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Abstract

Escalation is a typical feature of infinite games. Therefore tools con-
ceived for studying infinite mathematical structures, namely those deriv-
ing from coinduction are essential. Here we use coinduction, or back-
ward coinduction (to show its connection with the same concept for finite
games) to study carefully and formally the infinite games especially those
called dollar auctions, which are considered as the paradigm of escalation.
Unlike what is commonly admitted, we show that, provided one assumes
that the other agent will always stop, bidding is rational, because it re-
sults in a subgame perfect equilibrium. We show that this is not the only
rational strategy profile (the only subgame perfect equilibrium). Indeed
if an agent stops and will stop at every step, we claim that he is ratio-
nal as well, if one admits that his opponent will never stop, because this
corresponds to a subgame perfect equilibrium. Amazingly, in the infinite
dollar auction game, the behavior in which both agents stop at each step
is not a Nash equilibrium, hence is not a subgame perfect equilibrium,
hence is not rational.

Keyword: escalation, rationality, extensive form, backward induction.
JEL Code: C72, D44, D74.

1 Introduction

Escalation takes place in specific sequential games in which players continue
although their payoff decreases on the whole. The dollar auction game has been
presented by Shubik [1971] as the paradigm of escalation. He noted that, even
though their cost (the opposite of the payoff) basically increases, players may
keep bidding. This attitude is considered as inadequate and when talking about
escalation, Shubik [1971] says this is a paradox, O’Neill [1986] and Leininger
[1989] consider the bidders as irrational, Gintis [2000] speaks of illogic conflict
of escalation and Colman [1999] calls it Macbeth effect after Shakespeare’s play.
In contrast with these authors, in this paper, we prove that escalation is logic
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and that agents are rational, therefore this is not a paradox and we are led to
assert that Macbeth is somewhat rational.

This escalation phenomenon occurs in infinite sequential games and only
there. Therefore it must be studied with adequate tools, i.e., in a framework
designed for mathematical infinite structures. Like Shubik [1971] we limit our-
selves to two players only. In auctions, this consists in the two players bidding
forever. This statement is based on the common assumption that a player is
rational if he adopts a strategy which corresponds to a subgame perfect equilib-
rium. To characterize this equilibrium the above cited authors consider a finite
restriction of the game for which they compute the subgame perfect equilib-
rium by backward induction1. In practice, they add a new hypothesis on the
amount of money the bidders are ready to pay, also called the limited bankroll.
In the amputated game, they conclude that there is a unique subgame perfect
equilibrium. This consists in both agents giving up immediately, not starting
the auction and adopting the same choice at each step. In our formalization in
infinite games, we show that extending that case up to infinity is not a Nash
equilibrium, hence not a subgame perfect equilibrium and we found two sub-
game perfect equilibria, namely the cases when one agent continues at each step
and the other leaves at each step. Those equilibria which correspond to rational
attitudes account for the phenomenon of escalation.

The origin of the misconception that concludes the irrationality of escalation
is the belief that properties of infinite mathematical objects can be extrapolated
from properties of finite objects. This does not work. As Fagin [1993] recalls,
“most of the classical theorems of logic [for infinite structures] fail for finite
structures” (see Ebbinghaus and Flum [1995] for a full development of the fi-
nite model theory). The reciprocal holds obviously “most of the results which
hold for finite structures, fail for infinite structures”. This has been beautifully
evidenced in mathematics, when Weierstrass [1872] has exhibited his function:

f(x) =

∞∑

n=0

bn cos(anxπ).

Every finite sum is differentiable and the limit, i.e., the infinite sum, is not. To
give another picture, infinite games are to finite games what fractal curves are
to smooth curves [Edgar, 2008]. In game theory the error done by the nineti-
eth century mathematicians (Weierstrass quotes Cauchy, Dirichlet and Gauss)
would lead to the same issue: wrong assumptions. With what we are concerned,
a result that holds on finite games does not hold necessarily on infinite games
and vice-versa. More specifically equilibria on finite games are not preserved at
the limit on infinite games. In particular, we cannot conclude that, whereas the
only rational attitude in finite dollar auction would be to stop immediately, it is
irrational to escalate in the case of an infinite auction. We have to keep in mind
that in the case of escalation, the game is infinite, therefore reasoning made
for finite objects are inappropriate and tools specifically conceived for infinite

1What is called “backward induction” in game theory is roughly what is called “induction”
in logic.
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objects should be adopted. Like Weierstrass’ discovery led to the development
of series, logicians have invented methods for deductions on infinite structures
and the right framework for reasoning logically on infinite mathematical objects
is called coinduction.

Like induction, coinduction is based on a fixpoint, but whereas induction is
based on the least fixpoint, coinduction is based on the greatest fixpoint, for an
ordering we are not going to describe here as it would go beyond the scope of this
paper. Attached to induction is the concept of inductive definition, which char-
acterizes objects like finite lists, finite trees, finite games, finite strategy profiles,
etc. Similarly attached to coinduction is the concept of coinductive definition
which characterizes streams (infinite lists), infinite trees, infinite games, infinite
strategy profiles etc. An inductive definition yields the least set that satisfies
the definition and a coinductive definition yields the greatest set that satisfies
the definition. Associated with these definitions we have inference principles.
For induction there is the famous induction principle. On coinductively defined
sets of objects there is a principle like induction principle which uses the fact
that the set satisfies the definition (proofs by case or by pattern) and that it is
the largest set with this property. Since coinductive definitions allow us build-
ing infinite objects, one can imagine constructing a specific category of objects
with “loops”, like the infinite word (abc)ω (i.e., abcabcabc...) which is made by
repeating the sequence abc infinitely many times (other examples with trees
are given in Section 2 and with strategy profiles in Section 3). Such an ob-
ject is a fixpoint, this means that it contains an object like itself. For instance
(abc)ω = abc(abc)ω contains itself. We say that such an object is defined as a
cofixpoint. To prove a property P on a cofixpoint o = f(o), one assumes P

holds on o (the o in f(o)), considered as a sub-object of o. If one can prove P

on the whole object (on f(o)), then one has proved that P holds on o. This is
called the coinduction principle a concept which comes from Park [1981] and
Milner and Tofte [1991] and was introduced in the framework we are considering
by Coquand [1993], see Sangiorgi [2009] for a historical account. To be sure not
be entangled, it is advisable to use a proof assistant that implements coinduc-
tion to build and check the proof, but reasoning with coinduction is sometimes
so counter-intuitive that the use of a proof assistant is not only advisable but
compulsory. For instance, we were, at first, convinced that the strategy profile
consisting in both agents stopping at every step was a Nash equilibrium and
only failing in proving it mechanically convinced us of the contrary and we were
able to prove the opposite. In our case we have checked every statement using
Coq2 and in what follows a sentence like “we have prover that ...” means that
we have succeeded in performing a formal proof in Coq.

The mathematical development presented here corresponds to a Coq script3

which can be found on the following url’s:
http://perso.ens-lyon.fr/pierre.lescanne/COQ/EscRat/

http://perso.ens-lyon.fr/pierre.lescanne/COQ/EscRat/SCRIPTS/

2Coq is a proof assistant built by The Coq development team [2007], see Bertot and
Castéran [2004] for a good introduction.

3A script is a list of commands of a proof assistant.

http://perso.ens-lyon.fr/pierre.lescanne/COQ/EscRat/
http://perso.ens-lyon.fr/pierre.lescanne/COQ/EscRat/SCRIPTS/
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Backward coinduction as an invariant proved back from the

future

In infinite games, the proof method we develop can be seen as follows. A prop-
erty which holds on an infinite extensive game is an invariant along the temporal
line and to prove that this is an invariant one proceeds backward the time, from
the future to the past. Therefore the name backward coinduction is appropriate.

Structure of the paper

The paper is structured as follows. In Section 2 we present coinduction illus-
trated by the example of infinite binary trees. In Section 3, we introduce the
core concept of infinite strategy profile which allows us presenting equilibria in
Section 4. The dollar auction game is presented in Section 5 and the escala-
tion is discussed in Section 6. Readers who want to have a quick idea about
the results of this paper about the rationality of escalation are advised to read
sections 5, 6 and 7.

Related works

Coinduction is a relatively new concept and its application to specific domains
has just started. Probably the most connected work is this of Coupet-Grimal
[2003] on temporal logic, indeed “time” is a component of extensive games.
Other applications are on representation of real numbers by infinite sequences
(Bertot [2007], Julien [2008]) and implementation of streams (infinite lists) in
electronic circuits (Coupet-Grimal and Jakubiec [2004]). An ancestor of our
description of infinite games and infinite strategy profiles is the constructive de-
scription of finite games, finite strategy profiles, and equilibria by Vestergaard
[2006]. But clearly there is a gap between this approach and ours, namely the
difference between finiteness and infiniteness. Nevertheless, this paper was in-
spiring. Lescanne [2009] introduces the framework of infinite games with more
detail. Infinite games are introduced in Osborne and Rubinstein [1994] and
Osborne [2004] but this is not algorithmic and therefore not amenable to for-
mal proofs. Many authors have studied infinite games (see for instance Martin
[1998], Mazala [2001]), but except the name “game” (an overloaded name),
those games have nothing to see with infinite extensive games as presented in
this paper. The infiniteness of Blackwell games for instance is derived from a
topology, by adding real numbers and probability. Moreover those games are
examined from a model or a set theory point of view, not from the point of
view of what can be proved in them, i.e., from the proof theory point of view or
of the rationality point of view. Said otherwise, those approaches consider an
actual infinity when we consider a potential infinity.
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2 Coinduction and infinite binary trees

As an example of a coinductive definition consider this of lazy binary trees,
i.e., finite and infinite binary trees.
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� �

•

• �

� �

. . .

•

• •

� � • �

•

• �

• �

• �

• �

• �
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•

� •

• �

� •

• �

�

Backbone Zig

Figure 1: Coinductive binary trees

A coinductive binary tree (or a lazy binary tree or a finite-infinite
binary tree) is

• either the empty binary tree �,

• or a binary tree of the form t ·t′, where t and t′ are binary trees.

By the keyword coinductive we mean that we define a coinductive set of
objects, hence we accept infinite objects. Some coinductive binary trees are
given on Fig. 1. We define on a coinductive binary tree a predicate which has
also a coinductive definition:

A binary tree is infinite if (coinductively)

• either its left subtree is infinite
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• or its right subtree is infinite.

We define two trees that we call zig and zag.

zig and zag are defined together as cofixpoints as follows:

• zig has � as left subtree and zag as right subtree,

• zag has zig as left subtree and � as right subtree.

This says that zig and zag are the greatest solutions4 of the two simultaneous
equations:

zig = � · zag

zag = zig · �

•

•

� •

zig �

⇒

•

•

� •

zig �

zig

Figure 2: How cofix works on zig for is infinite?

It is common sense that zig and zag are infinite, but to prove that “zig

is infinite” using the cofix tactic5, we do as follows: assume “zig is infinite”,
then zag is infinite, from which we get that “zig is infinite”. Since we use the
assumption on a strict subtree of zig (the direct subtree of zag, which is itself a
direct subtree of zig) we can conclude that the cofix tactic has been used properly
and that the property holds, namely that “zig is infinite”. This is pictured on
Fig.2, where the square box represents the predicate is infinite. Above the rule,
there is the step of coinduction and below the rule the conclusion, namely that
the whole zig is infinite. We let the reader prove that backbone is infinite, where
backbone is the greatest fixpoint of the equation:

backbone = backbone · �

4In this case, the least solutions are uninteresting as they are objects nowhere defined.
Indeed there is no basic case in the inductive definition.

5The cofix tactic is a method proposed by the proof assistant Coq which implements
coinduction on cofixpoint objects. Roughly speaking, it attempts to prove that a property is
an invariant, by proving it is preserved along the infinite object. Here “ is infinite” is such
an invariant on zig.
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and is an infinite tree that looks like the skeleton of a centipede game as shown
on Fig.1.

Interested readers may have a look at Coupet-Grimal [2003], Coupet-Grimal
and Jakubiec [2004], Lescanne [2009], Bertot [2005, 2007] and especially Bertot
and Castéran [2004, chap. 13] for other examples of cofix reasoning.

3 Finite or infinite strategy profiles

In this section we define finite or infinite binary strategy profiles or StratProf s
in short. They are based on games which are extensive (or sequential) games
and in which each agent has two choices: ℓ (left) and r (right).6 In addition
these games are infinite, we should say “can be infinite”, as we consider both
finite and infinite games. We do not give explicitly the definition of a finite or
infinite extensive game since we do not use it in what follows, but it can be
easily obtained by removing the choices from a strategy profile. To define finite
or infinite strategy profiles, we suppose given a utility and a utility function.
As said, we define directly strategy profiles as they are the only concept we are
interested in. Indeed an equilibrium is a strategy profile.

The type of StratProf s is defined as a coinductive as follows:

• a Utility function makes a StratProf.

• an Agent, a Choice and two StratProf s make a StratProf.

Basically7 an infinite strategy profile which is not a leaf is a node with four
items: an agent, a choice, two infinite strategy profiles. A strategy profile is a
game plus a choice at each node. Strategy profiles of the first kind are written
≪ f ≫ and strategy profiles of the second kind are written ≪ a, c, sl, sr ≫.
In other words, if between the “≪” and the “≫” there is one component, this
component is a utility function and the result is a leaf strategy profile and if
there are four components, this is a compound strategy profile. In what follows,
we say that sl and sr are strategy subprofiles of ≪ a, c, sl, sr ≫. For instance,
here are the drawing of two strategy profiles (s0 and s1):

Alice Bob Alice7→0,Bob7→1

Alice 7→ 1,Bob 7→ 2 Alice7→2,Bob 7→0

Alice Bob Alice7→0,Bob7→1

Alice 7→ 1,Bob 7→ 2 Alice7→2,Bob 7→0

6In pictures, we take a subjective point of view: left and right are from the perspective
of the agent.

7The formal definition in the Coq vernacular is given in appendix A.
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which correspond to the expressions
s0 =≪Alice,ℓ,≪Bob, ℓ, ≪Alice 7→ 0, Bob 7→ 1≫, ≪Alice 7→ 2, Bob 7→ 0≫≫,

≪Alice 7→ 1,Bob 7→ 2≫≫

and
s1 =≪Alice,r,≪Bob,ℓ,≪Alice 7→ 0, Bob 7→ 1≫, ≪Alice 7→ 2, Bob 7→ 0≫,

≪Alice 7→ 1,Bob 7→ 2≫,≫.
To describe a specific infinite strategy profile one uses most of the time a

fixpoint equation like:

t = ≪Alice, r,≪Alice 7→ 0,Bob 7→ 0≫,≪Bob, r, t, t≫≫

which corresponds to the pictures:

t
=

A1

A1 7→ 0,A2 7→ 0

A2

t t

Other examples of infinite strategy profiles are given in Section 5. Usually
an infinite game is defined as a cofixpoint, i.e., as the solution of an equation,
possibly a parametric equation.

Whereas in the finite case one can easily associate with a strategy profile
a utility function, i.e., a function which assigns a utility to an agent, as the
result of a recursive evaluation, this is no more the case with infinite strategy
profiles. One reason is that it is no more the case that the utility function can be
computed since the strategy profile may run for ever. This makes the function
partial8 and it cannot be defined as an inductive or a coinductive. Therefore we
make s2u (an abbreviation for Strategy-profile-to-Utility) a relation between a
strategy profile and a utility function and we define it coinductively; s2u appears
in expression of the form9 (s2u s a u) where s is a strategy profile, a is an agent
and u is a utility. It reads “u is a utility of the agent a in the strategy profile s”.

s2u is a predicate defined inductively as follows:

• s2u ≪f ≫ a (f(a)) holds,

• if s2u sl a u holds then s2u ≪a′, ℓ, sl, sr ≫ a u holds,

• if s2u sr a u holds then s2u ≪a′, r, sl, sr ≫ a u holds.

This means the utility of a for the leaf strategy profile ≪f ≫ is f(a), i.e., the
value delivered by the function f when applied to a. The utility of a for the

8Assigning arbitrarily (i.e., not algorithmically) a utility function to an infinite “history”,
as it is made sometimes in the literature, is artificial and not really handy for formal reasoning.

9Notice the lighter notation (f x y z) for what is usually written f(x)(y)(z).
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strategy profile ≪a′, ℓ, sl, sr ≫ is u if the utility of a for the strategy profile sl

is u. In the case of s0, the first above strategy profile, one has s2u s0 Alice 2,
which means that, for the strategy profile s0, the utility of Alice is 2.

4 Subgame perfect equilibria and Nash equilib-

ria

4.1 Convertibility

An important binary relation on strategy profiles is convertibility. We write
⊢a⊣. the convertibility of agent a.

The relation ⊢a⊣ is defined inductively as follows:

• ⊢a⊣ is reflexive, i.e., for all s, s⊢a⊣ s.

• If the node has the same agent as the agent in ⊢a⊣ then the
choice may change, i.e.,

s1 ⊢a⊣ s′1 s2 ⊢a⊣ s′2

≪a, c, s1, s2≫ ⊢a⊣ ≪a, c′, s′1, s
′

2≫

• If the node does not have the same agent as in ⊢a⊣, then the
choice has to be the same:

s1 ⊢a⊣ s′1 s2 ⊢a⊣ s′2

≪a′, c, s1, s2≫ ⊢a⊣ ≪a′, c, s′1, s
′

2≫

Roughly speaking two strategy profiles are convertible for a if they change
only for the choices for a. Since it is defined inductively, this means that those
changes are finitely many. We feels that this makes sense since an agent can
only conceive finitely many issues.

4.2 Nash equilibria

The notion of Nash equilibrium is translated from the notion in textbooks. The
concept of Nash equilibrium is based on a comparison of utilities; this assumes
that an actual utility exists and therefore this requires convertible strategy pro-
files to “lead to a leaf”. s is a Nash equilibrium if the following implication
holds:

If s “leads to a leaf” and for all agent a and for all strategy profile s′

which is convertible to s, i.e., s⊢a⊣ s′, and which “leads to a leaf”,
if u is the utility of s for a and u′ is the utility of s’ for a, then
u′ � u.

Roughly speaking this means that a Nash equilibrium is a strategy profile in
which no agent has interest to change his choice since doing so he cannot get a
better payoff.



4 EQUILIBRIA December 8, 2009 – 10

4.3 Subgame Perfect Equilibria

In order to insure that s2u has a result we define an operator “leads to a leaf”
that says that if one follows the choices shown by the strategy profile one reaches
a leaf, i.e., one does not go forever.

The predicate “leads to a leaf” is defined inductively as

• the strategy profile ≪f ≫ “leads to a leaf”,

• if sl “leads to a leaf”, then ≪a, ℓ, sl, sr ≫ “leads to a leaf”,

• if sr “leads to a leaf”, then ≪a, r, sl, sr ≫ “leads to a leaf”.

This means that a strategy profile, which is itself a leaf, “leads to a leaf”
and if the strategy profile is a node, if the choice is ℓ and if the left strategy
subprofile “leads to a leaf” then the whole strategy profile “leads to a leaf” and
similarly if the choice is r.

If s is a strategy profile that satisfies the predicate “leads to a leaf” then the
utility exists and is unique, in other words:

• For all agent a and for all strategy profile s, if s “leads to a leaf” then
there exists a utility u which “is a utility of the agent a in the strategy
profile s”.

• For all agent a and for all strategy profile s, if s “leads to a leaf”, if “u is
a utility of the agent a in the strategy profile s” and “v is a utility of the
agent a in the strategy profile s” then u = v.

This means s2u works like a function on strategy profiles which lead to a
leaf. We also consider a predicate “always leads to a leaf” which means that
everywhere in the strategy profile, if one follows the choices, one leads to a
leaf. This property is defined everywhere on an infinite strategy profile and is
therefore coinductive.

The predicate “always leads to a leaf” is defined coinductively

by saying:

• the strategy profile ≪f ≫ “always leads to a leaf”,

• for all choice c, if ≪ a, c, sl, sr ≫ “leads to a leaf”, if sl “al-
ways leads to a leaf”, if sr “always leads to a leaf”, then
≪a, c, sl, sr ≫ “always leads to a leaf”.

This says that a strategy profile, which is a leaf, “always leads to a leaf”
and that a composed strategy profile inherits the predicate from its strategy
subprofiles provided itself “leads to a leaf”.

Let us consider now subgame perfect equilibria, which we write SGPE.
SGPE is a property of strategy profiles. It requires the strategy subprofiles
to fulfill coinductively the same property, namely to be a SGPE, and to insure
that the strategy profile with the best utility for the node agent to be cho-
sen. Since both the strategy profile and its strategy subprofiles are potentially
infinite, it makes sense to define SGPE coinductively.
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SGPE is defined coinductively as follows:

• SGPE ≪f ≫,

• if ≪ a, ℓ, sl, sr ≫ “always leads to a leaf”, if SGPE(sl) and
SGPE(sr), if s2u sl a u and s2u sr a v, if v � u then SGPE ≪

a, ℓ, sl, sr ≫,

• if ≪ a, r, sl, sr ≫ “always leads to a leaf”, if SGPE(sl) and
SGPE(sr), if s2u sl a u and s2u sr a v, if u � v then SGPE ≪

a, r, sl, sr ≫,

This means that a strategy profile, which is a leaf, is a subgame perfect
equilibrium (condition SGPE Leaf ). Moreover if the strategy profile is a node,
if the strategy profile “always leads to a leaf”, if it has agent a and choice ℓ,
if both strategy subprofiles are subgame perfect equilibria and if the utility of
the agent a for the right strategy subprofile is less than this for the left strategy
subprofile then the whole strategy profile is a subgame perfect equilibrium and
vice versa (condition SGPE left). If the choice is r (condition SGPE right) this
works similarly.

Notice that since we require that the utility can be computed not only for
the strategy profile, but for the strategy subprofiles and for the strategy sub-
subprofiles and so on, we require these strategy profiles not only to “lead to a
leaf” but to “always lead to a leaf”.

Proposition 1 A subgame perfect equilibrium is a Nash equilibrium.

Proof: See the Coq script. �

Alice Bob Alice Bob

v+n,n n+1,v+n v+n+1,n+1 n+2,v+n+1

Figure 3: The dollar auction game

5 Dollar auction games and Nash equilibria

The dollar auction has been presented by Shubik [1971] as the paradigm of
escalation, insisting on its paradoxical aspect. It is a sequential game presented
as an auction in which two agents compete to acquire an object of value v

(v > 0) (see Gintis [2000, Ex. 3.13]). Suppose that both agents bid $1 at each
turn. If one of them gives up, the other receives the object and both pay the
amount of their bid.10 For instance, if agent Alice stops immediately, she pays

10In a variant, each bidder, when he bids, puts a dollar bill in a hat or in a piggy bank and
their is no return at the end of the auction. The last bidder gets the object.
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nothing and agent Bob, who acquires the object, has a payoff v. In the general
turn of the auction, if Alice abandons, she looses the auction and has a payoff
−n and Bob who has already bid −n has a payoff v − n. At the next turn
after Alice decides to continue, bids $1 for this and acquires the object due to
Bob stopping, Alice has a payoff v− (n+1) and Bob has a payoff −n. In our
formalization we have considered the dollar auction up to infinity. Since we are
interested only by the “asymptotic” behavior, we can consider the auction after
the value of the object has been passed and the payoffs are negative. The dollar
auction game can be summarized by Fig. 3. Notice that we assume that Alice

starts. We have recognized three classes of infinite strategy profiles, indexed
by n:

1. The strategy profile always give up, in which both Alice and Bob stop
at each turn, in short dolAsBsn.

2. The strategy profile Alice stops always and Bob continues always, in
short dolAsBcn.

3. The strategy profile Alice continues always and Bob stops always, in
short dolAcBsn.

The three kinds of strategy profiles are presented in Fig. 4.
We have shown that the second and third kinds of strategy profiles, in which

one of the agents always stops and the other continues, are subgame perfect
equilibria. The proofs are typical uses of the Coq cofix tactic. For instance,
consider the strategy profile dolAsBcn. Assume SGPE (dolAsBcn+1). It works
as follows: if dolAsBcn+1 is a subgame perfect equilibrium corresponding to the
payoff −(v + n + 1),−(n + 1), then

≪Bob, ℓ, dolAsBcn+1,≪Alice 7→ n + 1,Bob 7→ v + n≫≫

is again a subgame perfect equilibrium (since v + n ≥ n + 1) and therefore
dolAsBcn is a subgame perfect equilibrium, since again v + n ≥ n + 1.11 We
can conclude that for all n, dolAsBcn is a subgame perfect equilibrium. In other
words, we have assumed that SGPE (dolAsBcn) is an invariant all along the
game and that this invariant is preserved as we proceed backward, through
time, into the game.

With the condition v > 1, we can prove that dolAsBs0 is not a Nash equi-
librium, then as a consequence not a subgame perfect equilibrium. Therefore,
the strategy profile that consists in stopping from the beginning and forever is
not a Nash equilibrium, this contradicts what is said in the literature [Shubik,
1971, O’Neill, 1986, Leininger, 1989, Gintis, 2000].

6 Why escalation is rational?

Many authors agree (see however [Halpern, 2001, Stalnaker, 1998]) that choosing
a subgame perfect equilibrium is rational [Aumann, 1995]. Let us show that this

11Since the cofix tactic has been used on a strict strategy subprofile, the reasoning is correct.
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Alice Bob Alice Bob

v+n,n n+1,v+n v+n+1,n+1 n+2,v+n+1

dolAsBsn aka Always give up

Alice Bob Alice Bob

v+n,n n+1,v+n v+n+1,n+1 n+2,v+n+1

dolAsBcn aka Alice abandons always and Bob continues always

Alice Bob Alice Bob

v+n,n n+1,v+n v+n+1,n+1 n+2,v+n+1

dolAcBsn aka Alice continues always and Bob abandons always

Figure 4: Three strategy profiles
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can lead to an escalation. Suppose I am Alice in the middle of the auction,
I have two options that are rational: one option is to stop right away, since I
assume that Bob will continue always. But the second option says that it could
be the case that from now on Bob will stop always (strategy profile dolAcBsn)
and I will always continue which is a subgame perfect equilibrium hence rational.
If Bob acts similarly this is the escalation. So at each step an agent can stop and
be rational, as well as at each step an agent can continue and be rational; both
options make perfect sense. We claim that human agents reason coinductively
unknowingly. Therefore, for them, escalation is one of their rational options at
least if one considers strictly the rules of the dollar auction game, in particular
with no limit on the bankroll. Many experiences (Colman [1999]) have shown
that human are inclined to escalate or at least to go very far in the auction
when playing the dollar auction game. We propose the following explanation:
the finiteness of the game was not explicit for the participants and for them the
game was naturally infinite. Therefore they adopted a form of reasoning similar
to the one we developed here, probably in an intuitive form and they conclude
it was equally rational to continue or to leave according to their feeling on the
threat of their opponent, hence their attitude. Actually our theoretical work
reconciles experiences with logic,12 and human with rationality.

7 Conclusion

We have shown that coinduction is the right tool to study infinite structures,
e. g., the infinite dollar auction game. This way we get results which contradict
forty years of claims that escalation is irrational. We can show where the failure
comes from, namely from the fact that authors have extrapolated on infinite
structures results obtained on finite ones. Actually in a strategy profile in which
one of the agent threatens credibly the other to continue in every case, common
sense says that the other agent should abandon at each step (taking seriously the
threat), this is a subgame perfect equilibrium. If the threat to continue is not
credible, the other agent may think that his opponent bluffs and will abandon
at every step from now on, hence a rational attitude for him is to continue.
As a matter of fact, coinduction meets common sense. Since our reasoning on
infinite games proceeds from future to past, we call backward coinduction the
new method for proving that a given infinite strategy profile is a subgame perfect
equilibrium. This study has also demonstrated the use of a proof assistant in
such a development. Indeed the results on infinite objects are sometime so
counter-intuitive that a check on a proof assistant is essential. We think that
this opens new perspectives to game theory toward a more formal approach
based on the last advances in mathematics offered by proof assistants [Harrison,
2008, Dowek, 2007]. In particular, an issue is to study the connection between
subgame perfect equilibria (or backward coinduction) and common knowledge
[Aumann, 1995]. Should we keep the usual sense of common knowledge or
elaborate a new one which takes into account infiniteness? Indeed classical

12A logic which includes coinduction.
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common knowledge is the least fixed point [Lescanne, 2007, Fagin et al., 1995]
of an operator on propositions. Should we switch toward the greatest fixed
point?
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A Excerpts of Coq scripts

Infinite binary trees

CoInductive LBintree : Set :=
— LbtNil : LBintree
— LbtNode: LBintree → LBintree → LBintree.

CoInductive InfiniteLBT : LBintree → Prop :=
— IBTLeft : ∀ bl br, InfiniteLBT bl → InfiniteLBT (LbtNode bl br)
— IBTRight : ∀ bl br, InfiniteLBT br → InfiniteLBT (LbtNode bl br).

CoFixpoint Zig: LBintree := LbtNode Zag LbtNil
with Zag: LBintree := LbtNode LbtNil Zig.

Infinite strategy profiles

CoInductive StratProf : Set :=
— sLeaf : Utility fun → StratProf
— sNode : Agent → Choice → StratProf → StratProf → StratProf.

Inductive s2u : StratProf → Agent → Utility → Prop :=
— s2uLeaf : ∀ a f, s2u (≪ f≫) a (f a)
— s2uLeft : ∀ (a a’ :Agent) (u:Utility) (sl sr :StratProf ),

s2u sl a u → s2u (≪ a’,l,sl,sr≫) a u
— s2uRight : ∀ (a a’ :Agent) (u:Utility) (sl sr :StratProf ),

s2u sr a u → s2u (≪ a’,r,sl,sr≫) a u.

Inductive LeadsToLeaf : StratProf → Prop :=
— LtLLeaf : ∀ f, LeadsToLeaf (≪ f≫)
— LtLLeft : ∀ (a:Agent)(sl : StratProf ) (sr :StratProf ),

LeadsToLeaf sl → LeadsToLeaf (≪ a,l,sl,sr≫)
— LtLRight : ∀ (a:Agent)(sl : StratProf ) (sr :StratProf ),

http://coq.inria.fr
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LeadsToLeaf sr → LeadsToLeaf (≪ a,r,sl,sr≫).

CoInductive AlwLeadsToLeaf : StratProf → Prop :=
— ALtLeaf : ∀ (f :Utility fun), AlwLeadsToLeaf (≪f≫)
— ALtL : ∀ (a:Agent)(c:Choice)(sl sr :StratProf ),

LeadsToLeaf (≪a,c,sl,sr≫) → AlwLeadsToLeaf sl →AlwLeadsToLeaf sr →

AlwLeadsToLeaf (≪a,c,sl,sr≫).

SGPE

CoInductive SGPE : StratProf → Prop :=
— SGPE leaf : ∀ f :Utility fun, SGPE (≪f≫)
— SGPE left : ∀ (a:Agent)(u v : Utility) (sl sr : StratProf ),

AlwLeadsToLeaf (≪a,l,sl,sr≫) →

SGPE sl → SGPE sr →

s2u sl a u → s2u sr a v → (v �u) →

SGPE (≪a,l,sl,sr≫)
— SGPE right : ∀ (a:Agent) (u v :Utility) (sl sr : StratProf ),

AlwLeadsToLeaf (≪a,r,sl,sr≫) →

SGPE sl → SGPE sr →

s2u sl a u → s2u sr a v → (u �v) →

SGPE (≪a,r,sl,sr≫).

Nash equilibrium

Definition NashEq (s : StratProf ): Prop :=
∀ a s’ u u’, s’⊢a⊣s →

LeadsToLeaf s’ → (s2u s’ a u’) →

LeadsToLeaf s → (s2u s a u) →

(u’ �u).

Alice stops always and Bob continues always

Definition add Alice Bob dol (cA cB :Choice) (n:nat) (s :Strat) :=
≪Alice,cA,≪Bob, cB,s,[n+1, v+n]≫,[v+n,n]≫.

CoFixpoint dolAcBs (n:nat): Strat := add Alice Bob dol l r n (dolAcBs (n+1)).

Theorem SGPE dol Ac Bs : ∀ (n:nat), SGPE ge (dolAcBs n).

Alice continues always and Bob stops always

CoFixpoint dolAsBc (n:nat): Strat := add Alice Bob dol r l n (dolAsBc (n+1)).
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Theorem SGPE dol As Bc: ∀ (n:nat), SGPE ge (dolAsBc n).

Always give up

CoFixpoint dolAsBs (n:nat): Strat := add Alice Bob dol r r n (dolAsBs (n+1)).

Theorem NotSGPE dolAsBs : (v>1) → ˜(NashEq ge (dolAsBs 0)).


