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Abstract: We present a systematic analysis of the N = 8 superspace constraints

in three space-time dimensions. The general coupling between vector and scalar

supermultiplets is encoded in an SO(8) tensor WAB which is a function of the matter

fields and subject to a set of algebraic and super-differential relations. We show how

the conformal BLG model as well as three-dimensional Yang-Mills theory provide

solutions to these constraints and can both be formulated in this universal framework.

Keywords: Supersymmetric gauge theory, Chern-Simons Theories, Superspaces.

http://arxiv.org/abs/0912.1358v1
http://jhep.sissa.it/stdsearch


Contents

1. Introduction 1

2. Free CS multiplet and minimally coupled matter 3

2.1 The free matter multiplet 4

2.2 Free Chern-Simons multiplet 8

2.3 Minimal Coupling 11

3. Interacting theories 14

3.1 Vector superfield with a modified constraint 14

3.2 Matter superfields and gauge matter coupling 17

4. Solutions to the superspace constraints 24

4.1 Conformal gauge theories 25

4.2 Yang-Mills gauge theories 26

5. Conclusions and outlook 30

A. A weaker constraint 34

B. SO(8) relations 37

C. so(2, 1) spinor conventions 39

1. Introduction

Highly supersymmetric three dimensional gauge theories received tremendous at-

tention over the last two years, in particular conformally symmetric matter Chern-

Simons gauge theories. The origin of this interest was triggered by the formulation

of the BLG-model [1, 2], a non-trivially interacting N = 8 supersymmetric matter

Chern-Simons gauge theory. It is an example of the sought-after theories describing

the low energy dynamics of M2-branes and the conformally invariant fixed point

of N = 8 SYM theory [3]. Since then highly supersymmetric Chern-Simons gauge

theories have been studied as examples of the AdS4/CFT3-correspondence and as

solvable idealizations of condensed matter systems at the conformal fixed point [4].

Progress has been made especially for N ≤ 6 supersymmetric models. However, the
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N = 8 case, corresponding to M2-branes in maximally symmetric compactified M-

theory, remains notoriously intractable. The unitary BLG model is essentially unique

with gauge group SO(4) and arbitrary Chern-Simons level, whereas the N = 6 su-

persymmetric U(N) × U(N) ABJM model [5] has a proposed enhanced N = 8

supersymmetry for Chern-Simons levels k = 1, 2, but a manifest N = 8 supersym-

metric formulation seems to be out of reach. It is generally accepted that these

models are CFT ’s due to the quantized nature of the CS-coupling, for an explicit

two-loop confirmation see [6]. For both kind of models Higgs mechanism have been

introduced to study the flow to non-conformal SYM theories [5, 7].

Existing N = 8 superfield approaches [8, 9] using Nambu-brackets and pure

spinors describe specifically the BLG model. In the work presented here we formulate

and analyze the N = 8 superspace constraints for three-dimensional gauge theories

which enables us to describe conformal Chern-Simons models and SYM theories on

the same footing within a universal formalism. The matter sector is described by

a real scalar superfield ΦI transforming in the vector representation of the SO(8)

R-symmetry group. The gauge sector is described by a vector superfield which is an

SO(8) singlet. These superfields are subject to appropriate constraints to restrict the

field content and we study the possible couplings of the gauge and mater superfields.

The set of theories which are allowed by the consistency conditions of the constraints

can be parametrized by an antisymmetric SO(8) tensor WAB, which is a function of

the mater superfields subjected to the following concise SO(8)-projection conditions:

∇αAWBC

∣
∣
∣
160s

= 0 , WIJ · ΦK

∣
∣
∣
160v

= 0 ,

which will be explained in Detail in the main text. The N = 8 superspace formu-

lation implemented here is necessarily on-shell, so that pure superspace geometrical

considerations of the multiplet structure determine the dynamics of the system in

terms of superfield equations of motions. Regarding this aspect this is in analogy

with the approach of [1,2], where the closure of the susy algebra led to the component

field e.o.m. However, given a manifest super-covariant formulation the consistency

checks of [1, 2] are automatically incorporated and allow for a broader discussion of

generalizations of the BLG-model.

We give two classes of solutions to the above conditions which describe BLG-type

conformal Chern-Simons gauge theories and SYM theories. Lagrangian formulations

are possible only in terms of component fields, and for the unitary BLG-model only

for SO(4) gauge group. The existence of a Lagrangian description at the conformal

fixed point is not guaranteed, though favorable conditions of Zk orbifold M-theory

compactifications make the existence of the Lagrangian description by the ABJM

models plausible [10], but there is a hitch, in the case of the proposed N = 8

supersymmetry with k = 1, 2 the theory is strongly coupled. Contrary to the four-

dimensional N = 4 SYM theory there is no adjustable free parameter. In either
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case, existence of a strongly coupled Lagrangian or the lack of a Lagrangian de-

scription, quantum theoretical considerations have to be done by other means than

perturbation theory within the models.

The superspace formulation that we present here provides a setting which al-

lows the study of possible generalizations of BLG models and the determination of

quantum corrections (to the e.o.m.) through symmetry considerations and by the

rigidness of the N = 8 superspace, circumventing perturbation theory. We give

an outline of possible strategies in the end of this paper. The formulation of the

dynamics in terms of superfield equations of motions carries enough information to

investigate the modulispace of the theories as well as the possible chiral primary oper-

ators. Also the restrictions due the N = 8 super conformal symmetry as discussed in

superspace in [11] might be helpful for further investigations. A big challenge in the

AdS4/CFT3 correspondence remains the understanding of the scaling of degrees of

freedom with N3/2 for the strongly coupled theory describing N M2-branes [12,13].

Finally we want to mention a recent developement in N = 8 light cone superspace

[14, 15].

The paper is organized as follows. In section 2 we introduce the constraints

for the free matter multiplet and the free Chern-Simons multiplet and the minimal

coupling of the matter multiplet to it. In section 3 we deform the free Chern-

Simons constraint and couple the matter sector to the gauge sector to obtain non-

trivially interacting matter Chern-Simons theories and derive the above mentioned

consistency conditions for the deformations. In section 4 we give particular solutions

to the above conditions, leading to BLG models and SYM theories in their dual

formulation. In section 5 we summarize our results and give an outlook on a number

of future directions.

2. Free CS multiplet and minimally coupled matter

In this section we study the N = 8 superspace description of the N = 8 super-

multiplet for free matter fields and matter fields minimally coupled to a free Chern-

Simons multiplet, and thereby introduce the basic conventions and methods used in

this paper. The N = 8 superspace R
2,1|16 is parametrized by coordinates (xαβ , θαA),

A = 1, . . . , 8, where the eight θαA are real (Majorana) spinors in the 8s of the

SO(8) R-symmetry group and xαβ is a real symmetric matrix.1 The susy covariant

derivatives and the susy generators are given by the hermitian operators

DαA = ∂αA + iθβ
A∂αβ , QαA = ∂αA − iθβ

A∂αβ , (2.1)

such that {DαA, QβB} = 0 and

{QαA, QβB} = −{DαA, DβB} = −2iδAB∂αβ . (2.2)

1For more details regarding the notation see the appendix.
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SO(8) indices are raised/lowered with a Kronecker-delta and thus one does not have

to pay special attention to their position. We will also use gauge covariant derivatives

in superspace, which we introduce as follows:

∇αβ = ∂αβ + Aαβ and ∇αA = DαA + AαA . (2.3)

When acting in complex bundles the physicality condition would be that the bosonic

superspace connection Aαβ is anti-hermitian, while the fermionic one, AαA, is her-

mitian, but we consider here real bundles and therefore the property under complex

conjugation is the primary issue. To have the same conjugation property as for the

differential operators we require that the bosonic superspace connection Aαβ is real,

while the fermionic one, AαA, is imaginary. Both connections carry a representation

of the gauge symmetry structure group and complex conjugation has to be defined

accordingly. This and the action of the covariant derivatives on different fields will

be discussed in detail when considering specific models.

2.1 The free matter multiplet

Superfield constraints

The N = 8 scalar multiplet consists of eight real scalars and eight Majorana-fermions

(φI , ψαȦ) in the 8v and 8c, respectively, of SO(8). The free field equations are given

by

2φI = 0 , εβγ∂αβψγȦ = 0 , (2.4)

where 2 := ∂αβ∂αβ . The fields φI and consequently ψαȦ may carry an additional

representation of some internal (global) symmetry group, which we do not indicate

here but will be discussed in detail when we consider the interacting theories and

systematically gauge these symmetries.

For finding superfields encoding this on-shell component multiplet it is therefore

natural to start with a real scalar superfield ΦI in the 8v of SO(8) (and in the

same representation of a possible internal symmetry as φI), and impose necessary

constraints to appropriately restrict the component field content. At first order in

θαA, this field contains components which transform as 8v ⊗ 8s = 8c ⊕ 56c under

SO(8).2 Comparing to the field content of the component multiplet, it follows that

one has to eliminate the unwanted component field in the 56c. In a susy covariant

way this is achieved by imposing

DαAΦI
∣
∣
56c

!
= 0 ⇐⇒ DαAΦI = 1

8
(ΓI Γ̄J)ABDαBΦJ . (2.5)

In [9] a pure spinor superfield formulation of the BLG model was given and the

equivalent to (2.5) was found as an invariance condition for the pure spinor wave-

function.
2For details of SO(8) representations and various Γ-relations see the appendix B. Decompositions

of tensor products of SO(8) representations can be computed with the program LiE [16] or found

in [17].
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The constraint (2.5) implies the existence of a fermionic superfield ΨαȦ such that

DαAΦI is explicitly restricted to the 8c:

DαAΦI = iΓI
AȦ

ΨαȦ , (2.6)

and for our purposes and in particular for applying the methods developed in [18,19]

it will be more convenient to work with this form of the constraint. Equation (2.6)

can be solved explicitly for ΨαȦ which by inserting gives back (2.5). This form of the

constraint resembles the form of the “super-embedding” equation of [8], where the

BLG model was realized in terms of Nambu-brackets. The similarity will become

more evident in the interacting case.

The fermionic superfield ΨαȦ is not completely free, but is itself restricted due

to the integrability condition of the constraint (2.6). With (2.2) this gives:

2δAB∂αβΦI = ΓI
AȦ
DβBΨαȦ + ΓI

BȦ
DαAΨβȦ , (2.7)

which allows only the (3, 8v) part of DαAΨβȦ to be nonzero, where the first entry

refers to the so(2, 1) representation. We demonstrate here for once the procedure

how we resolve such equations systematically. Decomposing DαAΨβȦ according to

its irreducible representations

DαAΨβȦ
︸ ︷︷ ︸

(2⊗2,8s⊗8c)

= ΓI
AȦ

(εαβa
I + aI

αβ)
︸ ︷︷ ︸

(1⊕3,8v)

+ΓIJK
AȦ

(εαβbIJK + bαβIJK)
︸ ︷︷ ︸

(1⊕3,56v)

, (2.8)

where the 3-form3 bIJK = b[IJK] is the 56v and so is the so(2, 1) vector bαβIJK .

Inserting this decomposition into (2.7) shows that only the (3, 8v) part aI
αβ can be

non-zero and is given by the l.h.s. The integrability condition (2.7) then implies

DαAΨβȦ = ΓI
AȦ
∂αβΦI . (2.9)

The constraint (2.6) and its integrability condition (2.9) are the primary rela-

tions/conditions from which we derive all further consequences. From now on we will

often refer to the constraint and its integrability condition as just the “(superfield)

constraints”. Using (2.2) to express x-space derivatives in terms of superderivatives

one obtains that the superfields ΦI , ΨαȦ subject to the constraints (2.6), (2.9) satisfy

the free superfield e.o.m

εβγ∂αβΨγȦ = 0 , 2ΦI = 0 , (2.10)

where 2 := ∂αβ∂αβ . Thus the full superfields and therefore their lowest components

φI := ΦI |θ=0, ψαȦ := ΨαȦ|θ=0 (which are nonzero as we will see), satisfy the free

e.o.m. (2.4), as desired. One could expect to get an additional condition from the

integrability condition of (2.9) but it is easy to see that it reduces to the superfield

equations of motion (2.10).
3The explicit form of a tensor in a representation of given dimension and the symmetries of

these tensors are conveniently obtained via Young diagrams, see for example [20], though their

applicability is restricted for (special) orthogonal groups.
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Superfield expansion

Following [18,19] we now derive recursion relations which determine the θ-expansion

of the superfields. Defining the homogeneity operator

R := θαADαA = θαA∂αA , (2.11)

which satisfies R(θα1A1 . . . θαnAn) = n θα1A1 . . . θαnAn , one obtains by contracting the

constraints (2.6), (2.9) with θαA the recursion relations

RΦI = iθαAΓI
AȦ

ΨαȦ ,

RΨβȦ = θαAΓI
AȦ
∂αβΦI , (2.12)

which due to the property of R give the (n + 1)’th order in θ of the superfields on

the l.h.s in terms of the n’th order of the superfields on the r.h.s.

The recursions (2.12) determine the complete superfield expansion in terms of

the lowest components φI and ψαȦ, but without any further conditions on them and

thus represent the non-dynamical part of the constraint equations. The resulting

superfield expansion is:

ΦI = φI + iθαAΓI
AȦ
ψαȦ + i

2
θαAθβBΓIJ

AB∂αβφ
J + . . . ,

ΨβȦ = ψβȦ + θαAΓI
AȦ
∂αβφ

I + i
2
θαAθγBΓI

AȦ
ΓI

BḂ
∂αβψγḂ + . . . . (2.13)

Given that the supersymmetry variation of a superfield F is δF = ǫαAQαAF one

obtains from (2.1) the following transformations for the component fields:

δφI = iǫαAΓI
AȦ
ψαȦ , δψβȦ = ǫαAΓI

AȦ
∂αβφ

I , (2.14)

which by construction are symmetries of the e.o.m. (2.4).

Concluding, we have shown that the superfield constraints (2.6), (2.9) imply a

superfield expansion exclusively in terms of the component multiplet (φI , ψαȦ) with

the supersymmetry transformations (2.14). Moreover, these superfields satisfy the

free superfield e.o.m. (2.10) and thus the component fields satisfy the free e.o.m. (2.4).

In the rest of this section, we will show that vice versa the on-shell component

fields define superfields which satisfy the constraints (2.6), (2.9) so that these two

descriptions are completely equivalent. In particular, the constraints (2.6), (2.9) do

not imply any further restrictions on the components.

Equivalence to component e.o.m.

We now start from the on-shell component multiplet (φI , ψαȦ) , which is assumed

to satisfy the free e.o.m (2.4), which are supersymmetric under the transformations

(2.14), and show that this defines superfields satisfying the constraints (2.6), (2.9).

Susy covariance. We use the recursion relations (2.12) to define superfields

out of the component multiplet (φI , ψαȦ). For the first few terms in the θ-expansion
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(2.13) we have already shown that the component supersymmetry transformations

(2.14) can be written as δΦI = ǫQΦI , δΨαȦ = ǫQΨαȦ, with QαA given in (2.1). The

recursion relations (2.12) are not susy covariant and one has to check explicitly if

they define a consistent superfield4, i.e. that susy transformed superfields satisfy the

same recursion relations.

Acting with ǫαAQαA on the recursion relations (2.12) one obtains

RδΦI = iθαAΓI
AȦ
δΨαȦ − ǫαA[DαAΦI − iΓI

AȦ
ΨαȦ] ,

RδΨβȦ = θαAΓI
AȦ
∂αβδΦ

I − ǫαA[DαAΨβȦ − ΓI
AȦ
∂αβΦI ] . (2.15)

Thus the susy variations satisfy the same recursions as the original fields iff the

superfield constraints (2.6), (2.9) are satisfied. To show that the component e.o.m.

imply these constraints we first prove that they imply the full superfield e.o.m.

Superfield e.o.m. To zeroth order in θ, the superfields equal the components

(φI , ψαȦ) and thus per construction satisfy the e.o.m. To show that this implies that

they are satisfied in all orders in θ we derive a recursive system for the superfield

e.o.m.,

EαȦ := εβγ∂αβΨγȦ , E I := 2ΦI . (2.16)

Using exclusively the recursion relations (2.12) one obtains5

REαȦ = −θβAΓI
AȦ
εβαE

I ,

RE I = −iθαAΓI
AȦ
εβγ∇αβEγȦ . (2.17)

As to lowest order the e.o.m. are satisfied, i.e. EαȦ|θ=0 = E I |θ=0 = 0, these recursions

imply that EαȦ, E I vanish to all orders. Thus the component e.o.m. (2.4) imply the

superfield e.o.m. (2.10) for the superfields defined by (2.12).

Constraints. In the last step we show that the superfield e.o.m. (2.10) imply

the constraint equations (2.6), (2.9). To this end we introduce the abbreviations

CI
αA = DαAΦI − i ΓI

AȦ
ΨαȦ ,

CαβAȦ = DαAΨβȦ − ΓI
AȦ
∂αβΦI . (2.18)

Using the recursion relation (2.12) one obtains the following recursions for the con-

straints CI
αA and CαβAȦ:

(1 + R) CI
αA = iθβBΓI

BȦ
CαβAȦ ,

(1 + R) CαβAȦ = −θγBΓI
BȦ
∂βγC

I
αA , (2.19)

4This is a complementary approach to find the correct superfield constraints for a given multiplet

with susy transformations (2.14) which upon comparing with (2.12) define the recursion relations

so that the superfield expansion is generated by consecutive susy transformations.
5Here and on many other occasions we use the fact that the total antisymmetrization of three

spinor indices, which take two values, gives zero.
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where in the second relation we used the fermionic superfield e.o.m. (2.10). These

recursions imply that the constraints CI
αA and CαβAȦ vanish in all orders in θ. We

thus have proved that the on-shell multiplet (φI , ψαȦ) with equations of motion (2.4)

is completely equivalent to the superfields (ΦI ,ΨαȦ) satisfying the constraints (2.6),

(2.9).

2.2 Free Chern-Simons multiplet

In general, we will be interested in theories whose matter content is given by a number

of scalar super-multiplets. At the linearized level, such theories are described by

N superfields ΦIa,Ψa
αȦ

, subject to the constraint (2.6), where the additional index

a = 1, . . .N , labels the different super-multiplets. The obvious global symmetry

group (besides the SO(8) R-symmetry, which we will not gauge) of the system is

GL(N,R) ⋉ T(8N) acting as

δΦI = Λ · ΦI + CI , δΨαȦ = Λ · ΨαȦ , (2.20)

with a matrix Λ ∈ gl(N,R) (where we have suppressed the explicit indices a),

which are obviously symmetries of (2.6). The shifts T(8N) act exclusively on the

scalars ΦI .6

In the interacting theories, a subset of these symmetries will be gauged by se-

lecting a subalgebra g

〈TM〉 = g ⊂ gl(N,R) ⊕s t(8N) ,

[TM , TN ] = f K
MN TK , (2.21)

spanned by generators TM . Choosing g to have non-trivial intersection with t(8N) a

priori breaks the SO(8) R-symmetry. The corresponding gauge superfields appearing

in the covariant derivatives (2.3) are thus given by

AαA = AM
αAiTM , Aαβ = AM

αβTM . (2.22)

Assuming a real representations for the generators TM , this gives the right conjuga-

tion property for real AM
αA and AM

αβ, as defined below (2.3).

Note that at this stage we do not encounter three algebras as introduced in

[1,2,21]. We will see in later sections how the defining relation of these three algebras,

the fundamental identity for a rank four tensor, is a natural consequence for conformal

models based on Lie algebras.

6The component field equations (2.4) would allow also for global shifts δψαȦ = ζαȦ of the

fermionic component field and thus of the superfield ΨαȦ. In view of the superfield expansion

(2.13) this would imply a corresponding θ-dependent shifts δΦI = CI + iθαAΓI

AȦ
ζαȦ in the bosonic

superfield ΦI and represent a more involved symmetry of the constraints (2.6), (2.9). We do not

consider this possibility here.
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Introducing the gauge parameter field Ω = ΩMTM , the local versions of (2.20)

and the gauge transformations of the gauge fields can be compactly written as

δΦI = Ω · ΦI , δΨαȦ = Ω · ΨαȦ ,

δAαA = −∇αAΩ , δAαβ = −∇αβΩ , (2.23)

where the gauge fields transform in the adjoint of (2.21) and the matter superfields

now transform in some representation of the gauge algebra which is indicated by the

dot.

The field strengths are given in the usual way through (anti)commutators of the

connections minus torsion terms, i.e.

FαA,βB = {∇αA,∇βB} − 2iδAB∇αβ ,

Fαβ,γδ = [∇αβ ,∇γδ] ,

Fαβ,γC = [∇αβ ,∇γC ] . (2.24)

Free CS superfield constraints

The gauge superfields (AαA, Aαβ) contain way to many component fields and one has

to impose constraints to obtain a physically meaningful multiplet. In particular, AαA

contains a second component vector field with the same gauge-transformation as the

lowest component of Aαβ. It has turned out to be promising to impose (partial) flat-

ness conditions on the bi-spinor field strength, here FαA,βB, to eliminate unphysical

degrees of freedom [22–25]. In many cases this corresponds to an underlying geo-

metric structure of twistors and pure spinors [24–27]. In particular, the unwanted

vector field is eliminated by the “conventional constraint”, see for example [28, 29],

where a symmetrized part of FαA,βB is set to zero. Since we are interested here in the

free multiplet we impose a constraint which is rather strong in three dimensions and

require the entire FαA,βB to vanishes. Relaxations of this constraint will be discussed

when we consider non-minimally interacting theories. Thus, for this section we set

FαA,βB
!
= 0 ⇐⇒ {∇αA,∇βB} = 2iδAB∇αβ . (2.25)

As in the case of the matter superfield constraint (2.6) the right r.h.s. of (2.25) is

not completely free but has to satisfy certain conditions so that it factorizes into an

anti-commutator. The analogon to the integrability condition (2.9) are the Bianchi

identities, which are simply obtained from the super-Jacobi identities for the covari-

ant derivatives:7

∑

cyclic

[∇αA, {∇βB,∇γC}] ≡ 0 ,
∑

cyclic

(−1)π{∇αA, [∇βB,∇γδ]} ≡ 0 ,

∑

cyclic

[∇ρA, [∇αβ,∇γδ]] ≡ 0 ,
∑

cyclic

[∇αβ , [∇γδ,∇ρσ]] ≡ 0 . (2.26)

7The exponent π in the second identity counts the cyclic permutations where (anti)commutators

are distributed correspondingly to the occurrence of bosonic/fermionic connections
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First of all, these identities imply nontrivial conditions in case (2.25) appears, i.e.

for the first and second identity with three fermionic and two fermionic covariant

derivatives, respectively. In these cases one obtains:

δABFαβ,γC + δACFαγ,βB + δBCFβγ,αA = 0 ,

∇αAFγδ,βB + ∇βBFγδ,αA = 2iδABFγδ,αβ . (2.27)

Decomposing the two equations analogously to (2.8) into irreducible representations

of so(2, 1) and SO(8), one finds that the two Bianchi identities imply that also the

other two components of the super field strength vanish, i.e.

Fαβ,γC = 0 = Fαβ,γδ . (2.28)

With these strong equations for the commutators/field strengths the other two

Bianchi identities in (2.26) are identically fulfilled and do not impose further condi-

tions. The second equation in (2.28), which follows with the help of the first one,

is the free Chern-Simons superfield equation of motion. To see what this implies at

the level of component fields we again follow the strategy of [18, 19] to obtain the

superfield expansion.

Superfield expansion

To eliminate the gauge degrees of freedom in the gauge superfields and to be able to

apply the same recursive method as in (2.12) one imposes the “transverse” gauge [18]

on the fermionic gauge superfields,

θαAAαA = 0 =⇒ R = θαA∇αA . (2.29)

This fixes the gauge freedom (2.23) up to pure x-space dependent gauge transfor-

mations and is thus a kind of WZ-gauge. Moreover, it allows to write the recursion

operator R (2.11) in a covariant form. Therefore, contracting the constraint (2.25)

and the first Bianchi identity (2.28) with θγC one obtains the recursion relations

(1 + R) AβB = 2iθα
BAαβ ,

R Aαβ = 0 . (2.30)

This gives the rather trivial superfield expansions,

AαA = iθβ
AAαβ , Aαβ = Aαβ , (2.31)

where the lowest component Aαβ := Aαβ|θ=0 is the vector field in x-space. The

condition due to the second Bianchi identity in (2.28) thus implies the component

field equations

Fαβ,γδ = 0 , (2.32)

which is the free Chern-Simons e.o.m. Consequently, the multiple associated with

the constraint (2.25) contains a single component field, the vector field Aαβ, which

is pure gauge and therefore has no dynamical degrees of freedom.
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Equivalence to component e.o.m.

To prove that a component vector field Aαβ , satisfying (2.32) is equivalent to the full

constraint (2.25) is trivial in this case. Adopting the superfield expansions (2.31) one

immediately sees that these superfields satisfy the constraint (2.25) and the Bianchi

identities (2.28) due to the component field e.o.m. (2.32). Nevertheless, we consider

the susy-covariance of the recursion relations and the susy-transformations of the

component field. Defining the superfield transformations as before, i.e. δAαA =

ǫQAαA and δAαβ = ǫQAαβ , and acting with ǫQ on the recursions (2.30) one finds:

(1 + R) δAαA = 2iθβ
BδAαβ − ǫβBFαA,βB −∇αAΛ ,

RδAαβ = 0 + ǫγCFαβ,γC −∇αβΛ , (2.33)

where in both cases the last term is a field dependent supergauge transformation

with the gauge parameter field

Λ = ǫαAAαA = iǫαAθβ
AAαβ . (2.34)

Thus up to the constraint (2.25) and the first Bianchi identity in (2.28) the recursion

relations are susy covariant modulo field dependent gauge transformations. The

occurrence of the field dependent gauge transformation is not surprising since the

“transverse” gauge (2.29) is not susy covariant. In the same fashion, using the

(component) field e.o.m. (2.32) and in view of the superfield expansion (2.31) one

obtains for the supersymmetry transformations

δAαA = ǫγCQγCAαA =: iθβ
A δAαβ = −∇αAΛ ,

δAαβ = ǫγCQγCAαβ =: δAαβ = −∇αβΛ . (2.35)

Thus the susy transformations of the superfields are (on-shell) pure gauge transfor-

mations with the field dependent parameter Λ (2.34). These gauge transformations

do not have a component in the appropriate order of θ such that the supersymmetry

transformation of the component field in (2.35) is just

δAαβ = 0 . (2.36)

The curious fact for the free Chern-Simons case, that a multiplet with a single compo-

nent field, Aαβ , is nevertheless (on-shell) supersymmetric was discussed in [3]. Here

we obtain the same result in a super-covariant way.

2.3 Minimal Coupling

We now covariantize the procedure of section 2.1 by minimally coupling the matter

superfields to gauge superfields subject to the constraint (2.25). Given that the gauge

field remains pure gauge this seems to be trivial, but it sets the formalism for the

next section, where we consider non-linear deformations which lead to a non-trivially

coupled system.
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Superfield Constraints

The covariantized constraint (2.6) with minimal coupling is

∇αAΦI = iΓI
AȦ

ΨαȦ . (2.37)

Using the gauge field constraint (2.25) and the Bianchi identities (2.28), the integra-

bility condition of (2.37) reduces to

∇αAΨβȦ = ΓI
AȦ

∇αβΦI . (2.38)

Further, using the gauge field constraint (2.25) to express ∇αβ in terms of su-

perderivatives and the Bianchi identities (2.28) together with (2.37), (2.38), the

superfield e.o.m. compute to

εβγ∇αβΨγȦ = 0 , ∇2ΦI = 0 , (2.39)

where ∇2 = ∇αβ∇αβ .

Superfield expansion

To obtain the superfield expansion we again impose the “transverse” gauge (2.29).

Contracting the constraints (2.37), (2.38) with θαA one obtains the recursion relations

RΦI = iθαAΓI
AȦ

ΨαȦ ,

RΨβȦ = θαAΓI
AȦ

∇αβΦI . (2.40)

This again defines the superfield expansion in terms of the lowest components φI =

ΦI |θ=0 and ψαȦ = ΨαȦ|θ=0, where things considerable simplify due to the fact that

for the free Chern-Simons multiplet in the “transverse” gauge (2.31) one has

∇αβ =
o

∇αβ := ∂αβ + Aαβ , (2.41)

i.e. only the lowest component of the vector superfield is present in the super-

connection ∇αβ .8 Hence the superfield expansion is given by

ΦI = φI + iθαAΓI
AȦ
ψαȦ + i

2
θαAθβBΓIJ

AB

o

∇αβφ
J + . . . ,

ΨβȦ = ψβȦ + θαAΓI
AȦ

o

∇αβφ
I + i

2
θαAθγBΓI

AȦ
ΓI

BḂ

o

∇αβψγḂ + . . . , (2.42)

and therefore the lowest components of the superfield e.o.m. (2.39) imply the cor-

responding e.o.m for the component fields φI and ψαȦ. We have thus shown that

the constraints and integrability conditions/Bianchi identities (2.25), (2.28), (2.37),

8By ‘
o
’ we generically denote the lowest component of a superfield:

o

Φ := Φ|θ=0 = φ, etc.
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(2.38) give a minimally coupled Chern-Simons multiplet (Aαβ, φ
I , ψαȦ) with the

e.o.m.

Fαβ,γδ = 0 ,
o

∇2 φI = 0 , εβγ
o

∇αβψγȦ = 0 . (2.43)

The supersymmetry transformations of the matter multiplet are obtained from the

superfield expansion (2.42) in the usual way,

δΦI = ǫαAQαAΦI =: (δφI + iθαAΓI
AȦ
δψαȦ . . .) + Λ · ΦI , (2.44)

where as in the case of the gauge multiplet we obtain the component field transforma-

tions modulo a compensating gauge transformation with the same gauge parameter

Λ (2.34). The resulting supersymmetry transformations are then

δφI = iǫαAΓI
AȦ
ψαȦ , δψαȦ = ǫβAΓI

AȦ

o

∇αβφ
I ,

δAαβ = 0 , (2.45)

where for completeness we have rewritten the transformation of the gauge field (2.36).

These supersymmetry transformations again resemble the recursion relations (2.40),

(2.30) of the associated superfields.

Equivalence to component e.o.m.

We have already shown that the component vector field Aαβ subject to the free

Chern-Simons e.o.m. (2.32) is equivalent to the gauge field constraint (2.25) and its

Bianchi identities (2.28). What remains to be shown is that the same is true for

the matter multiplet. Again we start from the multiplet (φI ,ψαȦ), satisfying the

e.o.m. (2.43) and construct superfields out of it according to the recursions (2.40).

It is convenient to introduce again the constraint functions

CI
αA := ∇αAΦI − iΓI

AȦ
ΨαȦ ,

CαβAȦ := ∇αAΨβȦ − ΓI
AȦ

∇αβΦI , (2.46)

where we used the same symbols as for the free matter multiplet, which now encode

the minimally coupled constraints (2.37), (2.38) (but this should not lead to any

confusion). Acting with ǫαAQαA on the recursions (2.40) one obtains the recursions

for the susy transformed fields as

RδΦI = iθαAΓI
AȦ
δΨαȦ + Λ · ΦI − ǫαACI

αA ,

RδΨβȦ = θαAΓI
AȦ

∇αβδΦ
I + Λ · ΨβȦ − ǫαACαβAȦ . (2.47)

Therefore, modulo super gauge transformations with the parameter Λ of (2.34) the

recursion relations are susy covariant in case that the matter constraints (2.37), (2.38)

and the Bianchi identities (2.28) are satisfied.
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The rest of the proof that the component e.o.m. (2.43) imply superfield e.o.m.

and superfield constraints, proceeds exactly as in the previous discussion of section

2.1 by simply replacing all derivative operators by covariant derivatives. Thus again,

the superfield constraints are completely equivalent to the component multiplet with

the e.o.m. (2.43). We will see in the next section how deformations of the constraint

(2.25) will modify these results and introduce non-trivial interactions.

3. Interacting theories

3.1 Vector superfield with a modified constraint

In this section, we consider the vector superfields AαA, Aαβ for which the constraint

(2.25) is modified to

{∇αA,∇βB} = 2i (δAB∇αβ + εαβWAB) , (3.1)

where WAB = −WBA is an antisymmetric SO(8)-tensor. There are two different

situations in which the system (3.1) may appear. First, if WAB is a given function

of the matter superfields of the theory, i.e. WAB = WAB(ΦI ,ΨαȦ), the system (3.1)

describes a deformation of the original constraint (2.25) which will in particular

induce a (non-linear) deformation of the original (super)field equations of motion

(2.43) by terms containing WAB and its (super-)derivatives. This is the scenario we

will be dealing with in this paper. As we will see, as soon as the matter superfields

are coupled to the gauge superfields, WAB is necessarily a function of them. In this

case we will refer to the SO(8)-tensor WAB as the deformation potential.

Alternatively, one might consider the vector multiplet independently and regard

WAB as an independent field defined by equation (3.1), in which case this equation

rather amounts to parametrizing a weakening of the original constraint (2.25) to

{∇αA,∇βB}
∣
∣
∣
(3,35s)

= 0 . (3.2)

In that case, the dynamics induced by (3.2) can be considered independently of the

matter sector and will in particular lead to a different number of degrees of freedom

contained in the vector superfield.

In either case the Bianchi identities impose conditions on WAB for the the con-

straint (3.1) being self consistent.

Bianchi identities

As in the free theory, the immediate nontrivial conditions on the superfields are given

by the first two Bianchi identities in (2.26), where (3.1) appears. Using the constraint

(3.1) the first Bianchi identity imposes the condition

δABFαβ,γC + δCAFγα,βB + δBCFβγ,αA =

εβγ∇αAWBC + εγα∇βBWCA + εαβ∇γCWAB . (3.3)
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Decomposing the terms of this equation analogously to (2.8) according to their SO(8)

representation content, one deduces that solvability requires the 160s to vanish

within the the tensor product ∇αAWBC ∼ 8s ⊗ 28 = 8s ⊕ 56s ⊕ 160s. This im-

plies the existence of superfields λαA, in the 8s, and ραABC = ρα[ABC], in the 56s,

such that the superderivative ∇αAWBC satisfies the condition9

∇αAWBC

∣
∣
∣
160s

= 0 =⇒ ∇αAWBC = δA[BλC]α + ραABC . (3.4)

This constraint will play a central role in the following. In particular, if we

consider WAB as a function of the matter fields of the theory, this composite superfield

must satisfy (3.4) in order for the system (3.1) to be consistent. The Bianchi identity

(3.3) then fixes the fermionic field strength Fαβ,γA to

Fαβ,γA = −εγ(αλβ)A . (3.5)

Using the constraint (3.1), the second Bianchi identity in (2.26) writes as

∇αAFγδ,βB + ∇βBFγδ,αA = 2i(δABFγδ,αβ + εαβ∇γδWAB) , (3.6)

and with (3.5) implies the existence of another superfield VAB = V[AB] in the 28,

such that

∇αAλβB = i(δABFαβ + 2∇αβWAB + εαβVAB) . (3.7)

Here, Fαβ = F(αβ) denotes the vector dual to the bosonic field strength, i.e. Fαβ :=

εγδFαγ,βδ. This duality is characteristic for three dimensions and we will use this

relation frequently in the following.

The first Bianchi identity identifies Fαβ,γA with a single field (3.5) and thus,

contrary to the free case (2.28), also the third Bianchi identity in (2.26) gives a

nontrivial condition on the superfields:

∇αAFβγ = ∇α(βλγ)A + εα(β ∇γ)δλ
δ
A . (3.8)

The equations (3.4), (3.5), (3.7) and (3.8) are the consistency conditions for the

constraint (3.1), which are imposed by the Bianchi identities.

Deformed super-CS e.o.m. In the case that a deformation potential WAB =

WAB(ΦI ,ΨαȦ) is chosen the derived superfields λαA, ραABC , etc. are also given

functions of the matter superfields. In particular defines (3.7) the super field strength

Fαβ in terms of the matter superfields in the following form:

Eαβ := Fαβ + i
8
∇A

(αλβ)A = Fαβ − i
28

∇A
(α∇

B
β)WAB = 0 , (3.9)

where we used (3.4) to express λαA in terms of the deformation potential WAB. As

in the free case (2.28) one obtains the superfield e.o.m. in the gauge sector from

9Symmetrization and antisymmetrization of indices is indicated by brackets ( ) and [ ], respec-

tively, and is defined with total weight one, i.e. x(αβ) = 1
2 (xαβ + xβα), etc..
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the second Bianchi identity and (3.9) explicitly shows, how the dynamics of the free

Chern-Simons gauge field is deformed by the presence of the deformation poten-

tial WAB.

A priori, with (3.9) the fourth Bianchi identity in (2.26), which takes the form

∇αβFαβ = 0 , (3.10)

may give rise to yet another condition. However, one can evaluate the l.h.s. of

(3.10) using the constraint (3.1) and the conditions (3.8), (3.5) to show that (3.10)

is identically fulfilled and does not impose additional conditions.

Integrability conditions

The integrability conditions of the constraints derived from the Bianchi identities, in

particular (3.4) and (3.7), determine the superderivatives of the various additional

superfields and eventually allow to define a closed recursive system for a systematic

superfield expansion analogous to the procedure in section 2. In the case that the

gauge sector with the constraint (3.1) is considered as an independent system these

are genuine conditions on these superfields which correspond to independent degrees

of freedom. We give a thorough account on this scenario in appendix A.

By contrast, in choosing a certain deformation potentialWAB(ΦI ,ΨαȦ) satisfying

the conditions (3.4),(3.7) and (3.8), the “sources” on the r.h.s are derived from WAB

and the integrability conditions are identically satisfied and give identities rather

than conditions. In addition, the constraints (3.1) and (3.5) define RAαA and RAαβ

in terms of the matter superfields and thus form together with RΦI , RΨαȦ a closed

recursive system. We will carry out the detailed analysis of the superfield expan-

sion, component equations and the equivalence thereof to the constraints in the next

subsection, where we study the coupling between the gauge and matter sector.

We develop here the system of integrability conditions till the point we will need

it for a general discussion of the possible couplings to the matter sector. Especially

we want to clarify here which of the restrictions (3.4),(3.7), (3.8) on the choice for

the deformation potential WAB(ΦI ,ΨαȦ) are independent.

The integrability condition of (3.7) gives ∇αAVBC and reproduces the third

Bianchi identity (3.8). Analyzing the integrability conditions of (3.4) determines

∇αAρβBCD and reproduces the second Bianchi identity (3.7) with Fαβ as given by

the CS-e.o.m. (3.9). Consequently, the only remaining restriction on the choice of

WAB(ΦI ,ΨαȦ) is the condition (3.4).

The resulting covariant super derivatives of the various fields are:

∇αA ρβBCD = 3i∇αβW[BCδD]A − 3i
2
εαβδA[BVCD] + 3iεαβ

[
WA[B,WCD]

]
+ iUαβ ABCD ,

∇αAVBC = 2εβγ∇αβ

(
δA[BλC]γ − ργABC

)
− [WBC , λAα] − 4

[
WA[B, λC]α

]
,

∇αAUβγ BCDE = 8δA[B∇α(βρ
CDE]
γ) − 4δA[B∇βγρ

CDE]
α + ταβγ ABCDE

+4εα(β

(
4
3
[WA[B, ρ

CDE]
γ) ] − [W [BC , ρ

DE]A
γ) ] + 3δA[B[WCD, λ

E]
γ) ]

)

, (3.11)
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where the last equation for the superfield UβγBCDE = U(βγ)[BCDE] has been obtained

from the integrability condition for the ∇αA ρβBCD equation. At this point su-

perderivatives of the fields are determined up to the tensor ταβγ ABCDE = τ(αβγ) [ABCDE].

This is all we need for a general discussion of the matter couplings and we refer to

appendix A to see how the system closes.

We have thus shown, that deforming the free constraint (2.25) by choosing WAB

to be a certain function WAB(ΦI ,ΨαȦ) of the matter superfields, the Bianchi iden-

tities are satisfied provided that WAB satisfies the constraint (3.4). The super field

strengths are given by (3.5) and the deformed super Chern-Simons equations (3.9).

Consequently, the constraint (3.4) is the only condition on the choice of WAB for the

deformation (3.1) to be self-consistent.

3.2 Matter superfields and gauge matter coupling

In this section we study the consequences of the deformation (3.1) for the matter

sector and give a detailed discussion parallel to the sections 2.2 and 2.3 of the coupled

system regarding component field equations, supersymmetry transformations and

the equivalence thereof to the combined constraint system. As for the gauge sector

the deformation will modify the dynamics by terms polynomial in the deformation

potential WAB and its (super-)derivatives. Compatibility of the system will require

WAB to satisfy additional algebraic constraints.

Superfield constraints

The most conceivable starting point for the matter sector is to keep the covariantized

constraint (2.37) for the scalar superfield ΦI

∇αAΦI = iΓI
AȦ

ΨαȦ , (3.12)

and deduce the consequences due to the new vector superfield constraint (3.1). For a

given constraint in the gauge sector, (3.12) to a large extent determines the resulting

dynamics of the system.

Using the gauge field constraint (3.1) the integrability condition of (3.12) is now

modified to

2 δAB∇αβΦI + 2 εαβ WAB · ΦI = ΓI
BȦ

∇αAΨȦ
β + ΓI

AȦ
∇βBΨȦ

α . (3.13)

Repeating the analysis of section 2 determines ∇αAΨβȦ but also gives restrictions on

the new (second) term on the l.h.s. Since the 160v in

WAB · ΦI ∼ 28 ⊗ 8v = 8v ⊕ 56v ⊕ 160v , (3.14)

is unpaired in equation (3.13) it has to vanish separately. In the following it will

be often convenient to write WAB in the vector notation WIJ = 1
4
ΓIJ

ABWAB (see
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appendix B), such that the constraint on WAB · ΦK writes as

WIJ · ΦK

∣
∣
∣
160v

= 0 =⇒

P
[IJK]
160 (WIJ · ΦK) := WIJ · ΦK −WK[I · ΦJ ] +

3
7
δK[IWJ ]L · ΦL = 0 . (3.15)

In addition to the constraint (3.4) this will be the main restriction on the possi-

ble choices for the deformation potential WAB(ΦI ,ΨαȦ), which fixes the details of

the dynamics. In the following we will refer to these two constraints (3.4), (3.15),

which determine the set of possible models, as the W -constraints. The algebraic W -

constraint (3.15) also shows that as soon as the matter sector is coupled to the gauge

sector, the modification WAB of the gauge field constraint (3.1) has to be considered

as a function of the the matter superfields which at least depends on ΦI .

After some SO(8)-Γ-matrix algebra the integrability condition (3.13) yields

∇αAΨβȦ = ΓI
AȦ

∇αβΦI + 1
2
εαβ

(
1
7
ΓI

AȦ
δJK + 1

6
ΓIJK

AȦ

)
WIJ · ΦK , (3.16)

for the superderivative of the fermionic superfield. Using the gauge field constraint

(3.1) to express x-space covariant derivatives through covariant superderivatives and

the various constraint relations and Bianchi identities of this section, one obtains the

superfield equations for ΨαȦ and ΦI :

EαȦ := εβγ∇αβΨγȦ

+ 3
14
WȦḂ · ΨαḂ + 3i

16
ΓI

AȦ
λαA · ΦI + i

336
ΓABC

IȦ
ραABC · ΦI = 0 ,

E I := ∇2ΦI − 1
8

(
3 ΓI

AȦ
λαA · Ψα

Ȧ
+ 1

21
ΓABC

IȦ
ραABC · Ψα

Ḃ

)

+ 3
14
V IJ · ΦJ − 2

49
WIJ · (WJK · ΦK) − 1

28
WJK · (WJK · ΦI) = 0 ,

(3.17)

where V IJ := 1
4
ΓIJ

AB VAB, WȦḂ := 1
4
ΓIJ

ȦḂ
WIJ , are special cases of SO(8) triality

relations. In the same spirit we have defined the symbol ΓABC
IȦ

:= ΓIJ
[ABΓJ

C]Ȧ, see

appendix B for more details and several Γ-matrix identities which were employed in

this calculation. Using the algebraic W -constraint (3.15) one can recast the scalar

self-interaction involving WIJ in different forms. Equations (3.17) together with (3.9)

constitute the complete set of superfield e.o.m.

Superfield expansion

We again impose the “transverse” gauge (2.29) to construct the superfield expansion

via a recursive system. Contracting the constraints for the matter fields (3.12), (3.16)

and the gauge field constraint (3.1) with θαA, and the Bianchi identity (3.5) with
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θγA, one obtains the recursion relations for the superfields ΦI , ΨαȦ, AαA and Aαβ:

RΦI = iθαAΓI
AȦ

ΨαȦ ,

RΨβȦ = θαAΓI
AȦ

∇αβΦI + 1
2
θαAεαβ

(
1
7
ΓI

AȦ
δJK + 1

6
ΓIJK

AȦ

)
WIJ · ΦK ,

(1 + R)AβB = 2i(θα
B Aαβ + θαAεαβWAB) ,

RAαβ = θγAεγ(αλβ)A , (3.18)

which generalize the recursions of the free theory (2.30) and (2.40). The composite

superfields of the gauge sector, such as λαA, ραABC , VAB, etc., are now given functions

of the matter superfields via the deformation potential WAB(ΦI ,ΨαȦ),

λαA = 2
7
∇αBWBA , ραABC = ∇α[AWBC] ,

VAB = − i
2
εαβ∇αA∇βCWCB , etc., (3.19)

as can be seen from equations (3.4), (3.7) and (3.11). The recursion relations for these

composite superfields as well as for WAB and Fαβ are determined by the recursions of

the fundamental superfields (3.18), but on the constraint surface they are equivalently

given by the contraction of (3.4), (3.7), (3.8) and (3.11) with θαA. Off the constraint

surface, and thus when deriving the constraints from the component field equations,

this is no longer true as we will see.

To second order in θ, the superfield expansion can be expressed in terms of the

composite fields explicitly given in (3.19):

ΦI = φI + iθαAΓI
AȦ
ψαȦ + i

2
θαAθβB ΓIJ

AB

o

∇αβφ
J

− i
4
θαAθβBεαβ

(
1
7
δAB

o

W IJ · φJ − 1
6

ΓILMN
AB

o

WLM · φN

)

+ . . . ,

ΨβȦ = ψβȦ + θαAΓI
AȦ

o

∇αβφ
I

+1
2
θαAεαβ(1

7
ΓI

AȦ
δJK + 1

6
ΓIJK

AȦ
)

o

W IJ · φK + . . . ,

Aαβ = Aαβ + θγCεγ(α

o

λβ)C

+ i
2
θγCθδD

(
1
2
εγδ δCDFαβ − 2εγ(α

o

∇β)δ

o

WCD + εγ(αεβ)δ

o

V CD

)

+ . . . ,(3.20)

while for AβB, the expansion of is formally the same as in abelian case (A.9) of

appendix A, see also (A.11) for more details. To obtain explicit expressions one has

to compute the lowest order components of the composite fields in (3.19). To this

end we assume here and in the following that WAB depends on ΦI only and not on

the fermionic superfield ΨβȦ, i.e.

WAB = WAB (ΦI) . (3.21)

The explicit cases that we are going to study in this work fall into this class of

deformation potentials WAB. Using (3.12) and with ∂Ia := ∂/∂φIa, where the index
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a refers to the representation of the gauge (structure) group, the projection on the

lowest components for the composite fields takes the form

o

WAB = WAB(φ) ,
o

λαB = 2i
7
ψa

αȦ
ΓI

AȦ
∂Ia

o

WAB ,
o
ραABC = iψa

αȦ
∂Ia

o

W [BCΓI
A]Ȧ

,
o

V AB = [
o

WAC ,
o

WCB] − εαβψa
αȦ
ψb

βḂ
ΓI

AȦ
ΓJ

CḂ
∂Ia∂Jb

o

WCB

+ i
7

(
o

W IJ · φJ)a ∂Ia

o

WAB − i
6
ΓILMN

AC (
o

WLM · φN)a ∂Ia

o

WBC . (3.22)

With the above relations and the superfield expansions (3.20) one obtains from

(3.17) in a straightforward way the component field e.o.m. for the component fields

φI and ψαȦ. The CS-e.o.m. is the lowest component of (3.9) and can be computed

analogously to (3.22). Together, the full system of component e.o.m. is given by

o

Eαβ = Fαβ +
1

28

(

ΓIJ
AB

o

∇αβφ
Ia∂Ja

o

WAB − iψa
Ȧ(α

ψb
β)Ḃ

ΓI
AȦ

ΓJ
BḂ

∂Ia∂Jb

o

WAB

)

= 0 ,

o

EαȦ = 0 ,
o

EI = 0 . (3.23)

The supersymmetry transformations for the independent component fields φI ,

ψαȦ and Aαβ are again obtained from the superfield expansion, (3.20), by acting

with ǫαAQαA and modding out a restoring super gauge transformation with gauge

parameter

Λ = ǫαAAαA = iǫαAθβB(δABAαβ + εαβ

o

WAB) + . . . , (3.24)

which is formally the same as for the free CS-multiplet (2.34) but has a more non-

trivial superfield expansion, see (A.9). The obtained component supersymmetry

transformations are,

δφI = iǫαA ΓI
AȦ
ψαȦ ,

δψβȦ = ǫαA
(

ΓI
AȦ

o

∇αβφ
I + 1

2
εαβ

(
1
7

ΓI
AȦ
δJK + 1

6
ΓIJK

AȦ

) o

W IJ · φK

)

,

δAαβ = 2i
7
ǫγBεγ(αψ

a
β)Ȧ ΓI

AȦ
∂Ia

o

WAB , (3.25)

and again resemble the recursion relations of the associated superfields (3.18). Equa-

tions (3.23) and (3.25) show how the deformation potential WAB modifies the dy-

namics and supersymmetry transformations of the component fields compared to the

minimally coupled free CS-multiplet (2.43) and (2.45). The deformation potential
o

WAB = WAB(φI) cannot be chosen arbitrarily but inherits the lowest components

of the W -constraints (3.4) and (3.15). These conditions are also necessary for the

component field equations (3.23) to be invariant under the supersymmetry trans-

formations (3.25). The algebraic W -constraints (3.15) is the same for the lowest

component fields, since it just constrains the functional form of WAB(φI). The low-

est component of the differential W -constraint (3.4) is straightforwardly obtained by
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using (3.12). Together, one finds for
o

WAB = WAB(φI) the conditions

P
[IJK]
160 (

o

W IJ · φK) = 0 , P
[ABC]
160 (ΓI

AȦ
∂Ia

o

WBC) = 0 , (3.26)

where the projector P
[RST ]
160 , acting on three indices R, S, T referring to the same

representation, was introduced in (3.15).

Equivalence to component e.o.m.

In this part we prove that the component multiplet (φI , ψαȦ, Aαβ) satisfying the

e.o.m. (3.23) with the conditions (3.26) for the deformation potential, and the su-

persymmetry transformations (3.25) is equivalent to our constraint system, in par-

ticular the gauge field constraint (3.1) and the matter field constraint (3.12) and

consequently their Bianchi identities and integrability conditions. The reader who is

only interested in the mere fact of this equivalence may skip the details of the proof

presented here.

As in the previous sections we construct superfields AαA, Aαβ, ΦI and ΨαȦ

out of the component multiplet according to the recursion relations10 (3.18). One

can ask again if this definition of superfields is susy covariant and mutatis mutan-

dis one obtains the result analogous to (2.33) and (2.47) that these superfields are

susy covariant modulo supergauge transformations with the parameter (3.24) if the

constraints (3.1), (3.5), (3.12) and (3.16) are satisfied.

To demonstrate the equivalence between component field equations and the con-

straints we again construct a recursive system for the constraints- and superfield

e.o.m. expressions. Due to the non-trivial coupling of the gauge and matter sector,

and in particular due to the conditions on the deformation potential WAB, the sit-

uation is quite involved and we introduce a more symbolic notation such that the

structure of the system remains clear. From the gauge sector the following expres-

sions, resembling (3.1), (3.5), (3.7) and (3.4) will occur in the recursive system

G(1) = GαA,βB := {∇αA,∇βB} − 2i(δAB∇αβ + εαβWAB) ,

G(2) = Gαβ,γA := Fαβ,γA + εγ(αλβ)A ,

Ecs = Eαβ := Fαβ −Xαβ ,

G = GαA,BC := ∇αAWBC − (δA[BλC]α + ραABC) , (3.27)

where we have introduced the abbreviation Xαβ = − i
8
∇C

(αλβ)C , and the other com-

posite fields were given in (3.19). The expressions of the matter sector, resembling

10We do not intend to carry this out explicitly but use the recursions (3.18) as an implicit

definition of the superfields. The explicit calculation would be rather messy, especially since off the

constraint surface one cannot use the previously given recursion relations for the composite fields,

as we will demonstrate now.
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(3.12), (3.16), (3.17) and (3.15), are:

C(1) = CI
αA := ∇αAΦI − iΓI

AȦ
ΨαȦ ,

C(2) = CαA,βȦ := ∇αAΨβȦ − ΓI
AȦ

∇αβΦI

−1
2
εαβ

(
1
7

ΓI
AȦ
δJK + 1

6
ΓIJK

AȦ

)
WIJ · ΦK ,

E ferm := EαȦ , Ebos := E I ,

CIJK := P
[IJK]
160 (WIJ · ΦK) . (3.28)

The explicit expressions for EαȦ, E I were given in (3.17). In the following, the detailed

index structure of the occurring expressions will not be important and in general we

stick to the notation on the l.h.s of these definitions.

To determine the action of the recursion operator R (2.29) on the expressions

(3.27), (3.28) we will need the superderivatives of the composite fields off the con-

straint surface, i.e. the analogs of (3.7), (3.8) and (3.11), but with Fαβ replaced with

Xαβ
11. These equations were obtained as consecutive integrability conditions of the

differential W -constraint (3.4). Off the constraint surface one has to start instead

from G in (3.27). Keeping track also of the other constraints one finds the following

modifications of (3.7), (3.8), (3.11):

∇αAλβB → ∇αAλβB + {G(1)W + ∇G} ,

∇αAρβBCD → ∇αAρβBCD + {G(1)W + ∇G} ,

∇αAXβγ → ∇αAXβγ + {G(1)λ+ ∇(G(1)W + ∇G) +G(2)W} ,

∇αAVBC → ∇αAVBC + {G(1)λ+ ∇(G(1)W + ∇G) +G(2)W} ,

∇αAUβγBCDE → ∇αAUβγBCDE + {G(1)λ+ ∇(G(1)W + ∇G) +G(2)W +GW} ,

(3.29)

where ∇ symbolically stands for a superderivative ∇αA with unspecified indices. In

addition we need the expression for RFαβ. As a consequence of the recursive defi-

nitions of the independent superfields (3.18) certain contractions of the constraints

with θαA vanish identically, i.e. θαACI
αA = θαACαA,βȦ = θαAGαA,βB = θδDGαβ,δD = 0.

With this one finds by acting with ∇γδ on RAαβ in (3.18)

RFαβ = θδD(∇δ(αλβ)D + εδ(α ∇β)γλ
γ
D) , (3.30)

which is the same as on the constraint surface, i.e. the equation obtained by contrac-

tion of (3.8) with θαA.

For theW -constraints the results follow directly from the conditions (3.26) on the

lowest components of the deformation potential WAB. The algebraic W -constraint in

(3.28) is identically zero, i.e. CIJK = 0, due to the first condition in (3.26). The last

11 Note that on the constraint surface means also Fαβ = Xαβ with Xαβ given below (3.27), i.e.

the CS-e.o.m., see also the discussion above (3.11).
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equation in (3.27) can be read as G = P
[ABC]
160 (∇αAWBC) and thus as a consequence

of the second condition in (3.26) the differential W -constraint takes the form

GαA,BC = P
[ABC]
160 (CIa

αA∂IaWBC) or G ∼ C(1)∂W , (3.31)

where the second expression is of the symbolic form that we will use in this section.

We now have all the ingredients needed to compute the action of R on the other

expressions (3.27) and (3.28). Using the recursions (3.18) and the relations derived

in this part, one finds for the gauge sector

(2 + R) G(1) ∼ θ{G(2) +G} ,

(1 + R) G(2) ∼ θ{Ecs + (G(1)W + ∇G)} ,

R Ecs ∼ θ{G(1)λ+G(2)W + ∇(G(1)W + ∇G)} , (3.32)

which are obtained more or less straightforwardly. For the matter sector one obtains

(1 + R) C(1) ∼ θC(2) ,

(1 + R) C(2) ∼ θ{E ferm + ∇αβC
(1) +G(2)Φ + (GΦ +WC(1))} ,

R E ferm ∼ θ{EcsΦ + Ebos + ∇(GΦ +WC(1)) + (G(1)WΦ +WC(2))} ,

R Ebos ∼ θ{∇αβE
ferm + EcsΨ + ∇∇(GΦ +WC(1))

+∇(G(1)WΦ +WC(2)) + (G(2)WΦ +GWΦ +WWC(1))} ,

(3.33)

where ∇αβ symbolically stands for a bosonic covariant derivative, the given indices

have no specific meaning. The first relation in (3.33) is straightforwardly obtained

and uses the fact that CIJK = 0, as explained above (3.31). The derivation of

the other relations is rather involved and uses, in this order, the first, second and

third superderivative of the just mentioned relation, i.e. ∇CIJK = 0, ∇∇CIJK = 0

and ∇∇∇CIJK = 0. Via (3.29) these produce a number of constraints which we

extracted here, the remaining terms are found to cancel with the help of an algebraic

computation using Mathematica.

The notation used in (3.32) and (3.33) is rather formal, the suppressed index

structure appears in all kind of combinations. This is enough information to show

recursively that the whole system of constraints (3.27), (3.28) vanishes to all orders

in θ as a consequence of the equations for the component fields (3.23), (3.26). In the

first step one sees that to lowest order all expressions in (3.27) and (3.28) are zero

due to (3.23), (3.26) or the recursion relations (3.32), (3.33):

o

C(1) =
o

G =
o

G(1) =
o

C(2) =
o

G(2) =
o

E ferm =
o

Ecs =
o

Ebos = 0 . (3.34)

In the sequence given here for the lowest component it is easy to show using (3.32),

(3.33) and (3.31), that to order (n + 1) in θ all expressions in (3.27), (3.28) are
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zero if they vanish at order n (the only subtlety one has to be careful about is the

appearance of the superderivatives ∇ in (3.27), (3.28), which brings in higher order

coefficients). With (3.34) this inductively proves that all expressions in (3.27), (3.28),

vanish to all orders in θ due to the component field equations (3.23), (3.26), and thus

shows the equivalence of the component field formulation and the constraints (3.1)

and (3.12) and all their consequences.

Concluding this section, we have shown that the weaker gauge field constraint

(3.1) is consistent only if the deformation potential WAB satisfies the differential W -

constraint (3.4). Coupling to the matter system via the same constraint as in the

free CS case, (3.12), further imposes the algebraic W -constraint (3.15) on WAB and

thus necessarily makes the deformation potential a function of the matter superfields.

This results in the interacting CS- and matter superfield e.o.m. (3.9) and (3.17). For

the case that WAB is a function exclusively of the scalar superfield ΦI we gave the

component field e.o.m. and the supersymmetry transformations (3.23), (3.25), (3.26)

and demonstrated the equivalence of the component field equations to the superfield

constraints. The generalization of these considerations to a more general deformation

potential WAB, depending also on the fermionic superfield ΨαȦ is straightforward.

In the next section we will give explicit solutions to the W -constraints which will

imply the conformal BLG-model and N = 8 SYM theory in its dual formulation,

respectively.

4. Solutions to the superspace constraints

In this section, we present different solutions to the obtained superspace constraints

and show how all known examples of three-dimensional N = 8 gauge theories fit into

our framework. Let us start by reviewing the structure of superspace constraints

identified so far. The matter sector of these three-dimensional gauge theories is

described by a scalar superfield subject to the constraint (3.12)

∇αA ΦI
∣
∣
∣
56c

= 0 . (4.1)

The full theory is then identified by specifying their gauge algebra g (2.21) as a

subalgebra of gl(N,R)⊕s t(8N) and by choosing WAB(ΦI ,ΨαȦ) in (3.1) as a function

of the matter superfields of the theory. This choice of the deformation potential

WAB is not arbitrary but must satisfy two independent superfield conditions, the

W -constraints (3.4) and (3.15):

∇αAWBC

∣
∣
∣
160s

= 0 , (4.2)

WIJ · ΦK

∣
∣
∣
160v

= 0 . (4.3)
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The first equation requires that the deformation potential WAB depends on the mat-

ter fields such that (4.2) is satisfied as a consequence of (4.1). In contrast, equation

(4.3) also explicitly contains the action of the gauge group on the matter fields and

will thus put further restrictions on the possible gauge groups. We will see in explicit

examples, that the conditions (4.2), (4.3) are truly independent as there are solutions

to either one of them that do not solve the other equation.

4.1 Conformal gauge theories

In this section we consider gauge groups G that are subgroups of GL(N,R), N being

the number of scalar super-multiplets, such that the superfield AαA can be repre-

sented as a matrix in the adjoint representation of G. Accordingly, we label by

indices a, b, . . . , the representation of G in which the matter superfields ΦI and

ΨαȦ transform. Matter and gauge superfields are thus denoted as Φa
I , Ψa

αȦ
, and

(AαA)a
b, (Aαβ)a

b, respectively.

The constraint (3.1) implies that the composite field WAB has canonical dimen-

sion one. Given that the scalar fields have canonical dimension one half in three

dimensions, scale invariance implies that with a polynomial ansatz WAB is bilinear

in the scalar superfields Φa
I , with the most general ansatz given by

(WIJ)a
b ≡ fa

b,cd Φc
IΦ

d
J , (4.4)

where the dimensionless constants fa
b,cd have to be antisymmetric in the last two

indices, i.e. fa
b,[cd] = fa

b,cd. Gauge covariance requires that fa
b,cd is an invariant

tensor of the gauge group G, and per construction WIJ has to be an element of the

Lie algebra and therefore fa
b,dc ∈ g for any d and c. Together, this translates into a

quadratic condition for the tensor fa
b,cd

f g
c,abf

e
f,gd − f g

d,abf
e
f,gc = f g

f,cdf
e
g,ab − f g

f,abf
e
g,cd , (4.5)

which can be obtained by explicitly evaluating the action of WIJ on a WKL and

comparing this to the adjoint action by commutator. The same relation was obtained

in [30] for the embedding tensor in a component field approach.

It is straightforward to check, that (4.4) is a solution to (4.2) as a consequence

of (4.1): as ∇αAWBC is composed of a single ΦI and a single ΨαȦ, w.r.t. SO(8) it

transforms in the tensor product 8v⊗8c = 8s +56s, which does not contain a 160s .

To solve the remaining constraint (4.3) we evaluate the action of (4.4) on a scalar

field

(WIJ · ΦK)a = fa
b,cd Φb

IΦ
c
JΦd

K . (4.6)

This shows that the tensor fa
b,cd needs to satisfy complete antisymmetry in the last

three indices fa
b,cd = fa

[bcd], such that

(WIJ · ΦK)a = fa
[bcd] Φ

b
[IΦ

c
JΦd

K] , (4.7)
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transforms in the 8v
⊗alt3 = 56v of SO(8), thus satisfying (4.3). For such a tensor

fa
b,cd, the quadratic equation (4.5) reduces to the so-called fundamental identity.

The same condition on a tensor fa
bcd, interpreted as a structure constants of a

three-algebra, has been used in [31] in a component formulation of the equations

of motion. This shows how the constructions of [1, 2, 31] are embedded into our

superspace analysis. The existence of an action furthermore requires the existence

of a metric hab and total antisymmetry of the tensor fabcd ≡ haef
e
[bcd] . It has been

shown in a number of papers (see e.g. [32, 33]), that for a positive definite metric

hab, equation (4.5) admits no other solutions than the compact SO(4) of the original

construction of [1, 2]. Solutions of (4.5) with indefinite metric have been found and

studied in [34–36].

In order to complete the construction of this example, we evaluate the general

formulae of the last section for the particular choice (4.4). From (3.19), we obtain

(λαA)a
b = ifa

bcd ΓI
AȦ

Ψc
αȦ

Φd
I , (ρα ABC)a

b = − 1
2
ifa

bcd ΓABC
IȦ

Ψc
αȦ

Φd
I ,

(VAB)a
b = −1

2
ifa

bcd ε
αβΓȦḂ

AB Ψc
αȦ

Ψd
βḂ

+ 1
4
fa

bcdf
c
efg ΓIJ

AB Φe
IΦ

f
JΦg

KΦd
K , (4.8)

as well as the first order Chern-Simons equations of motion (3.9)

(Fαβ)a
b = −fa

bcd

(

Φc
I ∇αβΦd

I + iΨc
αȦ

Ψd
βȦ

)

. (4.9)

This answers the question raised in [8], namely, how the in the Nambu-bracket realiza-

tion by hand imposed “Chern-Simons-constraint” follows from consistency conditions

of the scalar field equations.

After some calculation, the bosonic equations of motion (3.17) take the form

∇2 Φa
I = i

2
εαβΓIJ

ȦḂ
fa

bcd Ψb
αȦ

Ψc
βḂ

Φd
J + 1

4
fa

bcdf
b
efg Φc

JΦf
JΦd

KΦg
KΦe

I , (4.10)

and coincide with the result of [31]. For the theories with action, they exhibit the

Yukawa couplings and the sextic scalar potential of [1].

4.2 Yang-Mills gauge theories

It has been shown in [37, 38] that three-dimensional Yang-Mills gauge theories have

an equivalent formulation as matter-coupled Chern-Simons gauge theories with non-

semisimple gauge group

G = GYM ⋉ Tk , (4.11)

where Tk denotes a set of k ≡ dimGYM translations, transforming in the adjoint

representation of GYM . This allows to embed also Yang-Mills gauge theories into

the general superspace formulation presented above. In the context of M2 branes,

this duality has been discussed in [36, 39].
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In order to realize (4.11) as a subgroup of GL(N,R) ⋉ T(8N), we start from

matter fields Φa
I , Ψa

αȦ
in the adjoint representation (thus N = k), with the index a

now labelling the adjoint representation of the Yang-Mills gauge group GYM, and fab
c

denoting the Yang-Mills structure constants. To obtain the subalgebra t associated

with the subgroup Tk ⊂ T(8k) we choose a fixed SO(8)-vector ξI and define the

generators Ta of t as

Ta = ξIT
I

a , (4.12)

with a constant vector ξI , and where the T I
a span the full Lie algebra of T(8k). The

gauge superfields in the covariant derivatives as defined in (2.22) are thus chosen to

be

AαA = AM
αAiTM = Aa

αA iTa + Ba
αA iTa =: ÂαA + BαA , (4.13)

with the Yang-Mills and the translation generators acting on the scalar superfield as

Ta · Φ
b
I = fac

bΦc
I , Ta · Φ

b
I = ξIδ

b
a , (4.14)

respectively. The constant vector ξI breaks SO(8) down to SO(7). The algebra of

the generators (2.21) hence splits into the semidirect sum as

[TM , TN ] = f K
MN TK ↔







[Ta, Tb] = fab
c Tc

[Ta, Tb] = fab
c Tc

[Ta, Tb] = 0

. (4.15)

The bosonic gauge superfield Aαβ = AM
αβTM is decomposed analogously to (4.13),

except for the factor of i (2.22). With regard to the separation of the gauge superfields

we can write the covariant derivatives accordingly,

∇αA = ∇̂αA + BαA , ∇αβ = ∇̂αβ + Bαβ , (4.16)

where ∇̂αA contains only ÂαA, etc.. The action on the superfield ΦI then takes the

form

∇αAΦa
I = ∇̂αAΦa

I + iξIB
a
αA , (4.17)

and accordingly for the bosonic superfield connection ∇αβ . On all other fields, which

are neutral under shifts generated by the Tk, the action of ∇αA and ∇̂αA coincides.

The explicit form of the gauge transformations (2.23) is then given by

δΦI = Λ · ΦI + ξIC , δΨαȦ = Λ · ΨαȦ ,

δÂαA = −∇̂αA · Λ , δBαA = i∇̂αAC + Λ · BαA , (4.18)

and analogous transformations for the bosonic superfields Âαβ, Bαβ . These trans-

formations lead to a homogeneous covariant transformation of the super covariant

derivatives of ΦI , i.e.

δ(∇αAΦI) = Λ · (∇αAΦI) , (4.19)
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which thus is neutral under local shifts in ΦI . As for the covariant derivatives, also

the conventional field strengths acquire extra terms only in the case of their action

on the scalar superfields ΦI . With the definitions (4.13), (4.15) one obtains for the

anti-commutator

{∇αA,∇βB} · Φ
I = (2iδAB∂αβ +DαAAβB +DβBAαA + {AαA,AβB}) · Φ

I

≡ 2iδAB∇αβΦI + F̂αA,βB · ΦI + ξIHαA,βB , (4.20)

with the split of field strength into FαA,βB = F̂a
αA,βBTa + Ha

αA,βBTa, i.e.

F̂αA,βB =DαAÂβB +DβBÂαA + {ÂαA, ÂβB} − 2iδABÂαβ ,

HαA,βB = ∇̂αABβB + ∇̂βBBαA − 2iδABBαβ . (4.21)

Similarly, we split the bosonic field strength Fαβ,γδ into a part F̂αβ,γδ corresponding

to the standard non-abelian Yang-Mills field strength of the gauge field Âαβ and

Hαβ,γδ = ∇̂αβBγδ − ∇̂γδBαβ such that

Fαβ,γδ · Φ
I = F̂αβ,γδ · Φ

I + ξIHαβ,γδ . (4.22)

It remains to find a solution for the tensor WIJ living in the algebra (4.15) that

satisfies the constraints (4.2) and (4.3). Our proposal is the following

WIJ =W
(0)
IJ

a Ta +W
(1)
IJ

a Ta ≡ −2Φa[IξJ ] Ta + fbc
aΦIbΦJc Ta , (4.23)

where the superscripts (0),(1) refer to the GYM-covariant grading of the algebra (4.15).

It is straightforward to verify that this function satisfies the constraint (4.2) as a

consequence of (4.1). The argument is as in the last section: it follows with (4.1)

that ∇αAWBC w.r.t. SO(8) transforms in the tensor product 8v ⊗ 8c = 8s + 56s,

which does not contain a 160s . Moreover, with (4.14) one checks that

(WIJ · ΦK)a =W
(0)
IJ

bfbc
aΦc

K +W
(1)
IJ

a ξK

= 3fbc
aΦb

[IΦ
c
JξK] = (W[IJ · ΦK])

a , (4.24)

is completely antisymmetric in [IJK], i.e. transforms in the 56v, and thus also

satisfies the constraint (4.3). This fixes the relative factor in (4.23). Finally, gauge

covariance of the ansatz (4.23) requires

f[ab
d fc]d

e =0 , (4.25)

the standard Jacobi identities for the structure constants of GYM. To complete the

construction, we evaluate the general formulae of section 3.2 for the solution (4.23).

From (3.19) we obtain

λαA =−iΓA
IȦ

(
ξIΨa

αȦ
Ta − ifbc

a Ψb
αȦ

ΦIc Ta

)
,

ρα ABC = 1
2
iΓABC

IȦ

(
ξIΨa

αȦ
Ta − ifbc

a Ψb
αȦ

ΦIc Ta

)
, (4.26)
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and

VAB =−3
4
fbc

aΓKL
AB ξ

Iξ[IΦ
b
KΦc

L] Ta

+
(

3
4
fbc

afde
bΓKL

AB ξ[IΦ
d
KΦe

L]Φ
I c − 1

2
iεαβfbc

a ΓAB
ȦḂ

Ψb
αȦ

Ψc
βḂ

)

Ta . (4.27)

The first order CS-equations of motion (3.9) yields

Fαβ =−ξI ∇αβΦIa Ta − fbc
a
(

ΦIb∇αβΦIc + iΨb
αȦ

Ψc
βȦ

)

Ta . (4.28)

Finally, the bosonic equations of motion (3.17) reduce to

∇2 Φa
I = i

2
εαβΓIJ

ȦḂ
fbc

a ξJΨb
αȦ

Ψc
βḂ

+ 3
2
fbc

dfde
aξNξ[NΦb

IΦ
c
J ]Φ

e
J . (4.29)

In order to show the equivalence to the standard formulation of three-dimensional

N = 8 Yang-Mills theories, one uses part of equations (4.28) to integrate out the

vector field Bαβ . Explicitly, we split the SO(8) index I → (i, 8) with i = 1, . . . , 7,

set ξI = δI8, and fix the gauge freedom δΦI = ξIC by setting Φ8 = 0. Note that this

gauge differs from the “transverse” gauge (2.29), which imposes also θαABαA = 0

and was used in the previous analysis to construct the superfield expansion.

Using (4.17) the Ta component of equation (4.28) reduces in this new gauge to

F̂αβ =−Bαβ , (4.30)

and can be used to eliminate the gauge field Bαβ from all equations. In particular,

using (4.22) the remaining component of equation (4.28) takes the form

εγδ∇̂γ(αF̂β)δ = 1
2
[Φi, ∇̂αβΦi] + iΨȦ

(αΨȦ
β) , (4.31)

in which we recognize the standard second-order Yang-Mills equations of motion

for the remaining gauge field Âαβ . The scalar equations of motion are obtained

from (4.29) after imposing ξIΦI = 0, and exhibit the quartic potential in the scalar

fields Φi.

It is instructive to study this redualization of the three-dimensional degrees of

freedom on a more fundamental level directly in terms of the superfield constraints.

Upon setting Φ8 = 0, the scalar constraint (4.1), or explicitly (3.12), implies that

iBa
Aα =∇AαΦ8 a = iΓ8

AȦ
ΨȦ a

α , (4.32)

i.e. the vector superfield BAα which gauges the translations is identified with the

fermion superfield ΨȦ
α . With (3.16) we thus obtain from (4.21)

HAα,Bβ =DAαBBβ + DBβBAα − 2iδABBαβ

=2iδAB(∇αβΦ8 a − Ba
αβ) Ta + 1

6
iεαβ(ΓIJKΓ8)[AB] (WIJ · ΦK)a Ta

= 1
2
iεαβ(ΓIJKΓ8)[AB] fbc

a Φb
[IΦ

c
J ξK] Ta

=2i εαβ W
(1)
AB

a Ta . (4.33)
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I.e. the constraint (3.1) is automatically satisfied for the Ta component of the super-

field strength. The remaining part of this superfield constraint yields

F̂Aα,Bβ = 1
2
iεαβΓIJ

AB W
(0)
IJ

a Ta = iεαβΓ8i
AB Φi , (4.34)

or equivalently

{∇̂Aα, ∇̂Bβ}=2iδAB∇̂αβ + iεαβΓ8i
AB Φi . (4.35)

If we take this equation as a definition for the scalar fields Φi, the Bianchi identities for

(4.35) induce the matter superfield constraint (3.12). In this respect, equation (4.35)

may thus be considered as a weaker version of the constraint (2.25), which accordingly

gives rise to Yang-Mills dynamics rather than to a Chern-Simons dynamics for the

gauge fields involved. Moreover, we recognize in (4.35) the remnant of the superfield

constraint underlying ten-dimensional super Yang-Mills theory [19, 25]

{∇A,∇B}= 2iΓI
AB ∇I , (4.36)

with SO(9, 1) vector and spinor indices I and A, respectively, after breaking the

Lorentz group SO(9, 1) → SO(2, 1) × SO(7) and truncating the partial derivatives

w.r.t. the seven internal coordinates. The scalar fields Φi represent the seven internal

components of the ten-dimensional vector.

5. Conclusions and outlook

In this paper, we have given a systematic analysis of the N = 8 superspace constraints

in three space-time dimensions. The general coupling between vector and scalar

supermultiplets is encoded in the deformation potential WAB which is a function of

the matter fields subject to the W -constraints (4.2) and (4.3). The full equations

of motion are given by equations (3.9) and (3.17). We have given the two solutions

(4.4) and (4.23) to these constraints including the conformal BLG model and to

three-dimensional Yang-Mills theory, respectively. The presented results and the

universal formalism in which all known N = 8 three-dimensional theories have been

embedded suggest a number of possible generalizations and directions of further

research of which we list a few in the following.

• In the course of this paper we have met and analyzed various different con-

straints for the super field strength FαA,βB. In its strongest version (2.25) the

field strength FαA,βB is set to zero which gives rise to a (first order) Chern-

Simons dynamics of the bosonic gauge field. A weaker version of the constraint

is (3.2) which allows for a non-vanishing part in the irreducible (1, 28). As

shown in appendix A, this leads to an enlarged vector multiplet with essen-

tially no dynamics (apart from certain first order constraint equations on the
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higher order components of the multiplet). Yet another version of the con-

straint has been encountered in (4.35) upon breaking SO(8) down to SO(7)

and allowing an irreducible (1, 7) in the super field strength. As discussed

above, this is related to a ten-dimensional origin of the theory and induces a

(second order) Yang-Mills dynamics for the bosonic gauge field. In order of

increasing constraints, these cases may be tabulated as

{∇Aα,∇Bβ}
∣
∣
∣
(3,35)

= 0 =⇒ no dynamics ,

{∇Aα,∇Bβ}
∣
∣
∣
(3,35)+(1,21)

= 0 =⇒ Yang-Mills dynamics ,

{∇Aα,∇Bβ}
∣
∣
∣
(3,35)+(1,28)

= 0 =⇒ free Chern-Simons dynamics ,(5.1)

and show how the field content and the dynamics becomes more restrictive

as a function of the constraints. It would be very interesting to perform a

similar analysis for other versions of the constraint upon breaking the original

form under various subgroups of SO(8) and to study the resulting multiplet

structures, their dynamics and a possible higher-dimensional origin.

• As shown in appendix A, the first constraint in (5.1) admits the representation

as a partial flatness condition for the integrability of an auxiliary linear system.

No such representation is known for the constraint (3.1) with WAB being a de-

formation potential, as we have studied it in this paper. However, as we have

discussed in section 4.2, for the particular solution (4.23) of the W -constraints,

the super field strength may be brought into the form (4.35) which descends

from the zero-curvature condition on super null lines (4.36) of the linear system

underlying the ten-dimensional Yang-Mills equations of motion [25]. Dimen-

sional reduction does not guarantee the existence of a linear auxiliary system

and a corresponding twistor space description. For example for the N = 4

SYM theory in four dimensions no such system is known, only the N = 3

superspace formulation has been described in these geometric terms so far [24].

However, the dimensional reduction of the the ten dimensional SYM superspace

constraints to six dimensions, describing six-dimensional N = 2 SYM, can be

reformulated as a linear auxiliary system12. In three dimensions a twistorial

description of SYM has been given in N = 6 superspace [41]. However, it is

an interesting question if there exists an auxiliary linear system and an as-

sociated twistor space description for the solution (4.4) of the W -constraints

12With xij = x[ij] = 1
2ε

ijklxkl being a six-dimensional vector (i, j = 1, . . . , 4) one finds that the

integrability conditions of xij∇jαS = xij∇
j
α̇S = xij∇ijS = 0 are equivalent to the superspace

constraints for the six-dimensional N = 2 SYM theory as given in [19], iff xij is a null vector.

The geometry of these null-vectors and the corresponding twistor space were discussed in [40], it is

natural to expect that there exists a twistor space formulation of the six-dimensional N = 2 SYM

theory.
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which eventually would give rise to a linear system and associated twistor space

formulation underlying the equations of motion of the conformal BLG model.

The covariance of our formalism suggest a study of this question analogous to

SYM theories.

• In this paper we have studied the interactions between scalar and vector su-

perfields induced by a deformation (3.1) of the super field strength. A natural

generalization of this ansatz would also include the remaining irreducible term

{∇αA,∇βB}=2i (δAB∇αβ + εαβWAB + Jαβ AB) , (5.2)

with a tensor Jαβ AB = J(αβ)(AB), traceless in (AB), that is now likewise given

as a function of the matter fields. An analysis similar to the one performed in

the main text, shows that in presence of a non-vanishing Jαβ AB the differential

W -constraint (4.2) is modified to

εβγ ∇AβJγα BC

∣
∣
∣
160s

=∇αAWBC

∣
∣
∣
160s

,

∇A(αJβγ) BC

∣
∣
∣
112s

=0 , (5.3)

where the projectors on the l.h.s. refer to the irreducible parts of the ten-

sor product 8s ⊗ 35s = 8s ⊕ 112s ⊕ 160s in which ∇αAJβγ BC transforms

w.r.t. SO(8) . Likewise, upon coupling to scalar superfields, the algebraic W -

constraint (4.3) is extended to

WAB · ΦI
∣
∣
∣
160v

= 0 = Jαβ AB · ΦI
∣
∣
∣
224v

. (5.4)

We expect that similar to the analysis presented in the text, these constraints

will be sufficient to guarantee consistency of the system (5.2) coupled to scalar

superfields. It remains an open question to find solutions of the extended set

of constraints (5.3), (5.4) that would give rise to more general N = 8 theories.

• Along similar lines, the system (4.1)–(4.3) can be generalized by deforming the

matter superfield constraint (4.1), i.e. by allowing more general contributions

∇αA ΦI = ΓI
AȦ

ΨαȦ + ΓȦḂĊ
IA ΘαȦḂĊ , (5.5)

where now ΘαȦḂĊ is considered as a function of the superfields ΦI , ΨαȦ (sub-

ject to a number of differential and algebraic constraints). A similar strategy

has been used in [42] in order to constrain the higher order α′ corrections

to ten-dimensional super Yang-Mills theory. In the present context, a viable

strategy in order to describe higher order corrections to the models may be to

implement the algebraic W -constraint (4.3) by adequate choice of the defor-

mation potential WAB while solving the differential W -constraint (4.2) for this
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functional by suitably tuning the Θ contribution in (5.5) that modifies (4.1). In

this context it is also possible to consider non-polynomial generalizations of the

ansatz (4.4) which are scale invariant. The verification of the conformal sym-

metry of the resulting models can be conveniently carried out by representing

the superconformal algebra on the N = 8 superspace. These steps represent a

possibility for determing quantum corrections without relying on perturbation

theory.

• The generic scalar field equations of motion (3.17) that we have derived as a

consequence of the superspace constraints exhibit various terms containing the

deformation potential WAB, as well as the derived quantities λαA, ραABC and

V IJ . However, when explicitly evaluating these terms for the explicit mod-

els in (4.10) and (4.29), we observe that all the terms give rise to only two

distinct contributions to the equations of motion, a purely bosonic term and

a single term bilinear in the fermions. This raises the question if this reduc-

tion of the general equation is related to some (yet undiscovered) underlying

structure of the generic theory or if there exist more general solutions to the

W -constraints (4.2), (4.3) for which the different terms of (3.17) do give con-

tributions of different type. The question may be related to the fact that both

our explicit solutions (4.4) and (4.23) satisfy an algebraic equation which is

actually stronger than (4.3) and reads

WIJ · ΦK

∣
∣
∣
8v+160v

= 0 . (5.6)

It would be highly interesting to understand if (5.6) is a (hidden) consequence

of the constraints (4.2), (4.3) or if the latter admit solutions with a non-trivial

component in the 8v. With regard to the supersymmetry transformations

(3.25) this would also have an impact on the BPS equation of this system and

thus generalize the original Basu-Harvey equation [43].

• Finally, it is a natural task to perform a similar analysis of superspace con-

straints for the theories with less supersymmetry. Of particular interest is the

case N = 6, including the theories of [5, 44]. The relation to the harmonic

superspace approach [45] and the pure spinor formulations [46] in this case

remain to be investigated.

We hope to come back to some of these issues in future work.

Acknowledgements: This work is supported in part by the Agence Nationale de

la Recherche (ANR).

– 33 –



A. A weaker constraint

In this appendix, we complete the discussion of the constraint system (3.2), i.e. of a

vector multiplet with WAB considered as an independent field defined by (3.1). In

this case, the constraint (3.1) can be understood as a partial flatness condition,

FαA,βB + FαB,βA = 0 , (A.1)

and therefore admits an equivalent formulation as an linear auxiliary system,

λαβ∇Aβ S(λ) = 0 , λαβ∇αβ S(λ) = 0 , (A.2)

with a light-like vector λαβλαβ = 0, such that integrability of (A.2) implies (A.1).

Light-like vectors in R
1,2 are parametrized by TS1, the Minkowski space version of

the mini-twistor space [47], which suggest the existence of a corresponding twistor

space formulation of this system.

To keep the analysis of the multiplet structure transparent we analyze the sys-

tem (3.1) for abelian vector superfields, for which the resulting equations simplify

considerably. The full non-abelian analysis does not add any conceptual challenges

or modifications of the component field content except for the fact that all fields are

matrices of the non abelian Lie algebra.

The conditions due to the Bianchi identities (3.4),(3.5), (3.7) and (3.8) are of the

same form as in the non-abelian case, except that the covariant derivatives acting

in the adjoint representation can be replaced by partial derivatives in the abelian

case. The integrability conditions (3.11) are now genuine nontrivial conditions on

the superfields. In the abelian case, they simplify considerably to

DαA ρβBCD = 3i∂αβW[BCδD]A − 3i
2
εαβδA[BVCD] + iUαβ ABCD ,

DαAVBC = 2εβγ∂αβ

(
δA[BλC]γ − ργABC

)
,

DαAUβγ BCDE = 8δA[B∂α(βρ
CDE]
γ) − 4δA[B∂βγρ

CDE]
α + ταβγ ABCDE . (A.3)

Evaluating the anti-commutator (3.1) on the last equation of (A.3) determines the

superderivative of the tensor ταβγ ABCDE as

DαAτβ1β2β3 B1···B5
= 10iδA[B1∂α(β1

U
B2···B5]
β2β3) − 5iδA[B1∂(β1β2

U
B2···B5]
β3)α

+ iTαβ1β2β3 AB1···B5
, (A.4)

up to a tensor Tα1···α4 A1···A6
= T(α1···α4) [A1···A6] . Iterating this procedure, we finally
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arrive at the (closed) system

DαATβ1···β4 B1···B6
= 12 δA[B1∂α(β1

T
B2···B6]
β2β3β4)

− 6 δA[B1∂(β1β2
T

B2···B6]
β3β4)α

+ σαβ1···β4 AB1···B6
,

DαAσβ1···β5 B1···B7
= 14iδA[B1∂α(β1

T
B2···B7]
β2···β5) − 7iδA[B1∂(β1β2

T
B2···B7]
β3β4β5)α

+ iSαβ1···β5 AB1···B7
,

DαASβ1···β6 B1···B8
= 16 δA[B1∂α(β1

σ
B2···B8]
β2···β6)

− 8 δA[B1∂(β1β2
σ

B2···B8]
β3···β6)α

. (A.5)

with additional tensors σ and S, which are completely symmetric (antisymmetric)

in their SO(2, 1) (SO(8)) indices. Evaluating the anti-commutator (3.1) on the first

equation of (A.3) leads to two consistency equations for the tensor and UABCD αβ and

the fourth (abelian) Bianchi identity:

∂αβFαβ = 0 , ∂αβUαβ ABCD = 0 , (A.6)

Similarly, consistency of (A.4), (A.5) requires the first order equations

∂αβταβγ A1···A5
= 0 , ∂αβTαβγ1γ2 A1···A6

= 0 , (A.7)

and analogous equations for σ and S, showing that in the abelian case these tensors

are conserved higher spin currents. In the non-abelian case, a crucial modification

takes place. First, partial derivatives are replaced by covariant derivatives and sec-

ond, the r.h.s. of the equations (A.6), (A.7) (except for the Bianchi identity) receive

non-vanishing contributions from commutators of the non-abelian fields.

Superfield expansion, multiplet structure

The obtained closed system of superderivatives of superfields (3.1), (3.4), (3.5), (3.7),

(3.8) and (A.3), (A.4), (A.5) allows to define a closed recursive system to system-

atically obtain the expansion in terms of component fields. Contracting all these

equations with θαA gives

(1 + R)AαA = 2iθβAAαβ + 2iεαβθ
βBWAB ,

RAαβ = θγAεγ(αλβ)A ,

RWAB = θδD(δD[AλB]δ + ρδDAB) ,

RλαA = iθδD(δDAFδα + 2 ∂δαWDA + εδαVDA) ,

· · ·

RSα1···α6 A1···A8
= 16 θβ[A1∂β(α1

σ
A2···A8]
α2···α6)

− 8 θβ[A1∂(α1α2
σ

A2···A8]
α3···α6)β , (A.8)

generalizing (2.30). This shows that the superfield AαA is entirely determined in

terms of the lowest components of all the superfields involved

AβB = i(θα
B Aαβ + θαAεαβ

o

WAB)

+2i
3
θαAθγC(δAB εγ(α

o

λβ)C + εαβδC[A

o

λB]γ + εαβ
o
ργCAB) + . . . . (A.9)
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θN Field Representation under SO(2, 1)× SO(8)

0 — —

1 Aαβ +
o

WAB (3, 1) + (1, 28)

2
o

λαA +
o
ρα ABC (2, 8s) + (2, 56s)

3
o

V AB +
o

Uαβ ABCD (1, 28) + (3 − 1, 35v + 35c)

4
o
ταβγ ABCDE (4 − 2, 56s)

5
o

T α1...α4 A1...A6
(5 − 3, 28)

6
o
σα1...α5 A1...A7

(6 − 4, 8s)

7
o

Sα1...α6 A1...A8
(7 − 5, 1)

8 — —

Table 1: Superfield expansion of the vector field AαA induced by the weaker constraint

(3.2). The negative multiplicities of representations w.r.t. SO(2, 1) correspond to the first

order constraint equations which these fields satisfy.

The only equations that these fields must obey are the first order constraint

equations (A.6), (A.7), etc. The superfield expansion of AAα is summarized in table 1,

where the negative multiplicities refer to the first order constraint equations. The

resulting multiplet is thus neither on-shell (as there are genuine field equations for its

components) nor entirely off-shell (due to the presence of the constraint equations).

Counting the field content of table 1 reveals 257 bosonic + 256 fermionic degrees of

freedom with the extra bosonic singlet corresponding to the gauge freedom of the

vector field Aαβ . Interestingly, the same multiplet has appeared in [48] in the context

of reducing the superspace constraints of ten-dimensional Yang-Mills theories down

to seven dimensions.

The relation between Fαβ and Aαβ may give an idea how to resolve the con-

strained fields in terms of genuine off-shell fields. E.g. in the abelian theory, the 70

conserved currents UABCD αβ can be written in the form

UABCD
αβ = εγδ∂γ(αB

ABCD
β)δ , (A.10)

as the field strengths of 70 off-shell and unconstrained vector fields BABCD
αβ . For

the higher spin fields in contrast, this is less clear. In particular, the non-abelian

generalization upon which the components UABCD
αβ, ταβγ A1···A5

, etc., are no longer

covariantly conserved currents, makes it even harder to see if there exists an formu-

lation in terms of genuine off-shell fields.

In the non-abelian case the superfield expansion of AαA to second order in θ

is formally the same as in (A.9). For the basic matter superfields and the bosonic
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gauge superfield one finds to second order in θ:

ΦI = φI + iθαAΓI
AȦ
ψαȦ + i

2
θαAθβB ΓIJ

AB

o

∇αβφ
J

− i
4
θαAθβBεαβ(1

7
δAB

o

W IJ · φJ − 1
6
ΓILMN

AB

o

WLM · φN) + . . . ,

ΨβȦ = ψβȦ + θαA(ΓI
AȦ

o

∇αβφ
I + 1

2
εαβP

IJK
AȦ

o

W IJ · φK)

+ i
2
θαAθγC

(

ΓI
AȦ

ΓI
CĊ

o

∇αβ ψγĊ + P IJK
AȦ

ΓK
CĊ

o

W IJ · ψγĊ

)

+1
2
θαAθγC

(

ΓK
AȦ

εγ(α

o

λβ)C · φK + 1
4
ΓIJ

BDP
IJK
AȦ

(δC[B

o

λD]γ +
o
ργCBD) · φK

)

+ . . . ,

Aαβ = Aαβ + θγCεγ(α

o

λβ)C

+ i
2
θγCθδD[1

2
εγδ δCDFαβ − 2εγ(α

o

∇β)δ

o

WCD + εγ(αεβ)δ

o

V CD] + . . . , (A.11)

where we have introduced the abbreviation P IJK
AȦ

= 1
7
ΓI

AȦ
δJK + 1

6
ΓIJK

AȦ
.

B. SO(8) relations

The group SO(8) (we consider mainly the associated Lie-algebra so(8) and we are

somewhat cavalier regarding the difference) has rather special properties. It admits

a Majorana-Weyl representation in terms of real eight-component Spinors and the

chirally conjugated ones, and consequently there are three inequivalent (real) eight

dimensional irreducible representations 8s, 8c and 8v, where 8v is the vector repre-

sentation of SO(8). The source of this “accidental” coincidence in the dimensionality

is the underlying triality symmetry which can be seen from the associated Dynkin

diagram.

A commonly chosen Majorana-Weyl representation of the SO(8) Gamma matri-

ces Γ̃I is given in terms of real 8 × 8 blocks:

Γ̃I =

[
0 ΓI

Γ̄I 0

]

, (B.1)

where Γ̄I = (ΓI)T . We denote the components of the matrices ΓI by

ΓI
AḂ

with I, A, Ḃ = 1, . . . , 8 , (B.2)

and we do not introduce a separate symbol for the transposed matrices Γ̄I , which

in fact occur only in this appendix to keep the notation more compact. The basic

algebraic relations for these matrices are13

Γ(I Γ̄J) = Γ̄(IΓJ) = δIJ
18 , (B.3)

13We denote symmetrization/antisymmetrization in indices by () and [], respectively, and (anti)-

symmetrizations are always defined with weight one.
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and an explicit representation of these matrices can be found for example in [49].

Further we introduce the totally antisymmetrized products

ΓI1I2...In

AB := (Γ[I1Γ̄I2 . . . Γ̄In])AB . . . n even ,

ΓI1I2...In

AȦ
:= (Γ[I1Γ̄I2 . . .ΓIn])AȦ . . . n odd , (B.4)

and analogously one can define matrices Γ̄IJK... where the alternating sequence of

matrix products starts with a the transpose matrix Γ̄I , replacing dotted and undot-

ted indices in (B.4). These matrices have the following symmetry properties under

transposition:

ΓI1I2...In

AB = (−)n(n−1)/2 ΓI1I2...In

BA . . . n even ,

(ΓI1I2...In)T = (−)n(n−1)/2 Γ̄I1I2...In . . . n odd . (B.5)

Identities. We give here a number of useful Γ-matrix identities which where

used in the calculations of the main text. We first give a basic identity, which is also

the origin of the triality relations that we used in this work (see below):

ΓI
AȦ

ΓI
BḂ

+ ΓI
AḂ

ΓI
BȦ

= 2 δABδȦḂ . (B.6)

Defining δI1...In

J1...Jn

:= δI1
[J1
. . . δIn

Jn] we have the following identities:

• Traces

Tr[ΓI1...In] = 0 for n > 1 ,

Tr[ΓIJΓKL] = −16 δIJ
KL ,

Tr[ΓIJKΓLMN ] = 48 δIJK
LMN ,

Tr[ΓIJKLΓMNOP ] = 8 (24 δIJKL
MNOP + εIJKLMNOP) ,

Tr[ΓILΓJMΓKN ] = 32 (δ
[J
L δ

M ]I
KN − δ

[J
I δ

M ]L
KN ) . (B.7)

• Products

(ΓIJΓKL)AB = ΓIJKL − 2 (δK[IΓ
J ]L
AB − δL[IΓ

J ]K
AB ) − 2 δAB δIJ

KL ,

(ΓLNΓIJKN)AB = 4 ΓIJKL
AB − 30 Γ

[IJ
ABδ

K]L ,

(Γ̄ILNΓIJK)ȦḂ = 4 Γ̄LNJK
ȦḂ

+ 10 (Γ̄
L[K

ȦḂ
δJ ]N − Γ̄

N [K

ȦḂ
δJ ]L) + 12 δLN

KJ δȦḂ .(B.8)
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• Tensor products

ΓIJ
ABΓIJ

CD = 16 δAB
CD ,

ΓIJ
ABΓ̄IJ

ĊḊ
= 2 ΓI

AĊ
ΓI

BḊ
− 2 ΓI

BĊ
ΓI

AḊ
,

ΓIJKL
AB ΓL

CĊ
= −δABΓIJK

CĊ
+ 2 δC(AΓIJK

B)Ċ
+ 6 Γ

[IJ
C(AΓ

K]

B)Ċ
,

ΓIJ
ABΓIJK

CĊ
= −2 ΓI

CĊ
ΓIK

AB + 16 δC[AΓK
B]Ċ

,

(Γ̄JΓI Γ̄K)ȦAΓJK
BC = 16 δA[BΓI

C]Ȧ
− 2 ΓJ

AȦ
ΓJI

BC ,

ΓIJ
ABΓIJKL

CD = 2 δCDΓKL
AB − 8 (δA(CΓKL

D)B − δB(CΓKL
D)A) ,

ΓIJK
AȦ

ΓIJK
BḂ

= 48 δABδȦḂ − 6 ΓI
AȦ

ΓI
BḂ

,

ΓIJK
AȦ

ΓIJKL
BC = 48 δA(BΓL

C)Ȧ
− 6 δBCΓL

AȦ
. (B.9)

Triality. Here we explain some triality relations which were used in the main

text. The basic identity for these considerations is equation (B.6) which is exactly the

same relation as (B.3) if we consider “new” matrices14 ΓA with matrix components

ΓA
IḂ

:= ΓI
AḂ

(the same is true for matrices ΓḂ with matrix components ΓḂ
AI := ΓI

AḂ
).

Thus the matrices ΓA provide the same algebraic structure as the matrices ΓI and

we can define the analogous antisymmetrized products ΓABCD... as in (B.4) with the

same properties and analogous formulas as in (B.7), (B.8) and (B.9) will hold for

them. In addition we can reinterpret different expressions in the tensor products

(B.9). A particular example that was used in the main text is:

ΓI
CĊ

ΓIJ
AB = ΓC

IĊ
ΓAB

IJ = −(ΓABΓ̄C)JĊ = −(ΓABC
JĊ

+ 2 Γ
[A

JĊ
δB]C) , (B.10)

with ΓABC
IĊ

≡ ΓIJ
[ABΓJ

C]Ċ . In the main text we also use the fact that the adjoint

representation of so(8) can be written as

28 = (8v ⊗ 8v)alt = (8s ⊗ 8s)alt = (8c ⊗ 8c)alt , (B.11)

which allows to label tensors in this representation by different antisymmetric index

pairs, e.g.

WIJ ≡ 1
4
ΓIJ

ABWAB , WAB ≡ 1
4
ΓIJ

ABWIJ , WȦḂ ≡ 1
4
Γ̄IJ

ȦḂ
WIJ , etc. . (B.12)

C. so(2, 1) spinor conventions

All spinors appearing in the main text, superspace coordinates or fields, are Majorana

spinors in 2 + 1-dimensional space-time. Our metric convention is ηµν = (−,+,+)

14We do not introduce a new symbol for these matrices but take the index name from the range

A,B,C.. as opposed to I, J,K... as part of the defining symbol, in particular this means for example

ΓA=1 6= ΓI=1.
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and we choose a Majorana representation for the gamma-matrices15

{γµ, γν}α
β = 2ηµνδα

β . (C.1)

Thus the matrices γµ α
β are real and the Majorana condition on spinors imply that

they are real two component spinors. Spinor indices are raised/lowered by the epsilon

symbols with ε12 = ε12 = 1 and choosing NW-SE conventions

εαγεβγ = δα
β , λα := εαβλβ ⇔ λβ = λαεαβ . (C.2)

Introducing the real symmetric matrices σµ
αβ := γµ ρ

β ερα and σ̄µ αβ := (ε ·σµ ·ε)αβ =

−εβρ γµ α
ρ a three vector in spinor notation writes as a symmetric real matrix as

vαβ := σµ
αβ vµ ⇒ vµ = 1

2
σ̄µ αβ vαβ . (C.3)
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