) = −[�(f(dI , dR)) + ı�(f(dI , dR)]

3) f(−dR, dI) = −�(f(dI , dR)) + ı�(f(dI , dR)), etc.
Two techniques are used to reduce the address width to the
table (which is 2(q +1) bits wide in a naı̈ve implementation),
• Using the first property, we eliminate the sign of d̂

when addressing the ROM, i.e., the implementation now
requires a 2q bit wide address,

| d̂R | = 0.α
R
1 α

R
2 . . . α

R
q

, | d̂ I | = 0.α
I
1 α

I
2 . . . α

I
q

(11)

• Since � d �∞ ≥ 1
2 we know that either αR1 = 1 or αI1 = 1

(or both)–as originally proposed in [1]. If the following
address was formed: αR1 αR2 . . . αR

q
αI1 αI2 . . . αI

q
then we

could check if αR1 = 1, in which case the address
can be reduced by one bit by making αR1 implicit,
i.e., addressing the ROM with αR2 αR3 . . . αR

q
αI1 αI2 . . . αI

q
.

Otherwise, it must be true that αI1 = 1, and the ROM is
addressed with αI2 αI3 . . . αI

q
αR1 αR2 . . . αR

q
and the second

property of the reciprocal function is used to recover the
result. This reduces the number of address bits to 2q− 1

(halving the memory required) while introducing little
additional overhead.

As previously mentioned the scenario in which � d̂ �∞ = 1

is incorporated as a special case by including a smaller
ROM (called ROMs), having q address bits. One possible
implementation could be that ROMs[A] = f(1, A), where
A = α1α2 . . . αq and the square brackets denote perform-
ing a look-up in the ROM at address A–again note that
all the different permutations of arguments, e.g. f(d̂R,−1),
f(1,−d̂ I), etc. can be obtained by performing a conditional
final swapping of real and imaginary parts and/or a negation.

So far we have limited our discussion to the addressing
scheme of the ROM, however the width of the actual contents
of the ROM is also of interest which we will now discuss. We
already know that each entry in the ROM (including ROMs)
contains a real and imaginary part each with t fractional bits,
but how many bits are required to the left of the binary point?
It is known that KR is positive and KI is negative for positive
values of dR and dI respectively. Since 1/2 ≤ � d̂ �∞ ≤ 1 and
the ROM only stores values for positive dR and dI , then if we
let UR and UI denote the values to be stored in the ROM (i.e.,
K is obtained via conditional negation of UR and UI), then
we know that 0 ≤ UR ≤ 2 and −2 ≤ UI ≤ 0. The imaginary
part UI is stored in magnitude form thus both UR and UI can
be represented in 2+ t bits. Each entry in the ROM (including
ROMs) stores 2(2+ t) bits, of which the first 2+ t bits is UR

and the second 2 + t bits is UI . The cost in memory (bits) of
the proposed implementation is therefore

Main ROM� �� �
2(2 + t)× 2

2q−1
+

Special Case (ROMs)� �� �
2(2 + t)× 2

q bits (12)

The contents of the ROMs can be verified by perfect
induction to ensure that the satisfy the error bound dictated
in Eq. (10). Also note that even though there are two ROMs
in the aforementioned design, this is a consequence of trying to

r a σ �s q t ≈ KBits
2 1 4 7/64 5 5 7.44
4 2 5 13/512 7 7 146.25
4 3 3 3/64 6 6 33.0
8 6 4 11/512 7 8 162.5
8 7 3 3/128 7 7 146.25

TABLE II
SAMPLING OF DESIGN SPACE FOR SINGLE TABLE MEMORY

REQUIREMENTS GIVEN SPECIFIC PARAMETERS OF THE COMPLEX
DIVISION ALGORITHM PRESENTED IN [1].

q = 3k

xH, 2k

xh, k + �k/2�

xL, k

x

x
�
, k + �k/2�

Fig. 1. Partitioning of input x (y partitioned similarly) into xH , xL, and
xh, such that x = xH + 2−2kxL and x = xh + 2−k−�k/2�x�.

reduce the memory requirements and should not be confused
with multiple table designs which are discussed next.

III. MULTIPLE TABLE DESIGNS

In the single table design a precise value for 1/d̂ was
calculated and rounded to t fractional positions to obtain K.
The reciprocal function itself however can be approximated,
which can reduce the required memory size. Approximating
the function via multiple tables was originally proposed in [4]
as bipartite (two) tables, which was extended and formalized
by [2], reformulated as a linearization problem in [8], and
extended to multipartite (greater than two) tables in [9][2].

In this section we define g as g(x, y) = x/(x2 + y2) such
that, f(d) = g(dR, dI)−ı g(dI , dR). Let � f̃(d̂)−f(d̂) �∞ <

�K , then from [7], the error �K is related to �S such that
if �K <

1
2�S − 2−q is satisfied then the approximating

function f̃ can replace f . The function f̃ , which was originally
implemented as one large table, can be approximated in a
manner which decomposes it into a sum of terms where each
term is a function of fewer address bits than required by f .

Note that f̃ can be obtained from g̃. Let g̃ be the first order
Taylor expansion of g about (x0, y0), where gx denotes the
first partial derivative of g in x

g̃ = g(x0, y0)+(x−x0)gx(x0, y0)+(y−y0)gy(x0, y0) (13)

The arguments x and y, which are both positive numbers
with q fractional bits were partitioned as shown in Fig. 1,
and the point of expansion (x0, y0) in Eq. (13) was chosen to
be (xH , yH), resulting in

g̃ = g(xH , yH) + xL2
−2k

gx(xH , yH) + yL2
−2k

gy(xH , yH)

≈ g(xH , yH) + xL2
−2k

gx(xh, yh) + yL2
−2k

gy(xh, yh)

(14)

βα

α1
α2
α3
α4

αm

β1
β2

β3
β4

βm

.

.

.

.

 .

 .

q

x

Fig. 2. Partitioning an argument x into xα and m pairs
(xα1 , xβ1), . . . , (xαm

, xβm
).

with the assumption that gx and gy are approximately constant
at the granularity of xh.

Each term in the sum of Eq. (14) is implemented by a table.
The value g̃(x, y) is determined by addressing all tables in
parallel and summing their outputs which requires a ternary
addition. The cost in bits of this scheme is,

g(xH ,yH)
� �� �
(pH + tH)× 2

2k
+

xL2−2k
gx(xh,yh)

� �� �
(px + tx)× 2

2(k+�k/2�)+k
+

xL2−2k
gy(xh,yh)

� �� �
(py + ty)× 2

2(k+�k/2�)+k
+

ROMs� �� �
2(2 + t)× 2

q bits

(15)

where pH , tH is the number of integer and fractional bits
(i.e., the width) of the table (same for x and y subscripts).
This approximation is called bipartite in [1] even though
it has three tables, which is a consequence of it being an
approximation of a function in two variables–the first order
Taylor approximation of a univariate function and a similar
treatment yields two tables. Two techniques discussed in the
aforementioned literature will be employed to further reduce
the size of these tables.

A. Generalized Partitioning

Looking back at the partitioning of the arguments in Fig. 1,
one may wonder why this particular partitioning was chosen
by the authors. This partitioning is based on work presented
in [2] and gives algorithmic bounds on the table size. A much
more general partitioning scheme presented in [8] can be used
to obtain the optimal partitioning by exhausting all partitions.
The partitioning scheme introduced by [8] is shown in Fig. 2,
where the argument is partitioned first into two parts xα and
xβ such that x = xα + 2−αxβ . Then xβ is subsequently
partitioned into m parts, xβ1 , . . . , xβm

, where each xβi
has

a prefix xαi
, i.e., they form a pair (xαi

, xβi
).

o1 = 0 αi < α

oi =

i−1�

j=1

βj , i > 1 x = xα + 2
−α

m�

i=1

�
xβi

2
−oi

�

B. Multipartite Approximations

In this section an approach is presented to obtain a linearized
multipartite approximation g̃ using the generalized partitioning
scheme in section III-A. Observing that q was rather small for

single precision tables and ranged from 5 to 9, any useful
multipartite scheme derived should be even smaller, which
reduces computational complexity of determining such tables
considerably. Because of the very moderate problem size, the
problem is simply formulated as a linear program (LP) which
is then solved via available LP solvers.

The approach to finding the optimal sized tables for a given
�S is as follows: for each partition of the general partitioning
performed on the arguments, generate an LP which minimizes
the L1 norm (least absolute value, |x|) of all errors for all
possible points d̂R and d̂ I . If the LP is infeasible then the
current partitioning scheme can not yield the desired level of
accuracy. Among the feasible choices we pick the partition
which has the minimum memory requirements.

Let g̃ approximate the reciprocal function with the parti-
tioning discussed in section III-A

g̃ = g(xα, yα) + 2
−α

m�

i=1

xβi
2
−oigx(xαi

, yαi
)

+ 2
−α

m�

i=1

yβi
2
−oigy(xαi

, yαi
)

(16)

from which 2m+1 tables are derived: one table for the initial
value denoted TIV and m tables in x and y providing offsets
denoted TOx

i
and TO

y

i
respectively–note that for each offset,

xαi
replaces xα.

TIV (xα, yα) = g(xα, yα) (17)
TO

x

i
(xαi

, yαi
, xβi

) = 2
−α

xβi
2
−oigx(xαi

, yαi
) (18)

TO
y

i
(xαi

, yαi
, yβi

) = 2
−α

yβi
2
−oigy(xαi

, yαi
) (19)

The concept of using variable sized prefixes for each xβi

was originally proposed in [8] and could possibly reduce the
table size for each offset table. As before, it is assumed that
the derivatives are approximately constant over regions with
granularity αi. In order to simplify the linearization procedure
and speed up the run time performance a heuristic can be
applied when determining the derivatives in Eq. (16): for
each derivative gx(xαi

, yαi
), the average derivative of the four

corners of the approximating region is used instead, i.e., if we
let xαi

= xαi
+ 2−αi − 2−q (similarly define for yαi

) then

TO
x

i
(xαi

, yαi
, xβi

) =
2−αxβi

2−oi

4

�
gx(xαi

, yαi
)+

gx(xαi
, yαi

) + gx(xαi
, yαi

) + gx(xαi
, yαi

)

�

Some notation must first be developed before expressing the
LP. Let x be represented as ix2−q where ix is a positive integer
less than 2q (similarly define iy), where ix and iy are used as
indices to distinguish variables. Also define ix[k] to be the
integer formed by taking the most significant k bits of the
q-bit vector which represents ix.

The error bounds for the LP must be carefully examined–
if each term in the expansion of Eq. (14) is rounded to
some fractional position, then these rounding errors must be

incorporated. For a partitioning α, (α1, β1), . . . (αm, βm), the
required amount of memory bits can be expressed with

(p + t)× 2
2α

+

m�

i=1

(p
x

i
+ t

x

i
)× 2

2αi+βi

+

m�

i=1

(p
y

i
+ t

y

i
)× 2

2αi+βi +

ROMs� �� �
2(2 + t)× 2

q

(20)

where p, t denotes the number of integer and fractional bits
respectively of TIV entries, and pi, ti denotes the number
of integer and fractional bits respectively of TOx

i
and TO

y

i

entries respectively. The total rounding error (�R) of the terms
is,

� f̃(d̂)− �̃
f(d̂) �∞ = �R ≤

1

2

�
2
−t

+

m�

i=1

2
−ti

�
(21)

which affects the error bounds as such

�K <
1
2�S − 2

−q − �R (22)

The value of �R is not known a priori. The number of
fractional positions to which each table will be rounded to
depends on the error slack (1

2�S − 2−q − �K) which is
dependent on the quality of the attainable linearization for a
given partition. Minimizing Eq. (20) according to constraints
in Eqs. (21) and (22) can be done by brute force because of
the small problem size. Therefore, when formulating the LP
the errors will not be bounded, instead the maximum error,
�K , obtained from the LP solution will be checked against
1
2�S − 2−q. If �K is greater, then the current partition for the
given precision q is infeasible as it exhibits more than the
permissible amount of error. If �K is less, then the difference
(�R) will be distributed into rounding errors for the tables in
a manner which minimizes the total number of required bits.

The LP problem using the heuristic described to obtain the
offsets can then be written as,

Objective:

min

2q−1�

ix=0

2q−1�

iy=0

�ix,iy

Variables:

�
for ix[α], iy[α] = 0, . . . , 2α − 1

tix[α],iy[α]

Constraints:

for ix, iy = 0, . . . , 2q − 1

�ix,iy
=

����g(ix, iy)− tix[α],iy[α] −
m�

i=0

TO
x

i
(xαi

, yαi
, xβi

)

−
m�

i=0

TO
y

i
(xαi

, yαi
, yβi

)

����

r a σ �S �K �R q (p,t),[(p1,t1)x(p1,t1)y],...,[(pm,tm)x(pm,tm)y] α (α1,β1),...,(αm,βm) ≈ KBits
2 1 4 7/64 0.023 0.00092 5 (2, 10), [(−2, 12)x(−4, 12)y] 4 (3,1) 5.688

0.036 0.0031 6 (2, 8), [(−2, 10)x(−4, 10)y], [(−3, 13)x(−4, 13)y] 4 (3,1) (2, 1) 5.844
0.028 0.011 (2, 6), [(−2, 9)x(−4, 9)y], [(−3, 11)x(−5, 11)y] 4 (3,1) (3, 1) 6.25

4 2 5 13/512 0.0039 0.001 7 (2, 9), [(−4, 16)x(−7, 16)y] 6 (4,1) 56.75

0.0016 0.0033 (2, 8), [(−4, 10)x(−5, 10)y
6 (5,1) 64.25

4 3 3 3/64 0.0062 0.0016 6 (2, 9), [(−3, 11)x(−6, 11)y] 5 (4,1) 18.5

8 6 4 11/512 0.0016 0.0013 7 (2, 9), [(−4, 12)x(−5, 12)y] 6 (5,1) 53.75

8 7 3 3/128 0.0039 2.3e-05 7 (2, 15), [(−4, 18)x(−7, 18)y] 6 (4,1) 82.75
0.0016 0.0023 7 (2, 8), [(−4, 12)x(−5, 12)y] 6 (5,1) 72.25

TABLE III
MULTIPARTITE RESULTS USING DERIVATIVE HEURISTIC.

whose solution will yield the values of all tix[α],iy[α] which
will be used to populate the corresponding entry in the initial
value table, TIV . By minimizing the sum of errors, each error
�ix,iy

is minimized. Some results using the aforementioned
approach have been shown in Table III, which can again be
verified by perfect induction.

The width of a table entry can be further reduced by
finding the range of its values. For example if all entries in
a table range from [−0.12, 0.12] and the table is rounded to
10 fractional positions, then all numbers in the table can be
represented with 8 bits. The reason behind this is the value
can be represented with s.sssx4x5x6x7x8x9x10 where s is the
sign bit and xi are fractional bits. It’s obviously wasteful to
store unnecessary sign bits as the value can be sign extended to
the desired precision after table-lookup. Each table is analyzed
in this manner to determine if any of the leading fractional
positions can be omitted. If any fractional positions can be
omitted, this is denoted by a negative p value, for example,
px

1 = −4, tx1 = 10 would mean that for offset table TOx

1 ,
only six bits need to be stored, where the 4 most significant
fractional positions are omitted and the remaining 6, up to the
desired rounding position, are retained.

IV. RESULTS

A comparison between the single table and multipartite
tables derived is shown in the plot of Fig. 3. From the results
it is clear that multipartite tables are much more memory
efficient than single table designs, ranging in improvements
from 23% up to 67% for the studied design points. The
results verify the intuition behind the multipartite scheme and
prove that they remain highly applicable to functions of two
variables.

V. CONCLUSION & FUTURE WORK

The objective of this research was to extend the mul-
tipartite scheme as developed by [8][2][9] to the complex
valued reciprocal, which is a function of two variables. The
contribution of this work is the extension of multipartite
and linearization techniques and proving their viability via
a concrete design problem. Multipartite schemes derived via
the proposed extensions were found to be 23% to 67% more
efficient than their single table counterparts for the design
points studied.

 0

 20

 40

 60

 80

 100

 120

 140

 160

2,1 4,2 4,3 8,6 8,7

r, a

K
B

its

Single Table

Multipartite Tables

Memory Requirements vs. Design Point

Fig. 3. Single table reciprocal approximation costs vs multipartite costs. The
x-axis is the design point under question, which is specified via the radix r
and digit-set a used by the division algorithm in [1].

The linearization problem can actually be posed in a manner
which allows solving for the optimal offset values [7], as
opposed to using the heuristic employed in obtaining the
results presented in this paper, which is the topic of future
work.

REFERENCES

[1] M. D. Ercegovac and J. M. Muller, “Complex division with prescaling of
operands,” in Application-Specific Systems, Architectures, and Processors,

2003. Proceedings. IEEE International Conference on, Jun. 2003, pp.
304–314.

[2] J. M. Muller, “A few results on table based methods.” in Reliable

Computing, 5(3), 1999, pp. 279–288.
[3] M. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann

Publishers, San Francisco, 2004.
[4] D. Das Sarma and D. W. Matula, “Faithful bipartite ROM reciprocal ta-

bles,” in Computer Arithmetic, 1995., Proceedings of the 12th Symposium

on, Bath, UK, Jul. 1995, pp. 17–28.
[5] D. DasSarma and D. W. Matula, “Measuring the accuracy of ROM

reciprocal tables,” IEEE Transactions on Computers, vol. 43, no. 8, pp.
932–940, Aug. 1994.

[6] P. Kornerup and D. W. Matula, “Single precision reciprocals by multi-
partite table lookup,” 2005. ARITH-17 2005. 17th IEEE Symposium on

Computer Arithmetic, pp. 240–248, Jun. 2005.
[7] P. Dormiani, “Low precision table based complex reciprocal approxima-

tion,” computer Science Department, UCLA, Internal Report 2009.
[8] F. de Dinechin and A. Tisserand, “Some improvements on multipartite

table methods,” in Computer Arithmetic, 2001. Proceedings. 15th IEEE

Symposium on, Vail, CO, USA, 2001, pp. 128–135.
[9] J. E. Stine, Michael, and J. Schulte, “The symmetric table addition method

for accurate function approximation,” Journal of VLSI Signal Processing,
vol. 21, pp. 167–177, 1999.

