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ABSTRACT: We present a systematic analysis of the N/ = 8 superspace constraints
in three space-time dimensions. The general coupling between vector and scalar
supermultiplets is encoded in an SO(8) tensor W,z which is a function of the matter
fields and subject to a set of algebraic and super-differential relations. We show how
the conformal BLG model as well as three-dimensional Yang-Mills theory provide
solutions to these constraints and can both be formulated in this universal framework.
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1. Introduction

Highly supersymmetric three dimensional gauge theories received tremendous at-
tention over the last two years, in particular conformally symmetric matter Chern-
Simons gauge theories. The origin of this interest was triggered by the formulation
of the BLG-model [1,2], a non-trivially interacting N' = 8 supersymmetric matter
Chern-Simons gauge theory. It is an example of the sought-after theories describing
the low energy dynamics of M2-branes and the conformally invariant fixed point
of N =8 SYM theory [3]. Since then highly supersymmetric Chern-Simons gauge
theories have been studied as examples of the AdS,/CFTs-correspondence and as
solvable idealizations of condensed matter systems at the conformal fixed point [4].
Progress has been made especially for N < 6 supersymmetric models. However, the



N = 8 case, corresponding to M2-branes in maximally symmetric compactified M-
theory, remains notoriously intractable. The unitary BLG model is essentially unique
with gauge group SO(4) and arbitrary Chern-Simons level, whereas the N’ = 6 su-
persymmetric U(N) x U(N) ABJM model [5] has a proposed enhanced N' = 8
supersymmetry for Chern-Simons levels & = 1,2, but a manifest N’ = 8 supersym-
metric formulation seems to be out of reach. It is generally accepted that these
models are CF1T’s due to the quantized nature of the CS-coupling, for an explicit
two-loop confirmation see [6]. For both kind of models Higgs mechanism have been
introduced to study the flow to non-conformal SYM theories [5,7].

Existing N/ = 8 superfield approaches [8,9] using Nambu-brackets and pure
spinors describe specifically the BLG model. In the work presented here we formulate
and analyze the N' = 8 superspace constraints for three-dimensional gauge theories
which enables us to describe conformal Chern-Simons models and SYM theories on
the same footing within a universal formalism. The matter sector is described by
a real scalar superfield ®! transforming in the vector representation of the SO(8)
R-symmetry group. The gauge sector is described by a vector superfield which is an
SO(8) singlet. These superfields are subject to appropriate constraints to restrict the
field content and we study the possible couplings of the gauge and mater superfields.
The set of theories which are allowed by the consistency conditions of the constraints
can be parametrized by an antisymmetric SO(8) tensor W,p, which is a function of
the mater superfields subjected to the following concise SO(8)-projection conditions:

VaaWpe =0 , Wi Pk =0,
1605 160,

which will be explained in Detail in the main text. The N = 8 superspace formu-
lation implemented here is necessarily on-shell, so that pure superspace geometrical
considerations of the multiplet structure determine the dynamics of the system in
terms of superfield equations of motions. Regarding this aspect this is in analogy
with the approach of [1,2], where the closure of the susy algebra led to the component
field e.o.m. However, given a manifest super-covariant formulation the consistency
checks of [1,2] are automatically incorporated and allow for a broader discussion of
generalizations of the BLG-model.

We give two classes of solutions to the above conditions which describe BLG-type
conformal Chern-Simons gauge theories and SYM theories. Lagrangian formulations
are possible only in terms of component fields, and for the unitary BLG-model only
for SO(4) gauge group. The existence of a Lagrangian description at the conformal
fixed point is not guaranteed, though favorable conditions of Z; orbifold M-theory
compactifications make the existence of the Lagrangian description by the ABJM
models plausible [10], but there is a hitch, in the case of the proposed N' = 8
supersymmetry with k£ = 1,2 the theory is strongly coupled. Contrary to the four-
dimensional N' = 4 SYM theory there is no adjustable free parameter. In either



case, existence of a strongly coupled Lagrangian or the lack of a Lagrangian de-
scription, quantum theoretical considerations have to be done by other means than
perturbation theory within the models.

The superspace formulation that we present here provides a setting which al-
lows the study of possible generalizations of BLG models and the determination of
quantum corrections (to the e.o.m.) through symmetry considerations and by the
rigidness of the A/ = 8 superspace, circumventing perturbation theory. We give
an outline of possible strategies in the end of this paper. The formulation of the
dynamics in terms of superfield equations of motions carries enough information to
investigate the modulispace of the theories as well as the possible chiral primary oper-
ators. Also the restrictions due the N/ = 8 super conformal symmetry as discussed in
superspace in [11] might be helpful for further investigations. A big challenge in the
AdSy/CFTs correspondence remains the understanding of the scaling of degrees of
freedom with N®? for the strongly coupled theory describing N M2-branes [12,13].

Finally we want to mention a recent developement in A/ = 8 light cone superspace
[14,15].

The paper is organized as follows. In section ] we introduce the constraints
for the free matter multiplet and the free Chern-Simons multiplet and the minimal
coupling of the matter multiplet to it. In section  we deform the free Chern-
Simons constraint and couple the matter sector to the gauge sector to obtain non-
trivially interacting matter Chern-Simons theories and derive the above mentioned
consistency conditions for the deformations. In section [l we give particular solutions
to the above conditions, leading to BLG models and SYM theories in their dual
formulation. In section [] we summarize our results and give an outlook on a number
of future directions.

2. Free CS multiplet and minimally coupled matter

In this section we study the N/ = 8 superspace description of the N' = 8 super-
multiplet for free matter fields and matter fields minimally coupled to a free Chern-
Simons multiplet, and thereby introduce the basic conventions and methods used in
this paper. The N = 8 superspace R?!'6 is parametrized by coordinates (2%, 0%4),
A = 1,...,8, where the eight #*4 are real (Majorana) spinors in the 8¢ of the
SO(8) R-symmetry group and z*? is a real symmetric matrix.! The susy covariant
derivatives and the susy generators are given by the hermitian operators

Do = Oon + 103045 , Qan = Oan — 1053005 (2.1)
such that {Dya,Qpp} = 0 and

{Qan,Qpp} = —{Daa, Dgp} = —2i0 45003 - (2.2)

1For more details regarding the notation see the appendix.




SO(8) indices are raised/lowered with a Kronecker-delta and thus one does not have
to pay special attention to their position. We will also use gauge covariant derivatives
in superspace, which we introduce as follows:

Vag = 8a5 + Aag and Vo4 =Doa+ Aqa . (2.3)

When acting in complex bundles the physicality condition would be that the bosonic
superspace connection A,s is anti-hermitian, while the fermionic one, A,4, is her-
mitian, but we consider here real bundles and therefore the property under complex
conjugation is the primary issue. To have the same conjugation property as for the
differential operators we require that the bosonic superspace connection A, is real,
while the fermionic one, A4, is imaginary. Both connections carry a representation
of the gauge symmetry structure group and complex conjugation has to be defined
accordingly. This and the action of the covariant derivatives on different fields will
be discussed in detail when considering specific models.

2.1 The free matter multiplet
Superfield constraints

The N = 8 scalar multiplet consists of eight real scalars and eight Majorana-fermions
(¢',1,4) in the 8, and 8., respectively, of SO(8). The free field equations are given
by

O¢' =0, e 0apth, i =0, (2.4)

where O := 9*9,5. The fields ¢’ and consequently 1, ; may carry an additional
representation of some internal (global) symmetry group, which we do not indicate
here but will be discussed in detail when we consider the interacting theories and
systematically gauge these symmetries.

For finding superfields encoding this on-shell component multiplet it is therefore
natural to start with a real scalar superfield ® in the 8, of SO(8) (and in the
same representation of a possible internal symmetry as ¢!), and impose necessary
constraints to appropriately restrict the component field content. At first order in
64, this field contains components which transform as 8, ® 85 = 8, @ 56, under
SO(8).2 Comparing to the field content of the component multiplet, it follows that
one has to eliminate the unwanted component field in the 56.. In a susy covariant
way this is achieved by imposing

Da®| . 20 = Dua® = LTT7)45D0p®” . (2.5)

‘56.:
In [9] a pure spinor superfield formulation of the BLG model was given and the
equivalent to (2.§) was found as an invariance condition for the pure spinor wave-
function.

2For details of SO(8) representations and various I'-relations see the appendix E Decompositions
of tensor products of SO(8) representations can be computed with the program LiE [16] or found
in [17].



The constraint (2.5) implies the existence of a fermionic superfield ¥_ ; such that
Doa®! is explicitly restricted to the 8:

Doa® =il 0 4 (2.6)

and for our purposes and in particular for applying the methods developed in [18,19]
it will be more convenient to work with this form of the constraint. Equation (2-9)
can be solved explicitly for ¥_, which by inserting gives back (-§). This form of the
constraint resembles the form of the “super-embedding” equation of [8], where the
BLG model was realized in terms of Nambu-brackets. The similarity will become
more evident in the interacting case.

The fermionic superfield ¥ _, is not completely free, but is itself restricted due
to the integrability condition of the constraint (B.6). With (B.3) this gives:

2645005 ®" =T ;D o4 + T} i DanVyy (2.7)

which allows only the (3,8,) part of DyaWs, to be nonzero, where the first entry
refers to the so(2,1) representation. We demonstrate here for once the procedure
how we resolve such equations systematically. Decomposing DaaW g, according to
its irreducible representations

DQA\IIBA = Fﬁm (sagal + aig) +FQJAK (€agbrir + baprix) (2.8)
R,—/ _/_/ - ~ /
(2©2,85®8¢) (193,8v) (193,56v)

where the 3-form® byjx = bk is the 56, and so is the so(2,1) vector bagrk-
Inserting this decomposition into (277) shows that only the (3,8,) part a/; can be
non-zero and is given by the Lh.s. The integrability condition (P.7]) then implies

DoaVgy =T 10,59 . (2.9)

The constraint (B.6)) and its integrability condition (R.9) are the primary rela-
tions/conditions from which we derive all further consequences. From now on we will
often refer to the constraint and its integrability condition as just the “(superfield)
constraints”. Using (B.9) to express z-space derivatives in terms of superderivatives
one obtains that the superfields ®/, ¥U_ ,; subject to the constraints (.6), (2.9) satisfy
the free superfield e.o.m

eM00pV 4 =0, 0O =0, (2.10)

where O := 9/9,3. Thus the full superfields and therefore their lowest components
' = Do, ¥4 = ¥, ile=0 (Which are nonzero as we will see), satisfy the free
e.om. (B4), as desired. One could expect to get an additional condition from the
integrability condition of (£:) but it is easy to see that it reduces to the superfield
equations of motion (R.10).

3The explicit form of a tensor in a representation of given dimension and the symmetries of
these tensors are conveniently obtained via Young diagrams, see for example [20], though their
applicability is restricted for (special) orthogonal groups.



Superfield expansion

Following [18,19] we now derive recursion relations which determine the #-expansion
of the superfields. Defining the homogeneity operator

R = 0“"Doyp = 0044 , (2.11)

which satisfies R(§2141 ... gonAn) = p g1 - gandn one obtains by contracting the
constraints (2.4), (29) with 0% the recursion relations
1 oA
RO = 0" T W,
R, = 07T, 10,59 (2.12)

which due to the property of R give the (n 4 1)'th order in 6 of the superfields on
the Lh.s in terms of the n’th order of the superfields on the r.h.s.

The recursions (B.19) determine the complete superfield expansion in terms of
the lowest components ¢! and 1 ;, but without any further conditions on them and
thus represent the non-dynamical part of the constraint equations. The resulting
superfield expansion is:

o' = ¢ +i0° T 1,4 + 5070 T 000" + .
Ui =Yg+ 0T 10apd’ + 56°407°T) DL Oupth s+ ... . (2.13)

Given that the supersymmetry variation of a superfield F is 6F = €*4Qq.uF one
obtains from (R.1]) the following transformations for the component fields:

50" = ie® T i 0pgi = €T 10apd" (2.14)

which by construction are symmetries of the e.o.m. (R.4).

Concluding, we have shown that the superfield constraints (B.6), (B.9) imply a
superfield expansion exclusively in terms of the component multiplet (¢!, ;) with
the supersymmetry transformations (B.14). Moreover, these superfields satisfy the
free superfield e.o.m. (-I() and thus the component fields satisfy the free e.o.m. (£4).
In the rest of this section, we will show that vice versa the on-shell component
fields define superfields which satisfy the constraints (B.6), (B.9) so that these two
descriptions are completely equivalent. In particular, the constraints (2.4), (B.9) do
not imply any further restrictions on the components.

Equivalence to component e.o.m.

We now start from the on-shell component multiplet (¢!, ) , which is assumed
to satisfy the free e.o.m (R.4), which are supersymmetric under the transformations
(B-14)), and show that this defines superfields satisfying the constraints (2.4), (.9).
Susy covariance. We use the recursion relations (.I2) to define superfields
out of the component multiplet (¢, 1), ;). For the first few terms in the f-expansion



(R.13) we have already shown that the component supersymmetry transformations
(BI4) can be written as 00! = eQ®!, §¥_ 1 = eQV_ 4, with Qu4 given in (21]). The
recursion relations (.13) are not susy covariant and one has to check explicitly if
they define a consistent superfield?, i.e. that susy transformed superfields satisfy the
same recursion relations.

Acting with €**Q,4 on the recursion relations (2:19) one obtains

RIP! = Z.QQAF{LXA(S\I]QA — e [DaACDI - Z.FQA\IIQA] )
RV 54 = 0T, 10a56P" — € [Daa¥ sy — I, 10asP'] . (2.15)

Thus the susy variations satisfy the same recursions as the original fields iff the
superfield constraints (2.4), (B.9) are satisfied. To show that the component e.o.m.
imply these constraints we first prove that they imply the full superfield e.o.m.

Superfield e.o.m. To zeroth order in 6, the superfields equal the components
(¢',1,4) and thus per construction satisfy the e.o.m. To show that this implies that
they are satisfied in all orders in 6 we derive a recursive system for the superfield
e.o.m.,

(e}

Eoi = M00pV. 4,  E=D0" . (2.16)
Using exclusively the recursion relations (2.19) one obtains®

RE, i = =0T esnl’ |
RE" = =i T, ;e VapE 4 (2.17)

As to lowest order the e.o.m. are satisfied, i.e. £, jilg—o = Elg—o = 0, these recursions
imply that £_ 4, £’ vanish to all orders. Thus the component e.o.m. (£-4) imply the
superfield e.o.m. (-I0) for the superfields defined by (E:13).
Constraints. In the last step we show that the superfield e.o.m. (2.I0) imply
the constraint equations (R.6)), (B.9). To this end we introduce the abbreviations
Cia = Doa® —iT! U 4 |
Copai = Daa¥yi — T 10,597 . (2.18)

Using the recursion relation (R.13) one obtains the following recursions for the con-
straints CL, and C,5,4:
(1+R)Copai = —0""T5195,Can (2.19)

4This is a complementary approach to find the correct superfield constraints for a given multiplet
with susy transformations (R.14) which upon comparing with (R.19) define the recursion relations
so that the superfield expansion is generated by consecutive susy transformations.

SHere and on many other occasions we use the fact that the total antisymmetrization of three
spinor indices, which take two values, gives zero.



where in the second relation we used the fermionic superfield e.o.m. (B.I(). These
recursions imply that the constraints CL, and Copaa vanish in all orders in 6. We
thus have proved that the on-shell multiplet (¢!, ;) with equations of motion (2-4)
is completely equivalent to the superfields (®7, ¥_ ;) satisfying the constraints (2.§),

B3

2.2 Free Chern-Simons multiplet

In general, we will be interested in theories whose matter content is given by a number
of scalar super-multiplets. At the linearized level, such theories are described by
N superfields &/ W ., subject to the constraint (2.6), where the additional index
a = 1,...N, labels the different super-multiplets. The obvious global symmetry
group (besides the SO(8) R-symmetry, which we will not gauge) of the system is

GL(N,R) x T(8N) acting as
SO =A-d"+ 0O, SV =AU, (2.20)

with a matrix A € gl(N,R) (where we have suppressed the explicit indices a),
which are obviously symmetries of (.6). The shifts T(8N) act exclusively on the
scalars ®!.6

In the interacting theories, a subset of these symmetries will be gauged by se-
lecting a subalgebra g

(Thy) = g C gl(N,R) @, t(8N) ,
[Tor, Tn) = fan' T (2.21)

spanned by generators T); . Choosing g to have non-trivial intersection with t(8N) a
priori breaks the SO(8) R-symmetry. The corresponding gauge superfields appearing
in the covariant derivatives () are thus given by

Aoa = A4iTy . Asg = ANTur - (2.22)

Assuming a real representations for the generators T}, this gives the right conjuga-
tion property for real A, and A%, as defined below (R.3)).

Note that at this stage we do not encounter three algebras as introduced in
[1,2,21]. We will see in later sections how the defining relation of these three algebras,
the fundamental identity for a rank four tensor, is a natural consequence for conformal
models based on Lie algebras.

5The component field equations (@) would allow also for global shifts dv ; = (4 of the
fermionic component field and thus of the superfield ¥_ ;. In view of the superfield expansion
() this would imply a corresponding #-dependent shifts 6®! = CT 4 i*AT! 1G4 In the bosonic
superfield ®/ and represent a more involved symmetry of the constraints (@), @) We do not
consider this possibility here.



Introducing the gauge parameter field Q = QT the local versions of (P:2Q)
and the gauge transformations of the gauge fields can be compactly written as

SO =Q-d" SV =0T, ,,
5AaA = _vaAQ 5 5Aa6 = _va,@Q ) (223>

where the gauge fields transform in the adjoint of (.21)) and the matter superfields
now transform in some representation of the gauge algebra which is indicated by the
dot.

The field strengths are given in the usual way through (anti)commutators of the
connections minus torsion terms, i.e.

Faaps = {Vaa,Vap} —2i64Vas ,
faﬁ,yé = [vaﬁa vﬁ/é] )
Faﬁ,’yC’ = [vaﬁa v'yC] . (224)

Free CS superfield constraints

The gauge superfields (Aqa, Aqp) contain way to many component fields and one has
to impose constraints to obtain a physically meaningful multiplet. In particular, A,
contains a second component vector field with the same gauge-transformation as the
lowest component of A,s. It has turned out to be promising to impose (partial) flat-
ness conditions on the bi-spinor field strength, here F,4 sg, to eliminate unphysical
degrees of freedom [22-25]. In many cases this corresponds to an underlying geo-
metric structure of twistors and pure spinors [24-27]. In particular, the unwanted
vector field is eliminated by the “conventional constraint”, see for example [28,29],
where a symmetrized part of F, 4 gp is set to zero. Since we are interested here in the
free multiplet we impose a constraint which is rather strong in three dimensions and
require the entire F, 4 gp to vanishes. Relaxations of this constraint will be discussed
when we consider non-minimally interacting theories. Thus, for this section we set

Faapn S0 — {Vaa,Vsp} =2i045Vas - (2.25)

As in the case of the matter superfield constraint (B.6)) the right r.h.s. of (.23) is
not completely free but has to satisfy certain conditions so that it factorizes into an
anti-commutator. The analogon to the integrability condition (P.9) are the Bianchi
identities, which are simply obtained from the super-Jacobi identities for the covari-

ant derivatives:”
Z [VaAa {vﬁBa V’yC’}] =0 ) Z (_1)7T{VOCA7 [vﬁB’ V'Y(S]} =0 )
cyclic cyclic
Y Voa [Vap Vil =0 0 > [Vap, [Vas, Vil = 0. (2.26)
cyclic cyclic

"The exponent 7 in the second identity counts the cyclic permutations where (anti)commutators
are distributed correspondingly to the occurrence of bosonic/fermionic connections



First of all, these identities imply nontrivial conditions in case (B.25) appears, i.e.
for the first and second identity with three fermionic and two fermionic covariant
derivatives, respectively. In these cases one obtains:

5ABfa,6,~/C + 6Acfa'y,,6B + 5BCf6'y,aA =0 s
VaaFrsp8 + VepFrisaa = 210a8F 6508 - (2.27)

Decomposing the two equations analogously to (£.§) into irreducible representations
of s0(2,1) and SO(8), one finds that the two Bianchi identities imply that also the
other two components of the super field strength vanish, i.e.

Fapne =0=Fapqs - (2.28)

With these strong equations for the commutators/field strengths the other two
Bianchi identities in (R.2§) are identically fulfilled and do not impose further condi-
tions. The second equation in (R.2§), which follows with the help of the first one,
is the free Chern-Simons superfield equation of motion. To see what this implies at
the level of component fields we again follow the strategy of [18,19] to obtain the
superfield expansion.

Superfield expansion

To eliminate the gauge degrees of freedom in the gauge superfields and to be able to
apply the same recursive method as in (2.19) one imposes the “transverse” gauge [18]
on the fermionic gauge superfields,

A4 =0 = R=0V,,. (2.29)

This fixes the gauge freedom (B.23) up to pure z-space dependent gauge transfor-
mations and is thus a kind of WZ-gauge. Moreover, it allows to write the recursion
operator R (B-I1)) in a covariant form. Therefore, contracting the constraint (P:29)
and the first Bianchi identity (R.2§) with ¢ one obtains the recursion relations

(1 + R) .AgB = QiQ%Aaﬁ ,

R Ay =0. (2.30)

This gives the rather trivial superfield expansions,
Aaa =i05A05 ,  Aap = Aup (2.31)
where the lowest component A.s := Aaglo—o is the vector field in x-space. The

condition due to the second Bianchi identity in (2:2§) thus implies the component
field equations

Fo3,5=0, (2.32)
which is the free Chern-Simons e.o.m. Consequently, the multiple associated with
the constraint (2.27) contains a single component field, the vector field A,g, which
is pure gauge and therefore has no dynamical degrees of freedom.

— 10 —



Equivalence to component e.o.m.

To prove that a component vector field A, gz, satisfying (£:32) is equivalent to the full
constraint (B.27) is trivial in this case. Adopting the superfield expansions (2-31)) one
immediately sees that these superfields satisfy the constraint (.25) and the Bianchi
identities (B.2§) due to the component field e.o.m. (.39). Nevertheless, we consider
the susy-covariance of the recursion relations and the susy-transformations of the
component field. Defining the superfield transformations as before, i.e. 6 A 4 =
€QAna and 0 A5 = €QA,p, and acting with €@ on the recursions (R.30) one finds:

(1+R)0A0n = 2i050Ans — P Fonpp — Vaal
R(S.Aaﬁ =0+ Eﬁycfagﬁ(j — Vag/\ , (2.33)

where in both cases the last term is a field dependent supergauge transformation
with the gauge parameter field

A=A Agn =005 Anp . (2.34)

Thus up to the constraint (B:27) and the first Bianchi identity in (2:2§) the recursion
relations are susy covariant modulo field dependent gauge transformations. The
occurrence of the field dependent gauge transformation is not surprising since the
“transverse” gauge (R.29) is not susy covariant. In the same fashion, using the
(component) field e.o.m. (.39) and in view of the superfield expansion (R.31]) one
obtains for the supersymmetry transformations

0 Aan = €°Q 0 Aan =10 6Aus = —Vasl
5Aa5 = E'YCQ-ycAaﬁ = 5Aag = —VagA . (235)

Thus the susy transformations of the superfields are (on-shell) pure gauge transfor-
mations with the field dependent parameter A (B-34). These gauge transformations
do not have a component in the appropriate order of # such that the supersymmetry
transformation of the component field in (B-37) is just

§Aus =0 . (2.36)

The curious fact for the free Chern-Simons case, that a multiplet with a single compo-
nent field, A,g, is nevertheless (on-shell) supersymmetric was discussed in [3]. Here
we obtain the same result in a super-covariant way.

2.3 Minimal Coupling

We now covariantize the procedure of section R.1 by minimally coupling the matter
superfields to gauge superfields subject to the constraint (.25). Given that the gauge
field remains pure gauge this seems to be trivial, but it sets the formalism for the
next section, where we consider non-linear deformations which lead to a non-trivially
coupled system.

- 11 —



Superfield Constraints

The covariantized constraint (2-§) with minimal coupling is

Vaa®' =il W, 4 . (2.37)

Using the gauge field constraint (.27) and the Bianchi identities (B.2§), the integra-
bility condition of (B-37) reduces to
Vaa¥lyi =T Vasd' . (2.38)

Further, using the gauge field constraint (.23) to express V,s in terms of su-
perderivatives and the Bianchi identities (B.2§) together with (.37), (B.3§), the
superfield e.o.m. compute to

Va4 =0, Vel =0, (2.39)
where V? = V9V 4.

Superfield expansion

To obtain the superfield expansion we again impose the “transverse” gauge (£.29).
Contracting the constraints (2:37), (2.38) with 4 one obtains the recursion relations
I _ paAnl .
RO =0T,V 4
aAI 1
R4 =01, ;Vap® . (2.40)

This again defines the superfield expansion in terms of the lowest components ¢! =
®!|p—o and ¢ ; = ¥_ ,|e—0, where things considerable simplify due to the fact that
for the free Chern-Simons multiplet in the “transverse” gauge (B.31)) one has

o

Vaﬁ = vag = 8,15 -+ Aag , (241)

i.e. only the lowest component of the vector superfield is present in the super-
connection V5.5 Hence the superfield expansion is given by
' = ¢ + 0T ;0,4 + 5070 TV apd” + .
APl 7 T | ipaAgyBpl I o
and therefore the lowest components of the superfield e.o.m. (P:39) imply the cor-

responding e.o.m for the component fields ¢! and ¢, ;. We have thus shown that
the constraints and integrability conditions/Bianchi identities (B29), (B:23), (-31),

o
8By 9 we generically denote the lowest component of a superfield: ® := ®|y—g = ¢, etc.
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(B38) give a minimally coupled Chern-Simons multiplet (A.g, ¢, 4) with the
e.0.1m.

Fagrs =0, V2 =0,  "Vuph ;=0 (2.43)

The supersymmetry transformations of the matter multiplet are obtained from the
superfield expansion (2:49) in the usual way,

5" = e 1Qua®" =1 (6¢" +i0°T (0 4. )+ A- D, (2.44)

where as in the case of the gauge multiplet we obtain the component field transforma-
tions modulo a compensating gauge transformation with the same gauge parameter
A (B34). The resulting supersymmetry transformations are then

59! = i T o a s S0us = AT Vs |
0Aas =0, (2.45)

where for completeness we have rewritten the transformation of the gauge field (2:39).
These supersymmetry transformations again resemble the recursion relations (2:47),
(R.30) of the associated superfields.

Equivalence to component e.o.m.

We have already shown that the component vector field A,z subject to the free
Chern-Simons e.o.m. (-39) is equivalent to the gauge field constraint (2.29) and its
Bianchi identities (2.2§). What remains to be shown is that the same is true for
the matter multiplet. Again we start from the multiplet (¢!, ), satisfying the
e.om. (2:43) and construct superfields out of it according to the recursions (R.40).
It is convenient to introduce again the constraint functions
CLy = Vaa® —il" W 4,
Copai = Vaa¥yi — T Vesd! (2.46)

where we used the same symbols as for the free matter multiplet, which now encode
the minimally coupled constraints (B.37), (2:3§) (but this should not lead to any
confusion). Acting with e*Q,4 on the recursions (2-47) one obtains the recursions
for the susy transformed fields as

R6®" = i¢* T’ ;60 4 + A- @' —e*CL,
ROW 54 = 07T (Vagd® + AWy —€*Copui - (2.47)
Therefore, modulo super gauge transformations with the parameter A of (.34) the

recursion relations are susy covariant in case that the matter constraints (2.37), (E.33)
and the Bianchi identities (R.2§) are satisfied.
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The rest of the proof that the component e.o.m. (B.43) imply superfield e.o.m.
and superfield constraints, proceeds exactly as in the previous discussion of section
by simply replacing all derivative operators by covariant derivatives. Thus again,
the superfield constraints are completely equivalent to the component multiplet with
the e.o.m. (B-43). We will see in the next section how deformations of the constraint
(B:25) will modify these results and introduce non-trivial interactions.

3. Interacting theories

3.1 Vector superfield with a modified constraint

In this section, we consider the vector superfields A, 4, Aqs for which the constraint

(R:25) is modified to
{VaA, VgB} = ((5ABVQ5 —+ 8a5WAB) , (31)

where Wap = —Wpy is an antisymmetric SO(8)-tensor. There are two different
situations in which the system (B.1]) may appear. First, if W,p is a given function
of the matter superfields of the theory, i.e. Wap = Wap(®!, ¥_ ), the system (B.1)
describes a deformation of the original constraint (R.2§) which will in particular
induce a (non-linear) deformation of the original (super)field equations of motion
(R-43) by terms containing Wap and its (super-)derivatives. This is the scenario we
will be dealing with in this paper. As we will see, as soon as the matter superfields
are coupled to the gauge superfields, W g is necessarily a function of them. In this
case we will refer to the SO(8)-tensor Wyp as the deformation potential.
Alternatively, one might consider the vector multiplet independently and regard
Wp as an independent field defined by equation (B-]]), in which case this equation
rather amounts to parametrizing a weakening of the original constraint (2.23) to

aAs - . 2
{Vaa,Vsp} .35, 0 (3.2)

In that case, the dynamics induced by (B.Z) can be considered independently of the
matter sector and will in particular lead to a different number of degrees of freedom
contained in the vector superfield.

In either case the Bianchi identities impose conditions on Wy,p for the the con-
straint (3-]]) being self consistent.

Bianchi identities

As in the free theory, the immediate nontrivial conditions on the superfields are given
by the first two Bianchi identities in (2.24), where (B.J]) appears. Using the constraint
(B-1)) the first Bianchi identity imposes the condition

d0apFaprc + 0caFrapn + 0BCFy,aa =
Eﬁ-yVaAWBC + EyavﬁBWCA + 8065V70WAB . (3.3)
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Decomposing the terms of this equation analogously to (R.§) according to their SO(8)
representation content, one deduces that solvability requires the 160g to vanish
within the the tensor product V o4Wge ~ 85 ® 28 = 8, @ 564  1604. This im-
plies the existence of superfields A\,4, in the 85, and poapc = pajaBc, in the 56,
such that the superderivative Vo4 Wpe satisfies the condition®

VaaWpe oo, = 0 = VaaWpe = daBAc)a + PasBe - (3.4)

This constraint will play a central role in the following. In particular, if we
consider W4 g as a function of the matter fields of the theory, this composite superfield
must satisfy (B.4) in order for the system (B.1]) to be consistent. The Bianchi identity
(B-3) then fixes the fermionic field strength F.g.,4 to

faﬁﬁA = _Ew(a)\B)A . (3.5)
Using the constraint (B.]), the second Bianchi identity in (2.26) writes as
vaAf'y5,ﬁB + v,BBf'ycS,aA = Qi(éAnyé,a,B + 5aﬁv~/5WAB) 5 (36)

and with (B) implies the existence of another superfield Vyp = Vjap) in the 28,
such that
Vaarss = (6apFap + 2VagWap + €apVan) - (3.7)

Here, o3 = F(ap) denotes the vector dual to the bosonic field strength, i.e. F,5 :=
€ Foyps- This duality is characteristic for three dimensions and we will use this
relation frequently in the following.

The first Bianchi identity identifies F,3,4 with a single field (B-f) and thus,
contrary to the free case (2.2§), also the third Bianchi identity in (:2§) gives a
nontrivial condition on the superfields:

VaaFsy = Vo@pAya +ca Vy)g)\éA . (3.8)

The equations (B-4), (B3), (B-1) and (B.§) are the consistency conditions for the
constraint (B.J]), which are imposed by the Bianchi identities.

Deformed super-CS e.o.m. In the case that a deformation potential W,p =
Wap (P, U _ ;i) is chosen the derived superfields A\ya, paapc, etc. are also given
functions of the matter superfields. In particular defines (B.7) the super field strength
Fap in terms of the matter superfields in the following form:

Eap = TFap+ £ Visdaa=Fop— 5 Vi ViWap =0, (3.9)

where we used (B.4) to express Aoa in terms of the deformation potential Wup. As
in the free case (2.2§) one obtains the superfield e.o.m. in the gauge sector from

9Symmetrization and antisymmetrization of indices is indicated by brackets ( ) and [ ], respec-
tively, and is defined with total weight one, i.e. z(4g) = %(xaﬁ + 28a), etc..
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the second Bianchi identity and (B.9) explicitly shows, how the dynamics of the free
Chern-Simons gauge field is deformed by the presence of the deformation poten-
tial WAB-

A priori, with (B.9) the fourth Bianchi identity in (£.24), which takes the form

VPF.;=0, (3.10)

may give rise to yet another condition. However, one can evaluate the l.h.s. of

(B-I0) using the constraint (B.1)) and the conditions (B.§), (B-H) to show that (B.I0)

is identically fulfilled and does not impose additional conditions.

Integrability conditions

The integrability conditions of the constraints derived from the Bianchi identities, in
particular (B.4) and (B.7), determine the superderivatives of the various additional
superfields and eventually allow to define a closed recursive system for a systematic
superfield expansion analogous to the procedure in section P} In the case that the
gauge sector with the constraint (B-]]) is considered as an independent system these
are genuine conditions on these superfields which correspond to independent degrees
of freedom. We give a thorough account on this scenario in appendix [A.

By contrast, in choosing a certain deformation potential Wap(®!, ¥ _ ;) satisfying
the conditions (B-4),(B.7) and (B.§), the “sources” on the r.h.s are derived from Wyp
and the integrability conditions are identically satisfied and give identities rather
than conditions. In addition, the constraints (B.]]) and (B.§) define RA,4 and RA.z
in terms of the matter superfields and thus form together with R®!, R¥_ ; a closed
recursive system. We will carry out the detailed analysis of the superfield expan-
sion, component equations and the equivalence thereof to the constraints in the next
subsection, where we study the coupling between the gauge and matter sector.

We develop here the system of integrability conditions till the point we will need
it for a general discussion of the possible couplings to the matter sector. Especially
we want to clarify here which of the restrictions (B.4),(B1), (B.8) on the choice for
the deformation potential Wap(®’, ¥, ;) are independent.

The integrability condition of (B.7]) gives VaaVpe and reproduces the third
Bianchi identity (B.§). Analyzing the integrability conditions of (B.4) determines
Vaapssep and reproduces the second Bianchi identity (B.7) with F,g as given by
the CS-e.o.m. (B.9). Consequently, the only remaining restriction on the choice of
Wap(®', ¥ ;) is the condition (B.4).

The resulting covariant super derivatives of the various fields are:

Vaa pssen = 3iVasgWincopia — SeagdaVep) + 3icas [Was, Wep)] + iUas asen
VaaVie = 26"V ag (8aAcpy — prasc) — [Wee, Aal — 4 [Was, Acja]

VaaUsyBecpE = 85A[BVQ(QP%DE} — 4648V 5. pSPE 4 1,5, aBCcDE

+ens <§[WA[B,p$)DE}] — [W1BC, pDEH +35A[B[WCD,A5}]> , (3.11)
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where the last equation for the superfield Ug,pcpr = U(gy)cpE) has been obtained
from the integrability condition for the V,4 pspcp equation. At this point su-
perderivatives of the fields are determined up to the tensor 7o, ABcDE = T(apy) [ABCDE]-
This is all we need for a general discussion of the matter couplings and we refer to
appendix [ to see how the system closes.

We have thus shown, that deforming the free constraint (2.27) by choosing Wp
to be a certain function Wag(®’, ¥_,) of the matter superfields, the Bianchi iden-
tities are satisfied provided that Wap satisfies the constraint (B.4). The super field
strengths are given by (B.H) and the deformed super Chern-Simons equations (B.9).
Consequently, the constraint (B.4) is the only condition on the choice of Wp for the
deformation (B.]) to be self-consistent.

3.2 Matter superfields and gauge matter coupling

In this section we study the consequences of the deformation (B.1]) for the matter
sector and give a detailed discussion parallel to the sections .2 and B.3 of the coupled
system regarding component field equations, supersymmetry transformations and
the equivalence thereof to the combined constraint system. As for the gauge sector
the deformation will modify the dynamics by terms polynomial in the deformation
potential Wap and its (super-)derivatives. Compatibility of the system will require
Wap to satisfy additional algebraic constraints.

Superfield constraints

The most conceivable starting point for the matter sector is to keep the covariantized
constraint (B-37) for the scalar superfield ®f

Vaa® =il U 4, (3.12)

and deduce the consequences due to the new vector superfield constraint (B.1]). For a
given constraint in the gauge sector, (B.19) to a large extent determines the resulting
dynamics of the system.

Using the gauge field constraint (B.1]) the integrability condition of (B:13) is now
modified to

2 6A3Vaﬁ<b1 + 2 Eap Wag - ol = FIBAVQA\I//? + FIIL‘AVﬁB\Ifé . (313)

Repeating the analysis of section P determines Vo4V 44 but also gives restrictions on
the new (second) term on the Lh.s. Since the 160, in

Wap -0 ~28®8, =8, ® 56, ® 160, , (3.14)

is unpaired in equation (B:I3) it has to vanish separately. In the following it will
be often convenient to write Wy4p in the vector notation W;; = iFQ{BWAB (see
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appendix ), such that the constraint on Wap - ®x writes as

Wiy P =0 —
160y

Pl (Wi - @) i= Wiy - O — Wi @+ 2 6 gWyp - @ =0. (3.15)

In addition to the constraint (B.4) this will be the main restriction on the possi-
ble choices for the deformation potential Wag(®’, ¥ ;), which fixes the details of
the dynamics. In the following we will refer to these two constraints (B.4), (B.19),
which determine the set of possible models, as the W -constraints. The algebraic W -
constraint (B.13) also shows that as soon as the matter sector is coupled to the gauge
sector, the modification Wyp of the gauge field constraint (B.J]) has to be considered
as a function of the the matter superfields which at least depends on ®.
After some SO(8)-I-matrix algebra the integrability condition (B.13) yields
VaaVsi =T Vag® + 2eas (3T 075 + 2 TE) Wiy - @ (3.16)
for the superderivative of the fermionic superfield. Using the gauge field constraint
(B-1) to express z-space covariant derivatives through covariant superderivatives and

the various constraint relations and Bianchi identities of this section, one obtains the
superfield equations for ¥_,; and ®:

gaA = 567Vaﬁ\lfwi

3 3i oI [, i pABC I_
+ 1 Wip Vo t 356 Tuidaa @ + 555004 Paspc - P =0,

I . 1 I « ABC a
E = V2<I> _%(SFAA)\O‘A\IIA_'_%FIA paABC'\I]B)
+ 2V - 2W - (Wok - %) — e Wk - Wik - @) =0,

(3.17)
where V7 = JTWp Vag, Wy = ;T0. W, are special cases of SO(8) triality
relations. In the same spirit we have defined the symbol F‘;‘fc = F[I T é} i, see

appendix [B for more details and several I'-matrix identities which were employed in
this calculation. Using the algebraic W-constraint (B.15) one can recast the scalar
self-interaction involving W;; in different forms. Equations (B.17) together with (B.9)
constitute the complete set of superfield e.o.m.

Superfield expansion

We again impose the “transverse” gauge (B.29) to construct the superfield expansion
via a recursive system. Contracting the constraints for the matter fields (B.13), (B.14)
and the gauge field constraint (B.1]) with 4, and the Bianchi identity (B-5) with
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674, one obtains the recursion relations for the superfields ®/, ¥_;, A, 4 and A,p:
I _ -paATI
RO =0T, Vi
R\IfﬁA = 9aAFf4AVa5<I>I + % GO‘Aaag (% FIIL‘A&]K + %Fi‘{:{) W[J . (I)K y
(1 + R) AgB = 2'é(9% Aaﬁ + QOCAEQQWAB) ,

,R,.Aaﬁ = GWA&?,Y(O)\@)A y (318)

which generalize the recursions of the free theory (B:30) and (2.40). The composite
superfields of the gauge sector, such as Ay, paasc, Vag, etc., are now given functions
of the matter superfields via the deformation potential Wap(®!, ¥, ),

Mot =2VasWsa, passc = VaaWaey
VAB = —% EaﬁvaAVQCWCB ) etC., (319)

as can be seen from equations (B.4), (B.7) and (B.11). The recursion relations for these
composite superfields as well as for W4p and F,s are determined by the recursions of
the fundamental superfields (B.1§), but on the constraint surface they are equivalently
given by the contraction of (B4), (B-7), (B) and (B11]) with #*4. Off the constraint
surface, and thus when deriving the constraints from the component field equations,
this is no longer true as we will see.

To second order in 6, the superfield expansion can be expressed in terms of the
composite fields explicitly given in (B.19):

o = ¢ +i0°T! 4 + 5 0°40°F Tl Vage’
—1 HaAeﬁBc‘:‘aﬁ(% Sap Wiy ¢? — LU Wiy - ¢N) +...,
Ui = Vg4 + 0T Vagd'
+% 9‘“‘5,15(% FI{XA(SJK + % FIIL‘{LXK) W[J . (25]( + ... s
Aaﬁ - Aaﬁ + 97057(04)\,8)0

_‘_%’ §7C poD (%g-y(s 5(][)Fag — QEV(QVQ)JWCD + E»Y(agﬁ)(SVCD) + ... (3.20)

while for Agp, the expansion of is formally the same as in abelian case (A.9) of
appendix [A], see also ([A.11]) for more details. To obtain explicit expressions one has
to compute the lowest order components of the composite fields in (B.19). To this
end we assume here and in the following that W,z depends on ®! only and not on
the fermionic superfield Wy, i.e.

Wap = Wap (&) . (3.21)

The explicit cases that we are going to study in this work fall into this class of
deformation potentials Wy4p. Using (B-12) and with 9y, := 9/9¢!®, where the index
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a refers to the representation of the gauge (structure) group, the projection on the
lowest components for the composite fields takes the form

Wap =Wag(9) , =Z Ul 8IaVVAB . Panc = Wi 8I‘lVV[BCFzI‘l]I‘i ’

Vap = [WA07 WCB] - é‘aﬁiﬂaA?ﬁﬁB Tl 100 W e

+% (WIJ ' ¢J)a aIaWAB - _FILMN (WLM . ¢N)a a]aWBC . (3.22)

With the above relations and the superfield expansions (B.20) one obtains from
(B-I7) in a straightforward way the component field e.o.m. for the component fields
¢’ and 4. The CS-e.o.m. is the lowest component of (B-) and can be computed
analogously to (B.29). Together, the full system of component e.o.m. is given by

[¢]

1 o o
5aﬁ = Faﬁ + 2_8 <F{4‘]Bvaﬁ¢lanaWAB ubA( 1% B AA BB aIaa]bVVAB) =0 )
Ei=0, &=0. (3.23)

The supersymmetry transformations for the independent component fields ¢,
Y,i and A,p are again obtained from the superfield expansion, (B.20), by acting
with €*4Qq4 and modding out a restoring super gauge transformation with gauge
parameter

A=A 4= ieO‘AHﬁB((SABAag + c":‘agV(f/AB) + ..., (3.24)

which is formally the same as for the free CS-multiplet (B-34) but has a more non-
trivial superfield expansion, see ([A.9). The obtained component supersymmetry
transformations are,

5¢I — aA FIAwaA ’
g = € (D Vst + 4 s (3 D0 + 5 D) Wiy -0nc) |
0Aap = % EWBEW(aw%)A Ffm aIaWAB ) (3.25)

and again resemble the recursion relations of the associated superfields (B.1§). Equa-
tions (B.23) and (B.29) show how the deformation potential W4p modifies the dy-
namics and supersymmetry transformations of the component fields compared to the
mmlmally coupled free CS-multiplet (2.43) and (R.47). The deformation potential
W A = Wap(¢!) cannot be chosen arbitrarily but inherits the lowest components
of the W-constraints (B.4) and (B.13). These conditions are also necessary for the
component field equations (B.23) to be invariant under the supersymmetry trans-
formations (B:29). The algebraic W-constraints (B.I5) is the same for the lowest
component fields, since it just constrains the functional form of Wp(¢!). The low-
est component of the differential W-constraint (B.4) is straightforwardly obtained by
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using (B.19). Together, one finds for W A = Wap(¢!) the conditions

Pl (Wi o) =0, Pl 10 Wpe) =0 | (3.26)
where the projector P§’§§T], acting on three indices R, S,T referring to the same
representation, was introduced in (B.17).

Equivalence to component e.o.m.

In this part we prove that the component multiplet (¢!, 4, Asp) satisfying the
e.om. (B.2J) with the conditions (B.26) for the deformation potential, and the su-
persymmetry transformations (B.29) is equivalent to our constraint system, in par-
ticular the gauge field constraint (B.1) and the matter field constraint (B.13) and
consequently their Bianchi identities and integrability conditions. The reader who is
only interested in the mere fact of this equivalence may skip the details of the proof
presented here.

As in the previous sections we construct superfields A,a, Aag, @ and ¥_;
out of the component multiplet according to the recursion relations'® (B:18). One
can ask again if this definition of superfields is susy covariant and mutatis mutan-
dis one obtains the result analogous to (B.33) and (B.47) that these superfields are
susy covariant modulo supergauge transformations with the parameter (B.29) if the
constraints (B.]), (B-H), (B-12) and (B-Iq) are satisfied.

To demonstrate the equivalence between component field equations and the con-
straints we again construct a recursive system for the constraints- and superfield
e.o.m. expressions. Due to the non-trivial coupling of the gauge and matter sector,
and in particular due to the conditions on the deformation potential W g, the sit-
uation is quite involved and we introduce a more symbolic notation such that the
structure of the system remains clear. From the gauge sector the following expres-
sions, resembling (B.1]), (B.3), (B.7) and (B.4) will occur in the recursive system

G = Gaups = {Vas,Vas} — 2i(045Vas + asWas) ,

G(z) = Gaﬁ,'yA = JapnA + 57(a>\,8)A ’
E® = goaﬁ = Jap — Xaﬁ )
G = Gaapc = VaaWpse — (0aiAc)a + pasBe) (3.27)
where we have introduced the abbreviation X,5 = —é V?o)\ﬁ)c, and the other com-

posite fields were given in (B.I9). The expressions of the matter sector, resembling

10We do not intend to carry this out explicitly but use the recursions (B.1§) as an implicit
definition of the superfields. The explicit calculation would be rather messy, especially since off the
constraint surface one cannot use the previously given recursion relations for the composite fields,
as we will demonstrate now.

- 921 —



(B:19), (B-16), (B-I7) and (B-I9), are:
cW =cl

67

4= Vaa® —ill U 4
C? =Coy 54 = Vaaly — T Vas®’
—3%as (7 Ta8™" 4§ TU) Wi - @
gform =& i, gbos = gl ’

CIJK = Pg%éK}(W]J . @K) . (328)

The explicit expressions for £, 4, £ were given in (BI7). In the following, the detailed
index structure of the occurring expressions will not be important and in general we
stick to the notation on the L.h.s of these definitions.

To determine the action of the recursion operator R (£.29) on the expressions
(B:27), (B-28) we will need the superderivatives of the composite fields off the con-
straint surface, i.e. the analogs of (B1), (B.§) and (B.I1]), but with F,5 replaced with
Xap'. These equations were obtained as consecutive integrability conditions of the
differential W-constraint (B.4). Off the constraint surface one has to start instead
from G in (B.27). Keeping track also of the other constraints one finds the following

modifications of (B.7), (B.§), (B.11):

Vaarss — Vaarsp + {GUW + VG} |
Vaapssep — Vaapspep +{GUW +VG} |
VaaXpy = VasXg, + {GOA+ V(GOW + VG) + GOW}
VarVee = VaaVae + {GYN+ V(GYW + VG) + GAWY |
VauUssepe — VaaUsysepe + {GYN+ V(GOW +VG) + GOW + GWY |
(3.29)

where V symbolically stands for a superderivative V,4 with unspecified indices. In
addition we need the expression for RF,s3. As a consequence of the recursive defi-
nitions of the independent superfields (B.1§) certain contractions of the constraints
with 04 vanish identically, i.e. 0°ACL, = 0°AC, 54 = 0°*Gangp = 0°PGagsp = 0.

With this one finds by acting with V.5 on RA.g in (B.1§)
RFas = 0" (ViAo + sta VorAb) (3.30)

which is the same as on the constraint surface, i.e. the equation obtained by contrac-
tion of (B.§) with 624,

For the W-constraints the results follow directly from the conditions (B-2q) on the
lowest components of the deformation potential W4g. The algebraic W-constraint in
(B-29) is identically zero, i.e. Crjx = 0, due to the first condition in (B.26). The last

11 Note that on the constraint surface means also Fog = Xqop with X5 given below (B-27), i.e.
the CS-e.0.m., see also the discussion above (B.11)).
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equation in (B.27) can be read as G = PQ‘;‘E C}(Va 4AWpce) and thus as a consequence
of the second condition in (B.28) the differential WW-constraint takes the form

Ganpc =PASNCI 0, Wpe) or G ~CYoW | (3.31)

where the second expression is of the symbolic form that we will use in this section.
We now have all the ingredients needed to compute the action of R on the other

expressions (B.27) and (B.2§). Using the recursions (B.1§) and the relations derived
in this part, one finds for the gauge sector

24+ R) GY ~ 0{G? + G}
(1+R) GP ~ 9{E= + (GYW +VE)}
R ES ~ 0{GUN+ GPW + V(GOW +VQE)}, (3.32)

which are obtained more or less straightforwardly. For the matter sector one obtains

(1+R) CcW ~ 9Cc® |
(1+R) C® ~ 9{E™ 4+ V,opCW + G0 + (GO + WCOW)}
R EFM ~ G{ESD + £ + V(G + WCOW) + (GVWe + WCP)}
R EP® ~ O{V5E™ + £V + VV(GE + WOWV)
+V(GEYWE +WCP) + (GOWD +GWE + WWCW)} |
(3.33)

where V.5 symbolically stands for a bosonic covariant derivative, the given indices
have no specific meaning. The first relation in (B.33) is straightforwardly obtained
and uses the fact that Crjr = 0, as explained above (B.31l). The derivation of
the other relations is rather involved and uses, in this order, the first, second and
third superderivative of the just mentioned relation, i.e. VCr;x = 0, VVCrx =0
and VVVCrx = 0. Via (B:29) these produce a number of constraints which we
extracted here, the remaining terms are found to cancel with the help of an algebraic
computation using Mathematica.

The notation used in (B-37) and (B33) is rather formal, the suppressed index
structure appears in all kind of combinations. This is enough information to show
recursively that the whole system of constraints (B.27), (B.2§) vanishes to all orders
in # as a consequence of the equations for the component fields (B.23), (B.26). In the
first step one sees that to lowest order all expressions in (B.27) and (B.2§) are zero

due to (B:23), (B:24) or the recursion relations (B.39), (B-33):

o o

C(l) -G = &(1) _ 8«(2) — é(2) _ gform — gcs — gbos =0. (334)

In the sequence given here for the lowest component it is easy to show using (B.33),

(B:33) and (B3]), that to order (n + 1) in 6 all expressions in (B.27), (B-2§) are
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zero if they vanish at order n (the only subtlety one has to be careful about is the
appearance of the superderivatives V in (B.27), (B.2), which brings in higher order
coefficients). With (B.34) this inductively proves that all expressions in (B.27), (B.29),
vanish to all orders in 6 due to the component field equations (8.23), (B-26), and thus
shows the equivalence of the component field formulation and the constraints (B-]))
and (B-IZ) and all their consequences.

Concluding this section, we have shown that the weaker gauge field constraint
(B.)) is consistent only if the deformation potential W4p satisfies the differential W-
constraint (B.4)). Coupling to the matter system via the same constraint as in the
free CS case, (B.19), further imposes the algebraic W-constraint (B.I5) on W4p and
thus necessarily makes the deformation potential a function of the matter superfields.
This results in the interacting CS- and matter superfield e.o.m. (B.9) and (B.I7). For
the case that Wyp is a function exclusively of the scalar superfield ®! we gave the
component field e.o.m. and the supersymmetry transformations (8:23), (B-29), (B-29)
and demonstrated the equivalence of the component field equations to the superfield

constraints. The generalization of these considerations to a more general deformation
potential Wyp, depending also on the fermionic superfield ¥, is straightforward.
In the next section we will give explicit solutions to the W-constraints which will
imply the conformal BLG-model and N' = 8 SYM theory in its dual formulation,
respectively.

4. Solutions to the superspace constraints

In this section, we present different solutions to the obtained superspace constraints
and show how all known examples of three-dimensional N' = 8 gauge theories fit into
our framework. Let us start by reviewing the structure of superspace constraints
identified so far. The matter sector of these three-dimensional gauge theories is
described by a scalar superfield subject to the constraint (B.139)

Vaa®| =0. (4.1)

56
The full theory is then identified by specifying their gauge algebra g (2:2]) as a
subalgebra of gl(N,R) @, t(8N) and by choosing W4p(®’, ¥ _ ;) in (B-]) as a function
of the matter superfields of the theory. This choice of the deformation potential
Wap is not arbitrary but must satisfy two independent superfield conditions, the

W-constraints (B.4) and (B.19):

VeaWe | =0, (4.2)

s

Wy - @k ) —0. (4.3)

160+
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The first equation requires that the deformation potential W45 depends on the mat-
ter fields such that (f.J) is satisfied as a consequence of ([.1]). In contrast, equation
(E.3) also explicitly contains the action of the gauge group on the matter fields and
will thus put further restrictions on the possible gauge groups. We will see in explicit
examples, that the conditions (.3), (-3) are truly independent as there are solutions
to either one of them that do not solve the other equation.

4.1 Conformal gauge theories

In this section we consider gauge groups G that are subgroups of GL(N,R), N being
the number of scalar super-multiplets, such that the superfield A,4 can be repre-
sented as a matrix in the adjoint representation of G. Accordingly, we label by
indices a,b, ..., the representation of G in which the matter superfields ®; and
U ;i transform. Matter and gauge superfields are thus denoted as ®%, we ., and
(Aaa)®, (Aap)®, respectively.

The constraint (B.1]) implies that the composite field W45 has canonical dimen-
sion one. Given that the scalar fields have canonical dimension one half in three
dimensions, scale invariance implies that with a polynomial ansatz W,p is bilinear
in the scalar superfields ®¢, with the most general ansatz given by

(Wi)% = fca P50% (4.4)

where the dimensionless constants [, . have to be antisymmetric in the last two
indices, i.e. f%caq) = f%,.ds- Gauge covariance requires that f%,.; is an invariant
tensor of the gauge group GG, and per construction Wj; has to be an element of the
Lie algebra and therefore f¢, 4. € g for any d and c. Together, this translates into a
quadratic condition for the tensor f% .q

fgc,abfef,gd - fgd,abfef,gc = fgf,cdfeg,ab - fgf,abfeg,cd 3 (45)

which can be obtained by explicitly evaluating the action of W;; on a Wy and
comparing this to the adjoint action by commutator. The same relation was obtained
in [30] for the embedding tensor in a component field approach.

It is straightforward to check, that (f.4) is a solution to (f.3) as a consequence
of (E1)): as V,aWge is composed of a single ®' and a single ¥_;, w.r.t. SO(8) it
transforms in the tensor product 8, ® 8. = 8, + 564, which does not contain a 160y .

To solve the remaining constraint (.J) we evaluate the action of (f.4) on a scalar
field

(Wi @r)* = [ea PFO5PY . (4.6)

This shows that the tensor f%,.q needs to satisfy complete antisymmetry in the last
three indices f%,cq = f%peq, such that

(Wis )" = fpea O} PGP | (4.7)
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transforms in the 8,%t3 = 56, of SO(8), thus satisfying (f.J). For such a tensor
f%.cd, the quadratic equation ([L.F) reduces to the so-called fundamental identity.
The same condition on a tensor f%.y, interpreted as a structure constants of a
three-algebra, has been used in [31] in a component formulation of the equations
of motion. This shows how the constructions of [1,2,31] are embedded into our
superspace analysis. The existence of an action furthermore requires the existence
of a metric hy, and total antisymmetry of the tensor fupeq = Naef peq - It has been
shown in a number of papers (see e.g. [32,33]), that for a positive definite metric
hap, equation (f.J) admits no other solutions than the compact SO(4) of the original
construction of [1,2]. Solutions of ([.5) with indefinite metric have been found and
studied in [34-36].

In order to complete the construction of this example, we evaluate the general
formulae of the last section for the particular choice ([-4)). From (B:19), we obtain

(Naa) = if%bea Ty 4 V427 (PaaBc)’s = — 5if%ea FABC e DY

(Vag)® = —3if e Al ‘I’CA‘I’ZB L e f Cepg T @507 09 0% (4.8)

as well as the first order Chern-Simons equations of motion (B.9)
(Fap)®s = —f"bed <®§ Veas®d + Z\I’CA\IIgA) ) (4.9)

This answers the question raised in [8], namely, how the in the Nambu-bracket realiza-
tion by hand imposed “Chern-Simons-constraint” follows from consistency conditions
of the scalar field equations.
After some calculation, the bosonic equations of motion (B.I7) take the form
V20F = LT [lhea W0 10505 + § [ heaf erg PRI DL DI DS (4.10)
and coincide with the result of [31]. For the theories with action, they exhibit the
Yukawa couplings and the sextic scalar potential of [1].

4.2 Yang-Mills gauge theories

It has been shown in [37,38] that three-dimensional Yang-Mills gauge theories have
an equivalent formulation as matter-coupled Chern-Simons gauge theories with non-
semisimple gauge group

G = GYM X Tk s (411)

where Ty denotes a set of k = dim Gy translations, transforming in the adjoint
representation of Gyy . This allows to embed also Yang-Mills gauge theories into
the general superspace formulation presented above. In the context of M2 branes,
this duality has been discussed in [36, 39].
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In order to realize (f.11) as a subgroup of GL(N,R) x T(8N), we start from
matter fields ®7, U¢ . in the adjoint representation (thus N = k), with the index a
now labelling the adjoint representation of the Yang-Mills gauge group Gy, and f,°
denoting the Yang-Mills structure constants. To obtain the subalgebra t associated
with the subgroup T) C T(8k) we choose a fixed SO(8)-vector &; and define the
generators 7, of t as

7:1 - 5]7;1 ) (412)

with a constant vector &7, and where the 7./ span the full Lie algebra of T(8k). The
gauge superfields in the covariant derivatives as defined in (R.23) are thus chosen to
be

Aga = ATy = A%, 0Ty, + B2y iT, = Aga + Baa (4.13)
with the Yang-Mills and the translation generators acting on the scalar superfield as
T, @) = f,005, T, 0% =¢08, (4.14)

respectively. The constant vector &; breaks SO(8) down to SO(7). The algebra of
the generators (R.21)) hence splits into the semidirect sum as

[Taa Tb] = fabC Tc
[T, Tn) = fun"Tk < T, T) = fur 1e - (4.15)
7, 7] = 0

The bosonic gauge superfield A,z = AO%TM is decomposed analogously to (f13),
except for the factor of 7 (B.29). With regard to the separation of the gauge superfields
we can write the covariant derivatives accordingly,

~ ~

voeA - voeA + BaA s Vozﬁ = voeﬁ + Boeﬁ s (416)

where V4 contains only A, A, etc.. The action on the superfield ®; then takes the
form

Var®d = Vo 1®9 +i&Be, (4.17)
and accordingly for the bosonic superfield connection V,3. On all other fields, which
are neutral under shifts generated by the 7, the action of V,4 and V,4 coincides.
The explicit form of the gauge transformations (B.23) is then given by

6B =A- O IO, SV =NV,

0Ags = —Vaa- A,  0Bas =iVasC+ A-Bas, (4.18)

and analogous transformations for the bosonic superfields Aqg, Bag. These trans-
formations lead to a homogeneous covariant transformation of the super covariant
derivatives of ®!, i.e.

§(Vaa®') = A+ (Vaua®') , (4.19)
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which thus is neutral under local shifts in ®/. As for the covariant derivatives, also
the conventional field strengths acquire extra terms only in the case of their action
on the scalar superfields ®/. With the definitions ({.13), ([.15) one obtains for the
anti-commutator

{VQA, VﬁB} Pl = (2i5A38a5 + DaAAﬁB + DgB.AaA + {AaA7 AﬁB}) P!
= 2i5ABVa5<I)I + .7:—06,4753 el 4 fIHaA,ﬁB , (4.20)
with the split of field strength into Foa s = ngﬂBTa + Heapp7a, e

Funps=DaaAgs + DgpAas + { Ao, Agp} — 2045 A0 ,
HaA,BB = vaABﬁB + VgBBaA — Qi(;ABBag . (4.21)

Similarly, we split the bosonic field strength F,3.5 into a part faﬁﬁg corresponding
to the standard non-abelian Yang-Mills field strength of the gauge field A,z and

~ ~

Hoaﬁ,’yé = Vaﬁlg—yé - VygBag such that
Fops - ' =Faprs @+ Hapns. (4.22)

It remains to find a solution for the tensor Wy, living in the algebra (4.15) that
satisfies the constraints ([.3) and (). Our proposal is the following

Wi =W, 4 wheT, = 20U T, + £,,°0707T, | (4.23)

where the superscripts (0 refer to the Gyyy-covariant grading of the algebra (E13).
It is straightforward to verify that this function satisfies the constraint (f.J) as a
consequence of (f.1]). The argument is as in the last section: it follows with (E.1)
that VoaWpge w.r.t. SO(8) transforms in the tensor product 8, ® 8. = 85 + 56,
which does not contain a 1605 . Moreover, with ([.14)) one checks that

(Wi - ®x)* = WP foc" @i + W7 €
= 3foc " O PG = (Wirs - @x)* (4.24)

is completely antisymmetric in [[JK], i.e. transforms in the 56,, and thus also
satisfies the constraint (f.J). This fixes the relative factor in ([.23). Finally, gauge
covariance of the ansatz (f.23) requires

flan® faac=0, (4.25)

the standard Jacobi identities for the structure constants of Gyy. To complete the
construction, we evaluate the general formulae of section B.2 for the solution (f.23).

From (B.I9) we obtain
Aaa=—ily (€100 T, —ify" U7 197 T,)
Pa ABC = %ZF?ABC (gl\IlZA Ty — ifbca \IIZCA(I)IC 7;) ) (426>
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and

Van= -3l B0 T,
+ (%fbcafdebri% Ué[)?(q)i}q)lc _ %iaaﬁfbca I‘ﬁg \IIZA\P;B) 7, . (4.27)

The first order CS-equations of motion (B.9) yields

Fap=—E' Vog®!®T, — .0 (cb”’vaﬁcbfc e A) T, . (4.28)
Finally, the bosonic equations of motion (B-I7) reduce to
V2QS— LT f ot e 3 faf N bt 0 (4.20)

In order to show the equivalence to the standard formulation of three-dimensional
N = 8 Yang-Mills theories, one uses part of equations ([L2§) to integrate out the
vector field B,g. Explicitly, we split the SO(8) index I — (¢,8) with i = 1,...,7,
set €1 = 6’8, and fix the gauge freedom 6@ = £/C by setting ®® = 0. Note that this
gauge differs from the “transverse” gauge (2:29), which imposes also #*4B,4 = 0
and was used in the previous analysis to construct the superfield expansion.

Using (I.17) the T, component of equation ([.2§) reduces in this new gauge to

~

Fap=—Bag ; (4.30)

and can be used to eliminate the gauge field B,z from all equations. In particular,
using ([.29) the remaining component of equation (f.2§) takes the form

0V, Fp)s = 3@, Vo] + il 0 (4.31)

in which we recognize the standard second-order Yang-Mills equations of motion
for the remaining gauge field Aaﬁ. The scalar equations of motion are obtained
from ([£29) after imposing £/®; = 0, and exhibit the quartic potential in the scalar
fields ®°.

It is instructive to study this redualization of the three-dimensional degrees of
freedom on a more fundamental level directly in terms of the superfield constraints.
Upon setting ®® = 0, the scalar constraint ([£]]), or explicitly (B:I7), implies that

iBY, =V, @8 = T8, Wi (4.32)

L.e. the vector superfield B4, which gauges the translations is identified with the
fermion superfield ¥4 . With (B:16) we thus obtain from (E21))
Haa,88 =DaaBps + DpsBaa — 206 4Bags
=2i045(Vag®®* — Bly) To + Licas(T"5T®) ap (Wi - @x)* T,
= 3ieas(T"5T®) up) oo (I)?I(I)f] $x1 1o
—ieag W T, . (4.33)

— 929 —



Le. the constraint (B.1]) is automatically satisfied for the 7, component of the super-
field strength. The remaining part of this superfield constraint yields

Faops = SicasTEy Wi T, = ieaT%, &, (4.34)
or equivalently
{Viaa, Vst =2i645Vas + icasl i, O . (4.35)

If we take this equation as a definition for the scalar fields ®¢, the Bianchi identities for
(E:35) induce the matter superfield constraint (B-I2). In this respect, equation ([.33)
may thus be considered as a weaker version of the constraint (B-2%), which accordingly
gives rise to Yang-Mills dynamics rather than to a Chern-Simons dynamics for the
gauge fields involved. Moreover, we recognize in ({.35) the remnant of the superfield
constraint underlying ten-dimensional super Yang-Mills theory [19, 25]

{Vu, Vp}=2iT%,:V7, (4.36)

with SO(9,1) vector and spinor indices Z and A, respectively, after breaking the
Lorentz group SO(9,1) — SO(2,1) x SO(7) and truncating the partial derivatives
w.r.t. the seven internal coordinates. The scalar fields ®° represent the seven internal
components of the ten-dimensional vector.

5. Conclusions and outlook

In this paper, we have given a systematic analysis of the N' = 8 superspace constraints
in three space-time dimensions. The general coupling between vector and scalar
supermultiplets is encoded in the deformation potential W4g which is a function of
the matter fields subject to the W-constraints (.3) and ([.3). The full equations
of motion are given by equations (B.9) and (B.I7). We have given the two solutions
(E4) and (E23) to these constraints including the conformal BLG model and to
three-dimensional Yang-Mills theory, respectively. The presented results and the
universal formalism in which all known A = 8 three-dimensional theories have been
embedded suggest a number of possible generalizations and directions of further
research of which we list a few in the following.

e In the course of this paper we have met and analyzed various different con-
straints for the super field strength F, 4 gp. In its strongest version (2.23) the
field strength F,4 5 is set to zero which gives rise to a (first order) Chern-
Simons dynamics of the bosonic gauge field. A weaker version of the constraint
is (B-3) which allows for a non-vanishing part in the irreducible (1,28). As
shown in appendix [A], this leads to an enlarged vector multiplet with essen-
tially no dynamics (apart from certain first order constraint equations on the
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higher order components of the multiplet). Yet another version of the con-
straint has been encountered in ([.3) upon breaking SO(8) down to SO(7)
and allowing an irreducible (1,7) in the super field strength. As discussed
above, this is related to a ten-dimensional origin of the theory and induces a
(second order) Yang-Mills dynamics for the bosonic gauge field. In order of
increasing constraints, these cases may be tabulated as

V40, V =0 = d ics ,
{V4a,Vps} 9 no dynamics

Ve, V =0 —  Yang-Mills d ics ,
{ A Bﬁ} (3.35)4(1,21) ang-Mills dynamics

{V40a,Vps} =0 = free Chern-Simons dynamics ,(5.1)
(3,35)+(1,28)

and show how the field content and the dynamics becomes more restrictive
as a function of the constraints. It would be very interesting to perform a
similar analysis for other versions of the constraint upon breaking the original
form under various subgroups of SO(8) and to study the resulting multiplet
structures, their dynamics and a possible higher-dimensional origin.

e Asshown in appendix [A], the first constraint in (5-1]) admits the representation
as a partial flatness condition for the integrability of an auxiliary linear system.
No such representation is known for the constraint (B.1l) with W4z being a de-
formation potential, as we have studied it in this paper. However, as we have
discussed in section [.2, for the particular solution (f.23) of the W-constraints,
the super field strength may be brought into the form ([.:35) which descends
from the zero-curvature condition on super null lines ([.30) of the linear system
underlying the ten-dimensional Yang-Mills equations of motion [25]. Dimen-
sional reduction does not guarantee the existence of a linear auxiliary system
and a corresponding twistor space description. For example for the N' = 4
SYM theory in four dimensions no such system is known, only the N' = 3
superspace formulation has been described in these geometric terms so far [24].
However, the dimensional reduction of the the ten dimensional SYM superspace
constraints to six dimensions, describing six-dimensional N' = 2 SYM, can be

reformulated as a linear auxiliary system®!2.

In three dimensions a twistorial
description of SYM has been given in N/ = 6 superspace [41]. However, it is
an interesting question if there exists an auxiliary linear system and an as-

sociated twistor space description for the solution ([.4)) of the W-constraints

2With 2% = 24 = 1eWklyy, being a six-dimensional vector (i,j = 1,...,4) one finds that the
integrability conditions of 7V ;oS = VLS = 2¥V;;S8 = 0 are equivalent to the superspace
constraints for the six-dimensional ' = 2 SYM theory as given in [19], iff 2% is a null vector.
The geometry of these null-vectors and the corresponding twistor space were discussed in [40], it is
natural to expect that there exists a twistor space formulation of the six-dimensional N’ = 2 SYM
theory.
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which eventually would give rise to a linear system and associated twistor space
formulation underlying the equations of motion of the conformal BLG model.

The covariance of our formalism suggest a study of this question analogous to
SYM theories.

In this paper we have studied the interactions between scalar and vector su-
perfields induced by a deformation (B.]) of the super field strength. A natural
generalization of this ansatz would also include the remaining irreducible term

{VQA,VQB}:QZ' (5ABva5+€a5WAB + JaﬁAB) , (5.2)

with a tensor Jogap = Jap)(aB), traceless in (AB), that is now likewise given
as a function of the matter fields. An analysis similar to the one performed in
the main text, shows that in presence of a non-vanishing J,s 45 the differential
W-constraint ([.2) is modified to

MV apJya O ’ =VasWpae ;
160g 160

V A(adsy) BC =0, (5.3)

1125

where the projectors on the Lh.s. refer to the irreducible parts of the ten-
sor product 85 ® 355 = 8 @ 1125 @ 1604 in which V,4Js,pc transforms
w.r.t. SO(8). Likewise, upon coupling to scalar superfields, the algebraic W-
constraint (f.3) is extended to

Wap - @' =0 = Jopap- @’ : (5.4)

160, 224,
We expect that similar to the analysis presented in the text, these constraints
will be sufficient to guarantee consistency of the system (f-3) coupled to scalar
superfields. It remains an open question to find solutions of the extended set
of constraints (b.3), (5.4) that would give rise to more general ' = 8 theories.

Along similar lines, the system ([.1))—(£.3) can be generalized by deforming the
matter superfield constraint ([[.1]), i.e. by allowing more general contributions

vaA(I)I:FQA\IjaA_I'P?ABO@aABC' , (55)

where now O . is considered as a function of the superfields ®, ¥_; (sub-
ject to a number of differential and algebraic constraints). A similar strategy
has been used in [42] in order to constrain the higher order o' corrections
to ten-dimensional super Yang-Mills theory. In the present context, a viable
strategy in order to describe higher order corrections to the models may be to
implement the algebraic W-constraint (f.3) by adequate choice of the defor-
mation potential Wyp while solving the differential W-constraint (fl.9) for this
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functional by suitably tuning the © contribution in (F.3) that modifies ([.1]). In
this context it is also possible to consider non-polynomial generalizations of the
ansatz ([L.4) which are scale invariant. The verification of the conformal sym-
metry of the resulting models can be conveniently carried out by representing
the superconformal algebra on the N = 8 superspace. These steps represent a
possibility for determing quantum corrections without relying on perturbation
theory.

e The generic scalar field equations of motion (B.I7) that we have derived as a
consequence of the superspace constraints exhibit various terms containing the
deformation potential Wyp, as well as the derived quantities A\pa, pasapc and
VI However, when explicitly evaluating these terms for the explicit mod-
els in (TI0) and (F29), we observe that all the terms give rise to only two
distinct contributions to the equations of motion, a purely bosonic term and
a single term bilinear in the fermions. This raises the question if this reduc-
tion of the general equation is related to some (yet undiscovered) underlying
structure of the generic theory or if there exist more general solutions to the
W-constraints (f.2), ({.J) for which the different terms of (B.I7) do give con-
tributions of different type. The question may be related to the fact that both
our explicit solutions ([4)) and ([:23) satisfy an algebraic equation which is
actually stronger than ([.3) and reads

Wiy @k =0. (5.6)
8v+160y
It would be highly interesting to understand if (5.G) is a (hidden) consequence
of the constraints ([.2), (E.3) or if the latter admit solutions with a non-trivial
component in the 8,. With regard to the supersymmetry transformations
(B-29) this would also have an impact on the BPS equation of this system and
thus generalize the original Basu-Harvey equation [43].

e Finally, it is a natural task to perform a similar analysis of superspace con-
straints for the theories with less supersymmetry. Of particular interest is the
case N' = 6, including the theories of [5,44]. The relation to the harmonic
superspace approach [45] and the pure spinor formulations [46] in this case
remain to be investigated.

We hope to come back to some of these issues in future work.

Acknowledgements: This work is supported in part by the Agence Nationale de
la Recherche (ANR).
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A. A weaker constraint

In this appendix, we complete the discussion of the constraint system (B.3), i.e. of a
vector multiplet with Wap considered as an independent field defined by (B.1). In
this case, the constraint (B.I) can be understood as a partial flatness condition,

Forps + Fappa =0, (A1)
and therefore admits an equivalent formulation as an linear auxiliary system,
APV 45S8(N) =0,  A*¥V,5S(\) = 0, (A.2)

with a light-like vector A*?\,5 = 0, such that integrability of (A2) implies (A]).
Light-like vectors in R%? are parametrized by 7'S!, the Minkowski space version of
the mini-twistor space [47], which suggest the existence of a corresponding twistor
space formulation of this system.

To keep the analysis of the multiplet structure transparent we analyze the sys-
tem (B-]]) for abelian vector superfields, for which the resulting equations simplify
considerably. The full non-abelian analysis does not add any conceptual challenges
or modifications of the component field content except for the fact that all fields are
matrices of the non abelian Lie algebra.

The conditions due to the Bianchi identities (B:4),(B3), (B.7) and (B.§) are of the
same form as in the non-abelian case, except that the covariant derivatives acting
in the adjoint representation can be replaced by partial derivatives in the abelian
case. The integrability conditions (B-I]]) are now genuine nontrivial conditions on
the superfields. In the abelian case, they simplify considerably to

Doa pspep = 3i0asWipcopia — 2eagdasVep) + tUas apep
DoaVpe = 26M005 (0aipAcy — pyanc)
DaAUﬁ'yBCDE = 80 [38 pCDE] 5A[B8 -ypSDE] + Tapy ABCDE - (AB)

Evaluating the anti-commutator (B.1) on the last equation of ([A.3) determines the
superderivative of the tensor 7,3, apcpE as

DaA7_516253 By--Bs — 10i5A[B a(B1 UBZ )B ol 525 la(ﬁlﬁz ) el

+ T opipafs AB1--Bs » (A.4)

up to a tensor 7o, ..a4 4;.-46 = T(ay--aq)[Ar-Ag) - 1terating this procedure, we finally
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arrive at the (closed) system

B B
DoaTpy -, 3y = 126471005, 5665} 6 61105, T o 5

+ OafBy---B34 AB1--Bg »

B Br] B B
DaAUﬁl -B5 B1---B7r — 14@5A[B18a(61 525)7 _725A 186162 53254507)}

+ ZSagl,,ﬂE) ABji--Br 5
aAsﬁl B B1--Bg = 10 5A[Bla (89 5 5 — 8441 0(5152 ,Bt:;] (A5)
with additional tensors ¢ and S, which are completely symmetric (antisymmetric)
in their SO(2,1) (SO(8)) indices. Evaluating the anti-commutator (B.1) on the first
equation of (A.3) leads to two consistency equations for the tensor and Uapcp op and
the fourth (abelian) Bianchi identity:

O Fog =0,  9¥Uspapcp = 0, (A.6)
Similarly, consistency of (A.4]), (A.H) requires the first order equations
aaﬁTaﬁ’YAl“'As =0, aaﬁTaﬁ’Ylvz Arag = 0, (A7)

and analogous equations for ¢ and S, showing that in the abelian case these tensors
are conserved higher spin currents. In the non-abelian case, a crucial modification
takes place. First, partial derivatives are replaced by covariant derivatives and sec-
ond, the r.h.s. of the equations ([A.G), (A7) (except for the Bianchi identity) receive
non-vanishing contributions from commutators of the non-abelian fields.

Superfield expansion, multiplet structure

The obtained closed system of superderivatives of superfields (B.1), (B-4), (B-H), (B.1).
(B-§) and (A3), (A4), (A7) allows to define a closed recursive system to system-

atically obtain the expansion in terms of component fields. Contracting all these
(90“4

equations with gives
(1+R) Aaa = 2i0° Aup + 2icast®™Wap
R A = BVAEA,(Q)\Q)A ,
RWap = 0°P(0piarns + pspas)
RAaa = i0°P(6paFsa +2 05aWpa +5aVpa) ,

R Surap vty = 16070050,0027 ) — 809N, 002 0 (A8)

B(e1qy.a) Ocs)ﬁ’
generalizing (2.3(0). This shows that the superfield A,4 is entirely determined in
terms of the lowest components of all the superfields involved

AﬁB = Z(Q% Aaﬁ + QOCAEQQWAB)

+20°407C (645 r(ads)0 + EapdciaNBly + Eag Pucap) T+ - - (A9)
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oN Field Representation under SO(2,1) x SO(8)
0 — -

1| Aug+ Was (3.1) + (1,28)

2 | Xaa+ Paasc (2.85) + (2,56,)

3 | Vap + Uuganco (1,28) + (3 — 1,35, + 35.)

4 ;)—aﬁwABCDE (4 —2,56)

5 %al...m Ar. A (5 —3,28)

6 Tonoocs Av. A (6 —4,8,)

7 gal...aﬁ Ay Ag (7-5,1)

8 — .

Table 1: Superfield expansion of the vector field A,4 induced by the weaker constraint
(B.2). The negative multiplicities of representations w.r.t. SO(2,1) correspond to the first
order constraint equations which these fields satisfy.

The only equations that these fields must obey are the first order constraint
equations ([A.G), (A7), etc. The superfield expansion of A 4, is summarized in table [l],
where the negative multiplicities refer to the first order constraint equations. The
resulting multiplet is thus neither on-shell (as there are genuine field equations for its
components) nor entirely off-shell (due to the presence of the constraint equations).
Counting the field content of table [[] reveals 257 bosonic + 256 fermionic degrees of
freedom with the extra bosonic singlet corresponding to the gauge freedom of the
vector field A,s. Interestingly, the same multiplet has appeared in [48] in the context
of reducing the superspace constraints of ten-dimensional Yang-Mills theories down
to seven dimensions.

The relation between Fi,z and A,z may give an idea how to resolve the con-
strained fields in terms of genuine off-shell fields. E.g. in the abelian theory, the 70
conserved currents Uapcpaps can be written in the form

UABCDocﬁ — 5768V(QBABCD6)6 ’ (AlO)

as the field strengths of 70 off-shell and unconstrained vector fields BAP¢P

af - For
the higher spin fields in contrast, this is less clear. In particular, the non-abelian
generalization upon which the components UABYP 5. 7,5 4, ..., etc., are no longer
covariantly conserved currents, makes it even harder to see if there exists an formu-

lation in terms of genuine off-shell fields.

In the non-abelian case the superfield expansion of A,4 to second order in 6
is formally the same as in (A.9). For the basic matter superfields and the bosonic
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gauge superfield one finds to second order in 6:
o' = ¢ +i0°T! 1,4 + 507407 Tl Vg’
—1 eaAeﬁBﬁaﬁ(% Sap Wiy ¢! — s VU™ Wiy on) + ..,
\IIﬁA = IDBA + HQA(FIIL‘AVQQ(?I + % 6a5P£jK W[J . (bK)
i paApC (I I o IJKK 11
+3 07707 (FAAFccVaﬁ Uhe + Pii Toe Wi '%C’)
+3 00407 (FfA eAge - ¢+ 1T LY (SosAoy + Prenp) - ¢K) o,
Aap = Aap + 0% A0
—l—% 97096[)[%875 6C'DFo¢ﬁ — QEW(QV[;)(gWCD + 8«,(0{55)5VCD] + ..., (A.ll)

. o IJK _ 1pl §JK | 1pIJK
where we have introduced the abbreviation P ilial r A A5 + 5 r i

B. SO(8) relations

The group SO(8) (we consider mainly the associated Lie-algebra so(8) and we are
somewhat cavalier regarding the difference) has rather special properties. It admits
a Majorana-Weyl representation in terms of real eight-component Spinors and the
chirally conjugated ones, and consequently there are three inequivalent (real) eight
dimensional irreducible representations 84, 8. and 8, where 8, is the vector repre-
sentation of SO(8). The source of this “accidental” coincidence in the dimensionality
is the underlying triality symmetry which can be seen from the associated Dynkin
diagram.

A commonly chosen Majorana-Weyl representation of the SO(8) Gamma matri-
ces T'! is given in terms of real 8 x 8 blocks:

Pl {FOI FOI} , (B.1)

where I'! = (I'')T. We denote the components of the matrices I'! by
I, with I[,AB=1,...8, (B.2)

and we do not introduce a separate symbol for the transposed matrices I'/, which
in fact occur only in this appendix to keep the notation more compact. The basic

algebraic relations for these matrices are'3

rUr) =i =517 15 (B.3)

13We denote symmetrization/antisymmetrization in indices by () and [], respectively, and (anti)-
symmetrizations are always defined with weight one.
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and an explicit representation of these matrices can be found for example in [49].
Further we introduce the totally antisymmetrized products

Pilé}nln — (F[hffz .. .fI"])AB ... neven,
Fglflf---[n = (Tl 1)y, 0 .. nodd, (B.4)

and analogously one can define matrices I'//% where the alternating sequence of
matrix products starts with a the transpose matrix I'/, replacing dotted and undot-
ted indices in (B.4]). These matrices have the following symmetry properties under
transposition:

gt = (P et even,
(Fhfz---fn>T — (_)n(n—l)/Q fIlIz"'I7L ... nodd. (B5>

Identities. We give here a number of useful I'-matrix identities which where
used in the calculations of the main text. We first give a basic identity, which is also
the origin of the triality relations that we used in this work (see below):

I I I I
FAAFBB+FABFBA 2 5AB§AB . (B-6)

Defining 5?,1:{;; = 5[1}1 . .5{;;1 we have the following identities:

e Traces
Tr[[ ] =0 for n>1,
Tr[TTHEY) = —16647, |
Te[D/7EDEMN] = 48 5190y
TI[FIJKLFMNOP] = 8(24 5[] OP + glJKLMNOP) 7
Te[DTFT/MDEN] = 32 (61 6M — 61521y | (B.7)
e Products
(FIJFKL) _ KL _ (5K[IF£§ . 5L[Il—\£g) —204p (%{JL :

(TLNTIVENY o = 4 TIHEL _ 30 F[IJ 5K]L
(FILNFIJK>AB _ 4FLNJK + 10( 5J]N N[K5J]L) +12 5LN5 5 (B.8)
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e Tensor products

TisTep = 16600 ,

DTl =20 T, — 2T, T

AC™ BD BC™ AD
IJKLpL IJK IJK [IJ K]
Uip " Te = —0aploe + 200l + 66
Diplees = —2T(eTiE + 16 60l g

(fJFIFK)AAP){?Ié =16 5A[BFIC}A —2 PjAch )
Dislen " = 20cohg — 8 (0acT' s — 08 I'ya) »
DIETE = 486450 45 — 6T, TL 5
DA The " = 480aT¢, 4 — 60pcly ;- (B.9)

Triality. Here we explain some triality relations which were used in the main
text. The basic identity for these considerations is equation ([B.g) which is exactly the
same relation as (B-J) if we consider “new” matrices'* I'* with matrix components
I, =T . (the same is true for matrices I'Z with matrix components '3, := ).
Thus the matrices I'4 provide the same algebraic structure as the matrices I'' and
we can define the analogous antisymmetrized products I4Z¢P- as in (B4) with the
same properties and analogous formulas as in (B.7), (B.§) and (B.9) will hold for
them. In addition we can reinterpret different expressions in the tensor products

(B:9). A particular example that was used in the main text is:

IL.Ih =TSP = —(PAPTC) ) = —(T45C 4 2 Ffj‘C.(SBW) : (B.10)

with T45¢ = F[IA]BFé}O- In the main text we also use the fact that the adjoint
representation of so(8) can be written as

28 = (8v ® 8v)alt = (85 ® SS)aIt = (8c ® 8c)alt ) (Bll)

which allows to label tensors in this representation by different antisymmetric index
pairs, e.g.

Wi =40 Wap . Wap =T We, , Wy =i0PWr,, ete. . (B.12)

C. so(2,1) spinor conventions

All spinors appearing in the main text, superspace coordinates or fields, are Majorana
spinors in 2 + 1-dimensional space-time. Our metric convention is 7,, = (—,+,+)

14We do not introduce a new symbol for these matrices but take the index name from the range
A, B,C.. as opposed to I, J, K... as part of the defining symbol, in particular this means for example
FA:l 7& FIZl.
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and we choose a Majorana representation for the gamma-matrices'®

" =206 . (C.1)

Thus the matrices v* “3 are real and the Majorana condition on spinors imply that
they are real two component spinors. Spinor indices are raised /lowered by the epsilon
symbols with £'2 = £;5 = 1 and choosing NW-SE conventions

€5, = 0%, A =" N5 & N\g= A5 . (C.2)

: . : meo._ B . (. . S\aB
Introducing the real symmetric matrices o} 5 := 7# 5 €, and o* 7 := (e- 0t -£)*" =
—ehp @ , a three vector in spinor notation writes as a symmetric real matrix as

ot af

N|—=

Vap = Oy Uy = V= Vg - (C.3)
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