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Abstract

Mobile ad hoc networks as well as grid platforms are distributed, changing, and
error prone environments. Communication costs within such infrastructure can
be improved, or at least bounded, by using k-clustering. A k-clustering of a
graph, is a partition of the nodes into disjoint sets, called clusters, in which
every node is distance at most k from a designated node in its cluster, called
the clusterhead. A self-stabilizing asynchronous distributed algorithm is given
for constructing a k-clustering of a connected network of processes with unique
IDs and weighted edges. The algorithm is comparison-based, takes O(nk) time,
and uses O(log n + log k) space per process, where n is the size of the network.
This is the first distributed solution to the k-clustering problem on weighted
graphs.

Keywords: K-Clustering, Self-Stabilization, Weighted Graph.

Résumé

Les réseaux mobiles ad hoc ainsi que les plates-formes de grille sont des envi-
ronnements distribués et sujets à de nombreuses erreurs. Les coûts de commu-
nication au sein de ces infrastructures peuvent être améliorés, ou tout au moins
bornés par l’utilisation d’un k-regroupement. Un k-regroupement d’un graphe,
est une partition des nœuds en ensembles disjoints, nommés grappes ou clus-
ters, dans lesquels chaque nœuds est à une distance au plus k d’un nœud élu au
sein du cluster, appelé clusterhead. Nous présentons un algorithme asynchrone,
distribué et auto-stabilisant pour construire un ensemble k-regroupement d’un
réseau de nœuds ayant des identifiants uniques, et connectés par des arêtes
pondérées. L’algorithme se base sur les comparaisons des identifiants, il s’exé-
cute en O(nk), et requiert O(log n + log k) d’espace mémoire par processus, où
n est la taille du réseau. Nous présentons la première solution distribuée au
problème du k-regroupement sur des graphes pondérés.

Mots-clés: K-Partitionnement, Auto-Stabilization, Graphes pondérés.
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1 Introduction

Overlay structures of distributed systems require taking into account locality among the entities
they manage. For example, communication time between resources is the main performance metric
in many systems. A cluster structure facilitates the spatial reuse of resources to increase system
capacity. Clustering also helps routing and can improve the efficiency of a parallel software if
it runs on a cluster of well connected resources. Another advantage of clustering is that many
changes in the network can be made locally, i.e., restricted to particular clusters.

Many applications require that entities are grouped into clusters according to a certain distance
function which measures proximity with respect to some relevant criterion; the clustering will result
in clusters with similar readings. We are interested in two particular fields of research which can
make use of resource clustering: mobile ad hoc networks (MANET) and application deployment
on grid environments.

In MANET, scalability of large networks is a critical issue. Clustering can be used to design
a low-hop backbone network in MANET with routing facilities provided by clustering. However,
using hops, i.e., the number of links in the path between two processes, as the sole measure of
distance may hide the true communication time between two nodes.

A major aspect of grid computing is the deployment of grid middleware. Hop distance is used
as a metric in some applications, but it may not be relevant in some platforms, such as grids.
Using an arbitrary metric (i.e., a weighted metric) is a reasonable option in such heterogeneous
distributed systems. Distributed grid middleware, like Diet [4] and GridSolve [17] can make use
of accurate distance measurements to do efficient job scheduling.

Another important consideration is that both MANET and grid environments are highly dy-
namic systems: nodes can join and leave the platform anytime, and may be subject to errors.
Thus, designing an efficient fault-tolerant algorithm which partitions nodes into clusters which lie
within a given distance of each other, and which can dynamically adapt to any change, is valuable
for many applications, including MANET and grid platforms.

Self-stabilization [8] is a desirable property of fault-tolerant systems. A self-stabilizing system,
regardless of the initial states of the processes and initial messages in the links, is guaranteed to
converge to the intended behavior in finite time. As MANET and grid platforms are dynamic and
error prone infrastructures, self-stabilization is a very desirable property for the algorithms which
manage those structures.

1.1 The k-Clustering Problem

We now formally define the problem solved in this paper. Let G = (V,E) a connected graph
(network) consisting of n nodes (processes), with positively weighted edges. For any x, y ∈ V , let
w(x, y) be the distance from x to y, defined to be the least weight of any path from x to y. We
will assume that the edge weights are positive integers. We also define the radius of a graph G as
follows:

radius(G) = min
x∈V

max
y∈V
{w(x, y)}

Given a positive integer k, we define a k-cluster of G to be a non-empty connected subgraph
of G such that all processes in the the cluster are within distance k of a designated leader process,
called the clusterhead .

We define a k-clustering of G to be a partitioning of V into k-clusters. The k-clustering problem
is then the problem of finding a k-clustering of a given graph.1 In this paper, we require that a
k-clustering specifies one node, which we call the clusterhead within each cluster, which is within
k of all nodes of the cluster, and a shortest path tree rooted at the clusterhead which spans all the
nodes of the cluster.

A set of nodes D ⊆ V is a k-dominating set2 of G if, for every x ∈ V , there exists y ∈ D

1There are several alternative definitions of k-clustering, or the k-clustering problem, in the literature.
2Note that this definition of the k-dominating set is different than another well known problem consisting in

finding a subset V ′ ⊆ V such that |V ′| ≤ k, and such that ∀v ∈ V − V ′, ∃y ∈ V ′ : (x, y) ∈ E. [11]
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such that w(x, y) ≤ k. A k-dominating set determines a k-clustering in a simple way; for each
x ∈ V , let Clusterhead(x) ∈ D be the member of D that is closest to x. Ties can be broken by
any method, such as by using IDs. For each y ∈ D, Cy = {x : Clusterhead(x) = y} is a k-cluster,
and {Cy}y∈D

is a k-clustering of G.
We say that a k-dominating set D is optimal if no k-dominating set of G has fewer elements

than D. The problem of finding an optimal k-dominating set, or equivalently, a k-clustering with
the minimum possible number of clusters, is known to be NP-hard [1]. Our algorithm attempts
to find a k-clustering which has “few” clusters.

1.2 Related Work

Amis et al. [1] give the first distributed solution to this problem. The time and space complexities
of their solution are O(k) and O(k log n), respectively. Spohn and Garcia-Luna-Aceves [16] give a
distributed solution to a more generalized version of the k-clustering problem. In their algorithm,
a parameter m is given, and each process must be a member of m different k-clusters. The k-
clustering problem discussed in this paper is then the case m = 1. The time and space complexities
of the distributed algorithm in [16] are not given. Fernandess and Malkhi [10] give an algorithm
for the k-clustering problem that uses O(log n) memory per process, takes O(n) steps, provided a
breadth first search BFS tree3 for the network is already given.

The first self-stabilizing solution to the k-clustering problem was given by Datta et al. in [7];
this solution takes O(k) rounds and O(k log n) space. Another stabilizing solution was proposed
in [5]; this algorithm needs O(n) rounds and O(log n) space. Both solutions use the hop metric,
and are thus unable to deal with more general weighted graphs.

Many algorithms have been proposed in the literature for constructing clusters in distributed
network. Other self-stabilizing clustering algorithms deal with weighted graphs where weights are
placed on the vertices, not on the edges. For example, Johnen and Nguyen give in [12] an algorithm
to partition the network into 1-hop clusters, i.e., the algorithm computes a dominating set , a set
S such that ever node is a neighbor of some member of S. The article presents self-stabilizing
versions of DMAC [3] and GDMAC [2]. The authors also give a robust version of both algorithms
in [13], i.e., after one round the network is partitioned into clusters, and stays partitioned during
construction of the final clusters.

A self-stabilizing algorithm for cluster formation under a density criterion is presented in [15]
by Mitton et al.. The density criterion (defined in [14]) is used to select clusterheads – a node v is
elected a clusterhead if it has the highest density in its neighborhood, and the cluster headed by
v contains all nodes at distance less or equal to two from v.

1.3 Contributions

Our solution, Algorithm K-CLUSTERING, given in Section 6, is partially inspired by that of
Amis et al. [1], who use hop distance instead of arbitrary edge weights. K-CLUSTERING uses
O(log n + log k) bits per process. It finds a k-dominating set in a network of processes, assuming
that each process has a unique ID, and that each edge has a positive weight. It is also self-stabilizing
and converges in O(nk) rounds.

1.4 Outline

In Section 2, we describe the model of computation used in the paper, and give some additional
needed definitions. In Section 6, we first present a broad and intuitive explanation of the algorithm
K-CLUSTERING before defining it more formally, and give its time and space complexity. We
give proofs of its correctness and complexity in Section 6.2. Finally, we present simulation results
in Section 8, and conclude the paper in Section 9.

3A BFS tree has a designated root , and from each node, the path from that node through the BFS tree to the
root is the shortest possible path in the network.
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2 Preliminaries

We consider a connected undirected network of of n processes, where n ≥ 2, and an integer k ≥ 1.
Each process P has a unique ID, P.id of an ordered type, which we call ID type. The state of
a process is defined by the values of its registers. A configuration of the network is a function
from processes to states; if γ is the current configuration, then γ(P ) is the current state of each
process P . An execution of an algorithm, A is a sequence of states e = γ0 7→ γ1 7→ . . . 7→ γi . . .,
where γi 7→ γi+1 means that it is possible for the network to change from configuration γi to
configuration γi+1 in one step. We say that an execution is maximal if it is infinite, or if it ends
at a sink , i.e., a configuration from which no execution is possible.

The program of each process consists of a set of registers and a finite set of actions, each
protected by a guard . The guard of an action in the program of a process P is a Boolean expression
involving the variables of P and of its neighbors. The statement of an action of P updates one or
more variables of P . An action can be executed only if it is enabled , i.e., its guard evaluates to
true. A process is said to be enabled if at least one of its actions is enabled. A step γi 7→ γi+1

consists of one or more enabled processes executing an action. In this paper, we do not use the
classic representation for self-stabilizing algorithms: < label >:: < guard > −→ < statement >,
instead we present the algorithms in pseudo-code, just like regular algorithms.

We use the composite atomicity model of computation [8, 9]. Each process can read its own
registers and those of its neighbors, but can write only to its own registers. The evaluations of the
guard and executions of the statement of any action is presumed to take place in one atomic step.

We assume that each transition from a configuration to another is driven by a scheduler , also
called a daemon. At a given step, if one or more processes are enabled, the daemon selects an
arbitrary non-empty set of enabled processes to execute an action. The daemon is thus unfair –
even if a process P is continuously enabled, P might never be selected by the daemon, unless, at
some step, P is the only enabled process.

We say that a process P is neutralized during a step, if P is enabled before the step but not
after the step, and does not execute any action during that step. This situation could occur if
some neighbors of P change some of their registers in such a way as to cause the guards of all
actions of P to become false.

We use the notion of round, which captures the speed of the slowest process in an execution.
We say that a finite execution ̺ = γi 7→ γi+1 7→ . . . 7→ γj is a round if the following two conditions
hold:

1. Every process P that is enabled at γi either executes or becomes neutralized during some
step of ̺.

2. The execution γi 7→ . . . 7→ γj−1 does not satisfy condition 1.

We define the round complexity of an execution to be the number of disjoint rounds in the execu-
tion, possibly plus one more if there are some steps left over.

The concept of self-stabilization was introduced by Dijkstra [8]. Informally, we say that A is
self-stabilizing if, starting from a completely arbitrary configuration, the network will eventually
reach a legitimate configuration.

More formally, we assume that we are given a legitimacy predicate LA on configurations. Let
LA be the set of all legitimate configurations, i.e., configurations which satisfy LA. Then we define
A to be self-stabilizing to LA, or simply self-stabilizing if LA is understood, if the following two
conditions hold:

1. (Convergence) Every maximal execution contains some member of LA.

2. (Closure) If an execution e begins at a member of LA, then all configurations of e are
members of LA.

We say that A is silent if every execution is finite. In other words, starting from an arbitrary
configuration, the network will eventually reach a sink , i.e., a configuration where no process is
enabled.
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3 Best Reachable Problem

We define the Best Reachable problem on a network as follows. We are given a positive weight
function w on edges, and we let w(P,Q) be the minimum weight of any path from P to Q, as
before. We are also given a number k, the allowed distance. Without loss of generality, the weight
of any edge is at most k + 1.

Each process P has a value P.Θ, of some type, and each process must calculate the best value
of Q.Θ over all processes Q within that allowed distance of P . More specifically, each P must
calculate best{Q.Θ : w(P,Q) ≤ k}.

Best means maximum under any given ordering. In our code, we will write “≻” for a given
order relation on values of Θ, and we say that P.Θ is best if P.Θ � Q.Θ for all processes Q.

Throughout the paper, we write NP for the set of all neighbors of P .

3.1 Algorithm NSSBR

We now give a distributed algorithm, NSSBR, which we also call Algorithm 1, for the best reachable
problem. Each process P has variables P.best , whose value of the best value of Θ that P has found
so far, P.dist , the distance from P of the nearest Q for which Q.Θ = P.best , and P.span, whose
meaning is as follows: P.best = best{Q.Θ : w(P,Q) < P.span}. That is, P has so far found the
best value of Θ among all process which are closer than P.span, but not among those whose
distance from P is greater than or equal to P.span.

Initially, P.best = P.Θ and P.dist = 0, because P only considers of its own value of Θ. The
initial value of P.span is the shortest distance from P to any neighbor, since P has not searched
any neighbor for a better value.

As the algorithm proceeds, each process P repeatedly iterates the main loop, shown as lines 4
through 12 in the code below. The loop will iterate until P.span > k, which will indicate that P
has searched all processes of distance at most k to find the best value of Θ.

The only way that P can become aware of values of Θ beyond its immediate neighborhood is
through its neighbors. For example, if X is within k of P and X.Θ is the best value of Θ within
k of P , then P must have a neighbor Y which is on the shortest path from P to X, and P will
learn about X.Θ from Y . At some point in the computation, Y.best = X.Θ, and P will update
P.best to that value.

However, there is a complication. Even though P learns about X.Θ via Y , it could be that
there is some better value of Θ within k of Y , but not within k of P . This means that Y.best will
eventually be better than X.Θ. We must make sure that P can read Y.best before that happens.

Each process P has the following code.

Algorithm 1: NSSBR : A Non-Self-Stabilizing Algorithm for Best Reachable

1: P.best ← P.Θ
2: P.dist ← 0
3: P.span ← min {w(P, Q) : Q ∈ NP }
4: while P.span ≤ k do

5: if ∀Q ∈ NP : ((Q.best � P.best) ∨ (P.dist + w(P, Q) > k)) ∧
(w(P, Q) + Q.span > P.span) then

6: if ∃Q ∈ NP : Q.best ≻ P.best and Q.dist + w(P, Q) = P.span then

7: P.best ← max≻ {Q.best : Q ∈ NP and Q.dist + w(P, Q) = P.span}
8: P.dist ← P.span

9: end if

10: P.span ← min



min {X.span + w(P, X) : X ∈ NP }
min {X.dist + w(P, X) : X ∈ NP and X.best ≻ P.best}

11: end if

12: end while

In Line 7, “max≻” denotes maximum with respect to the order relation “≻.”
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In order to fit Algorithm 1 into our model of computation, we assume that each P executes
lines 1 through 3 of the code immediately, i.e., before any other process reads its values. Lines 4
through 12 are executed as one atomic step, so that a neighbor of P cannot, for example, read the
new value of P.best until the new values of P.dist and P.span are also computed.

The code of Algorithm 1 is not self-stabilizing. We will later show how to modify it to make it
self-stabilizing.

3.2 Proof of Correctness for NSSBR

In this section, we prove that Algorithm 1 converges and that after convergence, P.best = max≻ {Q.Θ : w(Q,P ) ≤ k}
for all P .

Intuition As Algorithm 1 proceeds, each process P tries to find the best value of Θ within an
increasing distance. It keeps track of the search radius, P.span, as well as P.best , the best value of
Θ within that distance of itself. It also keeps track of P.dist , which is the distance to the process
whose Θ value is P.best . (In case more than on such process exists, P.dist is the smallest choice
of distance.)

Loop Invariant We now define the loop invariant of the main loop of Algorithm 1, which is
the conjunction of the following invariants, each of which holds for all choices of processes P , X,
and Y .

LI(i)(P ): 0 ≤ P.dist ≤ k and P.dist < P.span

LI(ii)(P ): P.best = max≻ {X.Θ : w(P,X) < P.span and w(P,X) ≤ k}

LI(iii)(P ): P.dist = min {w(P,X) : X.Θ = P.best}

LI(iv)(P,X): P.span ≤ X.span + w(P,X) if X ∈ NP

LI(v)(P,X, Y ): If Y ∈ NP , w(P,X) < P.dist , and w(P,X)+w(P, Y ) ≤ k, then X.Θ � Y.best

Explanation of the Loop Invariant We now explain the intuition behind the loop invariant.
Figure 1 illustrates LI(i), LI(ii), and LI(iii). For each process P , the distance from P to the nearest
process Q such that Q.Θ = P.best is stored as P.dist , and no process closer to P has a better
value of Θ. Furthermore, P has determined that better Θ exists among all processes closer than
P.span.

_<Θ P.bestQ.Θ = P.best

< P.bestΘ

P P.spanP.distQ

Figure 1: Invariants LI(i), LI(ii), and LI(iii).

Figure 2 illustrates LI(iv). If Q is a neighbor of P , then Q.span +w(P,Q) ≥ P.span. The basic
reason for this invariant is that P derives all information about other processes from its neighbors.
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PQ

w(P,Q) P.spanQ.span

Figure 2: Invariant LI(iv).

By far the hardest invariant to explain is LI(v). Suppose Y ∈ NP , w(P,X) < P.dist , and
w(P,X) + w(P, Y ) ≤ k. Pick processes U and V such that U.Θ = Y.best and V.Θ = P.best , as
illustrated in Figure 3. Suppose also that w(Y, V ) > k. Thus, it could happen that X.Θ is the
largest value of Θ within k of Y .

The only way that Y can know about X.Θ is through its neighbor, P . But P.best = V.Θ,
which is larger than X.Θ, and thus P.best will never again be equal to X.Θ.

To avoid error, we must ensure that X.Θ will not be needed by Y in the remaining part of the
computation. The invariant LI(v), which states that Y.best � X.Θ, guarantees this.

PY

V

X

P.dist

Y.distU

Figure 3: Invariant LI(v): U.Θ = Y.best , V.Θ = P.best , w(U, Y ) = Y.dist , w(P, V ) = V.Θ,
w(P,X) < P.dist , and w(Y, X) ≤ k < w(Y, V ).

Figure 4 gives an example of how a calculation can go wrong if LI(v) is not used. In that figure,
D.best will be unable to achieve its correct value of 3 = B.Θ, since C.best has already found a
better value, namely 4 = A.Θ, for k = 2.

Lemma 3.1 The loop invariant holds after each process executes Lines 1 through 3 of the code of
Algorithm 1.

Proof: Recall our assumption that no process iterates the main loop of Algorithm 1 until after
all processes have initialized , i.e., have executed Lines 1 through 3. After all processes have
initialized, then P.span = min {w(P,Q) : Q ∈ NP } > 0, P.dist = 0, and P.best = P.Θ for all P .
The invariants LI(i) through LI(iv) are then trivially true, while LI(v) holds vacuously. �

Lemma 3.2 If the loop invariant holds before a step, then it holds after that step.
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2

1

1
θ = 1

θ = 3

θ = 2

C

B

D

A

dist = 1
best = 2
radius = 2

dist = 0
best = 4
radius = 3

dist = 0
best = 3
radius = 3

θ = 4

dist = 2
best = 4

radius = 3

Figure 4: Example showing the necessity of LI(v). In the figure, k = 2, and the invariant
LI(v)(C,D,B) is false, although all other parts of the loop invariant hold. It is impossible for
D.best to achieve its correct value of 3.

Proof: Assume that the loop invariant holds before a given step. During the step, some subset of
processes executes the loop of Algorithm 1. For each process P , let P.best , P.dist , and P.span be
the values of P ’s variables before the step, and let P.best ′, P.dist ′, and P.span ′ be the values after
that step.

We will also write LI(i), LI(ii), etc. for the invariants before the step, and LI(i)′, LI(ii)′, etc.
for the invariants after the step.

For our proof, we fix a process P , and assume that LI(i)(P ), LI(ii)(P ), and LI(iii)(P ) hold,
and that LI(iv)(P,X) and LI(v)(P,X, Y ) hold for all processes X and Y . We then prove that the
corresponding “primed” invariants, LI(i)′(P ), LI(ii)′(P ), etc. hold.

We will consider three cases, depending on the execution of P during the step. Case I is where
the condition of the if statement on Line 5 is false for P . In this case, P does not change its
variables during the step. Case II is where that condition is true, but the condition of the if

statement on Line 6 is false for P . In this case, P executes Line 10, but does not execute Lines
7 or 8. Case III is where the conditions on Lines 5 and 6 are both true. In this case, P executes
Lines 7, 8, and 10.

In Case III, we will choose Q ∈ NP such that P.span = Q.dist + w(P,Q), and Q.best is
maximum subject to that condition; thus Q.best ≻ P.best . We will also choose a process R such
that w(Q,R) = Q.dist and R.Θ = Q.best . In Cases I and II, Q and R are undefined.

Claim A: In Case III, P.best ′ ≻ P.best and P.span ′ > P.span = P.dist ′ > P.dist .

Proof (of Claim A): P.dist ′ = P.span > P.dist by LI(i)(P ). P.best ′ = Q.best ≻ P.best .

We need only show that P.span ′ > P.span. Suppose not. Then, either ∃X ∈ NP such that
X.span + w(P,X) < P.span, which contradicts LI(iv)(P,X), or ∃X ∈ NP such that X.best ≻
P.best and X.dist + w(P,X) < P.span. But, by the choice of Q and by LI(ii)(P ), Q.best � X.best
for all X ∈ NP such that X.dist + w(P,X) ≤ P.span, contradiction. The last case is when
∃X ∈ NP such that X.span + w(P,Q) ≤ P.span, but this case is prohibited by condition line 5. �

Claim B: If X ∈ NP and P.best ≺ X.best , then P.span ≤ w(P,X) + X.dist .

Proof (of Claim B): By LI(iii), we can pick Y such that Y.Θ = X.best and w(X, Y ) = X.dist . By
LI(ii) and by the triangle inequality, P.span ≤ w(P, Y ) ≤ w(P,X) + w(X, Y ) = w(P,X) + X.dist .
�
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Claim C: For any process P , P.best ′ � P.best , P.dist ′ ≥ P.dist , and P.span ′ ≥ P.span.

Proof (of Claim C): In Case I, there is nothing to prove. In Case III, we are done by Claim A.
Consider Case II. Trivially, P.best ′ = P.best and P.dist ′ = P.dist . X.span + w(P,X) ≥ P.span
for all X ∈ NP , by LI(iv)(P,X), and X.dist + w(P,X) ≥ P.span for all X ∈ NP such that
X.best ≻ P.best = P.best ′, by Claim B. Thus, P.span ′ ≥ P.span. �

In Case I, LI(i)′(P ), LI(ii)′(P ), LI(iii)′(P ), and LI(iv)′(P,X) hold trivially, since LI(i)(P ),
LI(ii)(P ), LI(iii)(P ), LI(iv)(P,X) hold and the variables of P do not change. LI(v)′(P,X, Y )
holds, since LI(v)(P,X, Y ) holds, and since Y.best ′ � Y.best , by Claim C applied to Y . This
completes the proof of the lemma in Case I, and thus henceforth, we assume that we have either
Case II or Case III.

Claim D: P.span ′ ≤ min

{

min {X.span + w(P,X) : X ∈ NP }
min {X.dist + w(P,X) : X ∈ NP and X.best ≻ P.best} for any pro-

cess P .

Proof (of Claim D): Since P executes Line 10 during the step, that execution makes the claim
true. �

Claim E: In Case III, P.dist ′ = w(P,R) = w(P,Q) + w(Q,R).

Proof (of Claim E): By the triangle inequality and LI(iv)(P,R),
w(P,R) ≤ w(P,Q) + w(Q,R) = w(P,Q) + Q.dist = P.span ≤ w(P,R), and P.span = P.dist ′. �

Claim F: There is some process X such that w(P,X) = P.dist ′.

Proof (of Claim F): In Case II, P.dist ′ = P.dist , and we are done by LI(iii)(P ). In Case III, let
X = R. We are done by Claim E. �

Claim G: For any process X:

(a) If w(P,X) < P.dist ′, then X.Θ ≺ P.best ′.

(b) If w(P,X) = P.dist ′, then X.Θ � P.best ′.

Proof (of Claim G): In Case II, P.dist ′ = P.dist and P.best ′ = P.best , and we are done by LI(iii)(P ).
Consider Case III. Choose Y ∈ NP such that w(P,X) = w(P, Y )+w(Y, X). Then Y.best � P.best
and

Y.span > P.span − w(P, Y ) = P.dist ′ − w(P, Y ) ≥ w(P,X)− w(P, Y ) = w(Y, X)

since the condition in Line 5 holds, and thus X.Θ � Y.best, by LI(ii)(Y ).

Subcase (i): Y.best = P.best . Then X.Θ ≤ Y.best = P.best ≺ P.best ′, and thus both (a) and (b)
hold.

Subcase (ii): Y.best ≻ P.best .
(a): By LI(v)(Y, X, P ), X.Θ � P.best ≺ P.best ′.

(b): Y.dist ≥ P.span −w(P, Y ) = w(Y, X), by Claim B. If Y.dist = w(Y, X), then Y.best � Q.best
by our choice of Q, and thus X.Θ � Y.best � Q.best = P.best ′. If Y.dist < w(Y, X), then
X.Θ � P.best ≺ P.best ′ by LI(v)(Y, P, X). �

Claim H: For any process X, if w(P,X) < P.span ′ and w(P,X) = k, then X.Θ � P.best ′.

Proof (of Claim H): In Case II, P.span ′ = P.span and P.best ′ = P.best , and we are done by
LI(ii)(P ). Consider Case III. Choose Y ∈ NP such that w(P,X) = w(P, Y ) + w(Y, X). Then
Y.best � X.best and Y.span + w(P, Y ) ≥ P.span ′ > w(P,X) by Claim D.

Suppose Y.best � P.best ′. Then w(X, Y ) = w(P,X)−w(P, Y ) < Y.span, and thus X.Θ � Y.best �
P.best ′, by LI(ii)(Y ).



A Self-Stabilizing K-Clustering Algorithm Using an Arbitrary Metric 9

On the other hand, suppose Y.best ≻ P.best . Then w(P,X) < P.span ′ ≤ Y.dist + w(P, Y ), and
hence w(Y, X) < Y.dist . We also have that w(Y, X)+w(Y, P ) = w(P,X) ≤ k. By LI(v)(Y, X, P ),
we have X.Θ � P.best ≺ P.best ′. �

We now finish the proof of the lemma in Cases II and III.

We first show that LI(i)′(P ) holds. In Case II, P.span ′ ≥ P.span by Claim C. Since LI(i)(P ) holds
before the step, we have 0 ≤ P.dist = P.dist ′ ≤ k and P.dist ′ = P.dist < P.span ≤ P.span ′.

In Case III, then 0 < P.dist ′ < P.span ′, by Claim A. Since the loop condition in Line 4 holds
before the step, k ≥ P.span = P.dist ′.

We now show that LI(iv)′(P,X) holds.

Assume X ∈ NP . X.dist ′ ≥ X.dist and X.span ′ ≥ X.span, since Claim C holds for X. By Claim
D, we are done.

LI(iii)′(P ) follows from Claims F and G.

LI(ii)′(P ) follows from Claim H, and the fact that w(P,R) < P.span ′ and R.Θ = P.best ′ in Case
III. �

Lemma 3.3 If there is at least one process whose value of span is at most k, then there is at least
one process P such that P can iterate the loop of Algorithm 1, and such that during that iteration,
at least one variable of P changes.

Proof: Let P = {P : P.span ≤ k}. Pick P ∈ P such that P.best is minimum. If there is more than
one choice, pick P such that P.span is minimum. We will show that P changes at least one of its
variables during its next iteration of the loop.

We first claim that P satisfies the condition of the if statement in Line 5. Suppose not. Then, there
is some Q ∈ NP such that P.dist +w(P,Q) ≤ k, and either Q.best ≺ P.best or w(P,Q)+Q.span ≤
P.span.

Suppose Q.span + w(P,Q) ≤ P.span. By the minimality of P.best , we have Q.best � P.best . If
Q.best ≻ P.best , then w(P,Q) + Q.span ≤ P.span, by the choice of Q, which contradicts the
minimality of P.span in our choice of P . Thus Q.best ≻ P.best . Pick R such that R.Θ = Q.best
and w(Q,R) = Q.dist . By LI(i)(Q) and the triangle inequality, we have

w(P,R) ≤ w(P,Q) + w(Q,R) ≤ w(P,Q) + Q.dist < w(P,Q) + Q.span ≤ P.span

Since R.Θ ≻ P.best , this contradicts LI(ii)(P ).

Otherwise, Q.best ≺ P.best . Pick a process R such that R.Θ = P.best and w(R,P ) = P.dist .
Then w(R,Q) ≤ w(R,P )+w(P,Q) = P.dist +w(P,Q) ≤ k < Q.span and R.Θ = P.best ≻ Q.best ,
which contradicts LI(ii)(Q). This proves the claim that P satisfies the condition in Line 5.

We need to show that P changes at least one variable during the resulting iteration. There are
two cases.

Case I: There is some Q ∈ NP such that Q.best ≻ P.best and Q.dist + w(P,Q) = P.span. In
case of a tie, pick that Q which has the maximum value of Q.best . Then P will execute Lines 7
and 8, changing P.best to Q.best , and increasing both P.dist and P.span.

Case II: Not case I. Then P will not execute Lines 7 and 8, but will execute Line 10. We need to
show that P.span will increase. Let X be any neighbor of P . If X.best ≻ P.best , then, since Case
I does not hold, and by LI(i), P.span < X.dist + w(P,X) < X.span + w(P,X). Otherwise, by
the choice of P , X.span ≥ P.span, and thus P.span < X.span + w(P,X). It follows that P.span
increases when Line 10 is executed. �

Theorem 3.4 Algorithm 1 solves the Best Reachable Problem.
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Proof: By Lemmas 3.1, 3.2, and 3.3, the loop invariant of Algorithm 1 holds at all times, and the
algorithm will continue to execute as long as the loop condition, in Line 4 of the code, remains
true for at least one process.

We need only show that the algorithm cannot keep changing variables forever. Whenever a process
P changes any of its variables, the values of the changed variables increase, by Claim C in the
proof of Lemma 3.2. There are at most n possible values of P.best . Since P.dist is always equal to
w(P,Q) for some process Q, there are at most n possible values of P.dist . Since P.span is always
either equal to w(P,Q) for some Q 6= P , or is greater than k, it also can take on at most n different
values during the execution. Thus, Algorithm 1 converges.

Upon convergence P.span > k for all P , and by LI(ii)(P ), the value of P.best is correct. �

4 Self-Stabilizing Best Reachable

4.1 Algorithm SSBR

In this section, we give a self-stabilizing algorithm, Algorithm 2, for the best reachable problem.
Algorithm 2 makes use of Algorithm 1 as a module, and also requires the construction of a rooted
breadth first search (BFS) tree.

We will use Algorithm 2 as a module in Section 5. For that reason, it will be explicitly designed
with input and output parameters, much like a subroutine in a program.

We assume that every process has an ID, P.id , which is given, and does not change, and that
IDs are unique.

The inputs of Algorithm 2, SSBR, include outputs of some self-stabilizing algorithm which
elects a leader and constructs a BFS tree rooted at that leader. We will refer to this algorithm as
SSLEBFS. The outputs of SSLEBFS are P.parent , the ID of the current parent of P in SSLEBFS,
P.leader , of ID type, but possibly not the ID of any process in the network, and P.level ≥ 0, an
integer. When SSLEBFS has converged, i.e., reached a legitimate configuration, P.leader is the
ID of the root process, P.level is the length of the shortest path from P to the root, and P.parent
is the parent of P in the BFS tree; the parent of the root is itself.

A process P does not execute any action of SSBR if it detects that the BFS tree is incorrect.
The following conditions must hold for each P if the BFS tree is correct.

1. If Q ∈ NP , then Q.leader = P.leader .

2. P.level = 0 if and only if P.leader = P.id .

3. If P.level = 0 and Q ∈ NP , then Q.parent = P .

4. If Q ∈ NP , then |Q.level − P.level | ≤ 1.

5. If Q ∈ NP and P.parent = Q, then P.level = Q.level + 1.

We say that P is locally correct if the above conditions hold.

Lemma 4.1 The BFS tree is correct if and only if P is locally correct for all P .

In addition, we assume a function Θ on processes, whose value we refer to as P.Θ for each
process P , and a specified ordering of the values of Θ. In the code for Algorithm 2, we refer to
that ordering using the symbol “≻.”

The variables which are under the control of SSBR are as follows.

P.status ∈ {working ,finished , resting , ready}. We will say that P is working, is finished, is
resting, or is ready.

P.stable best
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All the variables of NSSBR, namely P.best , P.dist , and P.span.
The execution of SSBR consists of two parts: status correction and normal execution. During

normal execution, which presumes that the BFS tree is correct, four different status waves are
alternately broadcast and convergecast, as shown in Figure 5. During each complete cycle of
waves the values of P.best is recomputed, and is compared to P.stable best , the output variable of
SSBR. P.stable best is then updated, if necessary, to agree with P.best . Between those updates,
P.stable best does not change; thus, eventually, P.stable best is stable.

ready finish

work

(a)

readyfinish

rest

(b)

Figure 5: Broadcast waves working and resting and convergecast waves finished and ready . The
finished wave could start before the working wave is completed, as shown in 5a, while the ready
wave could start before the resting wave is completed, as shown in 5b.

We say that P.status is incompatible with P.parent .status if the current combination of status
values of those two processes cannot occur during the normal part of the execution of SSBR.
During status correction, P.status ← P.parent .status if the values are incompatible. Figure 6
shows the eight combinations of incompatible values.

work

finish

work

rest

work

ready ready

finish rest rest rest ready

work finish ready finish

Figure 6: Corrective Status Changes. If P.status is incompatible with P.parent .status, then
P.status ← P.parent .status.

A process P can only execute normally if its status value is not incompatible with its parent’s
value. During normal execution of SSBR, the P.status can change only if the status values of the
surrounding processes satisfy appropriate conditions, as shown in Figure 7.

1. If P.status = ready , then P.status is enabled to change to working if either P is the root of
the BFS tree, or if P.parent .status = working , and if in addition, all children of P (in the
BFS tree) have status ready , and no neighbor of P is resting; as shown in Figure 7a.

2. If P is working, then P.status is enabled to change to finished if all children of P are finished
and all neighbors of P are either working or finished; as shown in Figure 7b.

3. If P.status = finished , then P.status is enabled to change to resting if either P is the root
of the BFS tree, or if P.parent .status = resting , and if in addition, all children of P (in the
BFS tree) have status finished , and no neighbor of P is working; as shown in Figure 7c.

4. If P is resting, then P.status is enabled to change to ready if all children of P are ready and
all neighbors of P are either resting or ready; as shown in Figure 7d.
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work

ready ready

finish

work

ready

ready

(a) P is ready and can start working.

finish work

finish

work

finish

work

(b) P is working and can finish.

ready

rest

rest

finish

finishfinish

finish

(c) P is finished and can rest.

rest

rest

ready

ready ready

rest

(d) P is resting and can get ready.

Figure 7: Normal Status Changes.

Algorithm 2 shows the code of SSBR, which is a self-stabilizing emulation of NSSBR. The
algorithm takes inputs variables P.parent , P.leader , and P.level , which, if correct, describe a rooted
breadth-first search (BFS) tree of the network, where P.leader is the ID of the root process, and
P.level is the hop-distance from P to the root. (Note that the BFS tree is defined using hop-
distance, instead of the weighted distance given as part of the specification of the best reachable
problem.) SSBR also takes as inputs the function Θ which we are trying to optimize, as well as
the order relation “≻” on values of Θ. The sole output variable of SSBR is P.stable best . Although
SSBR runs forever, the value of P.stable best is eventually equal to the output of the best reachable
problem required by the problem specification.

The local variables of SSBR are P.status, P.best , P.dist , and P.span. If the input variable
of SSBR are correct, then SSBR will repeat a status wave cycle endlessly. The cycle consists of
a broadcast working wave, a convergecast finished wave, a broadcast resting wave, and finally
a convergecast ready wave. The ready wave initializes the local variable of SSBR to match the
initial values of the variables of NSSBR, and while a process is working, it emulates the actions
of NSSBR. When all processes have completed the emulation of NSSBR, the finished wave moves
up the tree, followed by the resting wave, which then sets P.stable best to P.best for all P .

Because of arbitrary initialization, it could happen that P.stable best is given the wrong value.
But if at least one full status wave cycle has been completed, the value of P.best will be correct
at the time the resting wave reaches P . Subsequent status wave cycles will not change the value
of P.stable best , although the value of P.best will change endlessly.

If the input variables fail to specify a BFS tree, then the values of P.stable best could be set to
the wrong values many times. However, in that case, one of the processes will detect a local error
in the BFS tree, and will stop executing actions of SSBR. This “freezing” of that single node will
cause SSBR to eventually deadlock. If, at a future time, the input values of SSBR are correct, the
deadlock be broken, and SSBR will proceed to compute its output correctly.
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Algorithm 2: SSBR (parent , leader , level ,Θ,≻; stable best)

1: for all P do

2: loop {forever}
3: if P is locally correct then {P cannot detect that the BFS tree is incorrect}
4: if P.status is incompatible with P.parent .status then

5: P.status ← P.parent .status

6: else if P is ready then

7: if P is a root or P.parent is working then

8: if all children of P are ready and no neighbor of P is resting then

9: P.status ← working

10: end if

11: end if

12: else if P is working then

13: if P.span > k then {P.best should now be the final value}
14: if all children of P are finished and all neighbors of P are working

or finished then

15: P.status ← finished

16: end if

17: else if P can detect that the loop invariant does not hold then

18: P.span ← k + 1 {short-circuit the computation of P.best}
19: else if ∀Q ∈ NP : ((Q.best � P.best) ∨ (P.dist + w(P, Q) > k)) ∧

(w(P, Q) + Q.span > P.span) then {iterate the loop of NSSBR
}

20: if ∃Q ∈ NP : Q.best ≻ P.best and Q.dist + w(P, Q) = P.span then

21: P.best ← max≻ {Q.best : Q ∈ NP and Q.dist + w(P, Q) = P.span}
22: P.dist ← P.span

23: end if

24: P.span ← min



min {X.span + w(P, X) : X ∈ NP }
min {X.dist + w(P, X) : X ∈ NP and X.best ≻ P.best}

25: end if

26: else if P is finished then

27: if P.span ≤ k then

28: P.span ← k + 1
29: else if P is a root or P.parent is resting then

30: if all children of P are finished and no neighbor of P is working then

31: P.stable best ← P.best

32: P.status ← resting

33: end if

34: end if

35: else if P is resting then

36: if all children of P are ready and all neighbors of P are resting
or ready then

37: P.best ← P.Θ
38: P.dist ← 0
39: P.span ← min {w(P, Q) : Q ∈ NP }
40: P.status ← ready

41: end if

42: end if

43: end if

44: end loop

45: end for

4.2 Proof of Correctness of SSBR

Lemma 4.2 Suppose e is a partial execution of SSBR, and suppose that during that partial exe-
cution, no input value changes. Then, during e, each process P executes a status correction action
only finitely many times.
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Proof: By induction on P.level . If P.level = 0, then either P is not locally correct, in which case
P cannot execute at all, or P is a root, in which case its status cannot be incompatible with its
parent’s status, since it is its own parent, and thus it cannot execute a status correction action.

Suppose P.level > 0. If P is not locally correct, then P cannot execute at all. Otherwise, let
Q = P.parent . By the inductive hypothesis, there will be a configuration γ after which Q will not
execute any status correction action. If P.status is incompatible with Q.status, at γ, then Q is not
enabled to change its status, while P is enabled to execute a status correction action, and cannot
execute any other action first.

If P executes that status correction action, then no subsequent action by either P or Q can
cause P.status to become inconsistent with Q.status, and hence P will execute no further status
correction action. �

Lemma 4.3 Suppose e is a partial execution of SSBR, and suppose that during that partial exe-
cution, no input value changes, and there is one process P that never changes its status. Then, if
Q ∈ NP , Q.status changes at most three times during e.

Proof: Without loss of generality, by Lemma 4.2, no process executes a status correction action
during e. Suppose Q.status changes infinitely often. Then Q.status must follow the cycle · · · →
working → finished → resting → ready → working → · · · . Whatever the value of P.status, there is
one value that Q.status cannot change to. If P is working, then Q.status cannot change to resting ;
if P is finished, then Q.status cannot change to ready ; if P is resting, then Q.status cannot change
to working ; and if P is ready, then Q.status cannot change to finished . Thus, Q cannot change
its status more than three times, contradiction. �

Lemma 4.4 Suppose e is a partial execution of SSBR, and suppose that during that partial exe-
cution, no input value changes, and there is one process that does not change its status. Then e
is finite.

Proof: Without loss of generality, by Lemma 4.2, no process executes a status correction action
during e. Let P be the process that never changes its status during e.
Claim A: Every process P changes status only finitely many times during e. Proof (of Claim A):
Let Q be the process that never changes its status. We prove the claim by induction on the hop
distance to Q. If P = Q, we are done. Otherwise, P has a neighbor R which is on the minimum
hop-distance path to Q. By the inductive hypothesis, R.status changes finitely many times. Let γ
be a configuration of e after which R.status does not change. By Lemma 4.3, Q.status can change
at most three times after γ, and hence only finitely many times altogether during e. �

We now continue the proof of Lemma 4.4. By Claim A, after some configuration of e, no value
of status will change. If P is not working, then P cannot execute any action. If P is working,
it can execute at most finitely many actions, since either P.dist or P.span increases during each
action. Thus, e is finite. �

Lemma 4.5 If the BFS tree is correct, then some process is enabled to execute an action of SSBR.

Proof: By Lemma 4.1, every process is locally correct. Assume that P.status is not inconsistent
with P.parent .status for any P , since otherwise P is enabled to execute a status correction, and
we are done.

Let R be the root of the BFS tree. If R is ready, then all processes are ready, and thus R is
enabled to execute Line 9 of the code. If R is finished, then all processes are finished, and thus R
is enabled to execute Lines 31 and 32 of the code.

If R is resting, then all processes are finished, resting, or ready. If there exist finished processes,
pick a finished node P of minimum level. Then P.parent is resting, and all children of P are finished;
thus P is enabled to execute Lines 31 and 32 of the code. If there does not exist a finished process,
pick P to be a resting process of maximum level. Then all children of P are ready, and thus P is
enabled to execute Lines 37–40 of the code.
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If R is working, then all processes are ready, working, or finished. If there exist ready processes,
pick a ready node P of minimum level. Then P.parent is working, and all children of P are ready;
thus P is enabled to execute Line 9 of the code. If there does not exist a ready process and there
exists a finished process P such that P.span ≤ k, then P is enabled to execute Line 28 of the
Code. If all processes have span > k, then pick P to be the working process of maximum level.
Then all children of P are finished, and P is enabled to execute Line 15 of the code.

The remaining case is that all processes are either working or finished, all finished processes
have span > k, and at least one working process has span ≤ k. By Lemma 3.3, there exists some
working process P which satisfies either the condition given in Line 17 or the condition given in
Line 19 of the code, and is thus enabled to change at least one of its values. �

Lemma 4.6 If e is an execution of SSBR during which the inputs do not change and the BFS
tree is correct, then

(a) each process changes status infinitely often during e, and

(b) after finitely many steps the values of stable best stabilize to a solution of the Best Reachable
problem.

Proof: By Lemma 4.5, e is infinite. By Lemma 4.3, each process changes status infinitely often
during e.

Let R be the root process. By Lemma 4.2, we can pick a configuration γ1 of e after which
no process executes a status correction. By Lemma 4.3, there is a configuration γ2 of e at which
R is finished. Since status correction is not enabled, all processes are finished. Similarly, pick a
configuration γ3 of e after γ2 at which all processes are ready, a configuration γ4 of e after γ3 at
which all processes are finished. And finally a configuration γ5 of e after γ4 at which all processes
are ready.

Between γ2 and γ3, every process executes Lines 37–39 of the code, and thus, at γ3, P.best =
P.id , P.dist = 0, and P.span = min {w(P,Q) : Q ∈ NP } for all P . Thus, the loop invariant holds
at γ3.

Between γ3 and γ4, SSBR emulates NSSBR, and hence at γ4, P.best is the best value of Q.Θ
among all Q within distance k of P , for all P , by Theorem 3.4. Then, by the time the execution
reaches γ5, all processes will have executed Line 31 of the code, and the output variables of SSBR
will be correct. �

4.3 An example computation

In Figure 8, we show an example computation of SSBR for “≻” equals “<”, “Θ” equals “id” and
k = 30. In that figure, each oval represents a process P and the numbers on the lines between
the ovals represent the weights of the links. To help distinguish IDs from distances, we use letters
for IDs. The top letter in the oval representing a process P is P.id . Below that, we show P.dist ,
followed by a colon, followed by P.best , followed by a colon, followed by P.span. In this example
we consider that we start from a clean state (Figure 8(a)) and that each node is in a ready state
(we do not deal with the other states in this example). Below each oval is shown the line of SSBR
the process is enabled to execute (none if the process is disabled). An arrow from P to Q indicates
that P prevents Q from executing due to conditions line 19.

In Figure 8, we show synchronous execution of SSBR. The result would have been the same
with an asynchronous execution, but using synchrony makes the example easier to understand.

Consider the process L. Initially it is enabled to execute lines 21, 22 and 24 (subfigure (a)). It
will, after the first execution (subfigure (b)), find the value of the smallest ID within a distance
of L.span = 7, which is D, and will at the same time update its dist value to L.span, and L.span
to D.span + w(L,D) = 6 + 7 = 13. As during this step, L has updated its span value, D.span is
an underestimate of the real span, thus D is now enabled to execute line 24 to correct this value.
The idea behind the span variable, is to prevent the process from searching a minimum ID at a
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distance greater than span. Thus a process will not look at the closest minimum ID in terms of
number of hops (as could have done process D at the beginning by choosing process A), but will
compute the minimum ID within a radius lower than span around itself (hence process D is only
able to choose process A in the final step, even if A is closer than B in terms of number of hops).

SSBR halts when P.span > k for all P (subfigure (i)). In the final step every P knows the
process of minimum ID at a distance no greater than k, and P.dist holds the distance to this
process.

Sometimes, a process P can be elected clusterhead by another process Q without having elected
itself clusterhead (this case do not appear in our example); P could have the smallest ID of any
process within k of Q, but not the smallest ID of any node within k of itself. Hence, we need
to have a second instance of SSBR that runs with “≻” equal to “>” and “Θ equal to “minid” to
corrects this; it allows the information that a process P was elected a clusterhead to flow back to
P .

(i) Final state

(e)

(c)

(a) (b)

(d)

(f)

6

7

E

A

D L B

25

15

6

7

E

A

D L B

25

15

6

7

E

A

D L B

25

15

6

7

E

A

D L B

25

15

6

7

E

A

D L B

25

15

6

7

E

A

D L B

25

15

6

7

E

A

D L B

25

15

0:D:6

0:E:6

0:L:7

0:A:25

0:B:15

0:A:31

0:D:18 7:D:13 0:B:15

0:A:25

6:D:24

0:D:22 0:B:15

0:A:25

0:B:3715:B:32

15:B:22

22:B:25

28:B:31

0:A:31

6:D:12

0:D:12 7:D:13 0:B:15

0:A:25

6:D:24

0:D:18 0:B:15

0:A:25

22:B:25 15:B:22 0:B:37

L21,22,24

L21,22,24 L24

6:D:12

L24

L24

7:D:15

L24 L21,22,24

L24

L21,22,24 L24
6:D:28

L24

L21,22,24

L21,22,24

L24

6

7

E

A

D L B

25

15

0:A:62

28:B:31

25:A:37 15:B:32 0:B:37

6

7

E

A

D L B

25

15

0:A:25

28:B:31

25:A:37 15:B:32 0:B:37

(g) (h)

Figure 8: Example computation of SSBR for k = 30, “≻” equals “<” and “Θ” equals “id”.
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5 Composing Self-Stabilizing Algorithms Under the Unfair

Daemon

In this section, we consider the problem of combining distributed algorithms. This problem is not
entirely trivial; for example, what we have discovered is that a naive combination of self-stabilizing
algorithms might not be self-stabilizing.

We define a partial execution of a distributed algorithm A to be a sequence of configurations
such that, other than the first one, each follows from its predecessor by one or more processes
executing an action of A.

We define an execution of A to be a partial execution which is either infinite or ends at a
configuration where no process is enabled.

1. We say that an execution is unfair if it is infinite and if there is some process that executes
only finitely many times and is continuously enabled from some point on.

2. We say that an execution is weakly fair if it is not unfair. We say that A is weakly fair if
every execution of A is weakly fair.

3. We say that an execution is strongly fair if it is either finite, or there is no process that
executes only finitely many times. We say that A is strongly fair if every execution of A is
strongly fair.

Note: a strongly fair execution is also weakly fair, and a strongly fair algorithm is also weakly fair.

Lemma 5.1 Every distributed algorithm has a weakly fair execution.

Proof: At each step, select the set of all enabled processes. �

Question: Is it true that every distributed algorithm has a strongly fair execution? Answer:
No.

The Daemon The scheduler (daemon) chooses an execution of the algorithm A.

• We say that a daemon is weakly fair if it always chooses a weakly fair execution.

• We say that the daemon is unfair if it can choose any execution.

We say that a distributed algorithm A works under the weakly fair daemon if every weakly fair
execution of A has whatever properties are required in the problem specification.

We say that a distributed algorithm A works under the unfair daemon if every execution of A
has whatever properties are required in the problem specification.

Lemma 5.2 If A is a weakly fair distributed algorithm, then A works under the unfair daemon if
and only if A works under the weakly fair daemon.

Input Variables Normally, input variables are never discussed. However, in most cases, a dis-
tributed algorithm has variables that never change their values. We can call these input variables.
In the literature, it seems to always be assumed that the input variables are constant during the
execution of an algorithm.

But what if we want to combine algorithms, so that the input variables of the second module
(algorithm) are computed by the first module?

1. An input variable of an algorithm A is a variable that is used by A but is never changed by
A. We call the vector of all input values of all nodes the input configuration.
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2. The usual definition of an algorithm S being self-stabilizing is that, given that the input
configuration is correct and never changes, the network will eventually be in a legitimate
configuration.

Of course, each problem specification gives a definition of what it means for an input con-
figuration to be correct, and what it means for a configuration to be legitimate. We will
assume that if the configuration is legitimate, the input configuration is correct.

(a) S is self-stabilizing under the unfair daemon if every execution where the input config-
uration is correct and never changes is eventually in a legitimate configuration.

(b) S is self-stabilizing under the weakly fair daemon if every weakly fair execution where
the input configuration is correct and never changes is eventually in a legitimate con-
figuration.

Whether an algorithm A is weakly or strongly fair depends on the definition of a configuration
of the algorithm. The normal definition of configuration allows any process to have any values
of its variables, but the values of its constants are uniquely specified. But what about input
variables? Since this issue is not normally even discussed in the literature, we need to clarify it
for our purposes.

We will adopt the definition that an algorithm A can have constants, whose values are given
in the problem specification, and could also have input variables, which could take on a range of
values, but whose values cannot be changed by A. (If we never combine algorithms, the distinction
between these is moot.) We then define a partial execution of A to be a sequence of configurations
where the input variables can be initialized to have any values in their range, and where during
each step one or more processes execute an action of A. Thus, the input variables are unchanged
throughout the entire sequence.

We summarize the classification of the variables of an algorithm A.

1. Constants, which have values given in the problem specification.

2. Input variables. Each input variable has a range of possible values. There is a defined set of
input configurations call correct input configurations. Input variables cannot be changed by
A.

3. Local variables. Variables which can be changed by A, and are used only for the internal
computations of A.

4. Output variables. Variables which can be changed by A, and which are intended to be read
by some agent or algorithm outside A.

We also require that, if the configuration is legitimate, that no output variable can change. We
say that the output variables are stable.

For example, in the third module of K-CLUSTERING, which we fully describe in Section 6.1,
k and P.id are constant, P.parent , P.leader , P.level , and P.minid are input variables, P.dist and
P.span are local variables, and P.maxminid is an output variable.

Combining Algorithms Suppose that A and B are strongly fair self-stabilizing algorithms on
the same network. That means that each process P has all the variables of both A and B. We
classify those variables as follows.

1. Constants.

2. Input variables of A that are not visible to B. These cannot be changed.

3. Variables that are input variables of both A and B. These cannot be changed.

4. Input variables of B which are not visible to A. These cannot be changed.
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5. Local variables of A.

6. Local variables of B.

7. Output variables of A which are input variables of B. These can be changed by A but not
by B.

8. Output variables of A which are not input variables of B.

9. Output variables of B.

The combination algorithm Combine(A,B) is defined as follows.

1. The input variables of Combine(A,B) are defined to be the variables of classes 2, 3, and 4
above.

2. The output variables of Combine(A,B) are defined to be the variables of classes 8, and 9
above, possibly together with some variables of class 7.

P is enabled to execute an action of Combine(A,B) if and only if P is either enabled to execute
an action of A or enabled to execute an action of B.

If P executes an action of Combine(A,B), then P executes both an action of A and an action
of B, if both are enabled, otherwise, it executes one or the other.

Correctness and legitimacy for the three algorithms, A, B, and Combine(A,B), must be defined
to satisfy the following conditions.

1. If the input configuration of Combine(A,B) is correct, then the input configuration of A is
correct.

2. If the input configuration of Combine(A,B) is correct and the configuration of A is legitimate,
then the input configuration of B is correct.

3. A configuration of Combine(A,B) is legitimate if and only if the configurations of both A
and B are legitimate.

Variables
Local

Variables
Output

Variables
Local

Variables
Output

Variables
Input

Variables
Input

Application Layer

ModuleOtheror

Algorithm A Algorithm B

Figure 9: Combine(A,B)

Lemma 5.3 If both A and B are strongly fair and self-stabilizing, then Combine(A,B) is strongly
fair and self-stabilizing.

Proof: We first prove that Combine(A,B) is strongly fair.
Let E = γ0, γ1, . . . be an execution of Combine(A,B). We write γi = (αi, βi), where αi is a

configuration of A and βi is a configuration of B. Let EA = α0, α1, . . . which might not be a partial
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execution of A because consecutive configurations could be equal. Let E′
A be the partial execution

of A obtained from EA by eliminating configurations which are the same as their predecessors.
Case I: E is finite. In this case, we are done.
Case II: E′

A is infinite. Then, since A is strongly fair, every process executes infinitely many
actions of A in E′

A, and hence infinitely many actions of Combine(A,B) in E.
Case III: E is infinite and E′

A is finite. Pick T such that A does not execute beyond the T th

step of E, that is, αi = αT for all i > T . Then EB = βT , βT+1, . . . is an execution of B. Since B
is strongly fair, each process executes infinitely many actions of B during EB , and thus infinitely
many actions of Combine(A,B) during E.

We now prove that Combine(A,B) is self-stabilizing. We use the same notation as above.
Assume that the input configuration of Combine(A,B) is correct at γ0. Then, the input

configuration of A is correct at α0. We claim that E′
A is an execution of A.

Case I: E is finite. Then, at the last configuration of E, no process is enabled to execute an
action of Combine(A,B), and hence no process is enabled to execute an action of A. Thus, E′

A is
an execution of A.

Case II: E′
A is infinite. Then E′

A is an execution of A.
Case III: E is infinite and E′

A is finite. Suppose that E′
A is not an execution of A. Then,

at αT , there is some process P which is enabled to execute an action of A, but that process is
never selected during the remainder of the sequence E. This contradicts the fact that E contains
infinitely many actions of every process.

This completes the proof of the claim that E′
A is an execution of A. It follows that αi is

eventually a legitimate configuration of A.
Continuing the proof of Lemma 5.3, we now prove that Combine(A,B) is self-stabilizing.
Assume that the input configuration is correct. Since E′

A is an execution of A, there is some
T such that αT is a legitimate configuration of A. Thus, for any i ≥ T , the input variables of B
are correct and are the same as at γT . Let E′

B be the sequence of configurations of B, starting
at βT , with duplicates removed. Then E′

B is an execution of B, and thus will eventually be in a
legitimate configuration of B at which the output variables of B are stable.

In conclusion, eventually both A and B will be in legitimate configurations, and the output
variables of both will be stable, and we are done. �

6 The K-CLUSTERING Algorithm.

We now define our combined algorithm, K-CLUSTERING as the combination of four algorithms,
as shown in Figure 10. Each of these algorithms is self-stabilizing and strongly fair, as defined
in Section 5. These algorithms are SSLEBFS, two copies of SSBR, and SSCLUSTER, which we
define below.

• A strongly fair and self-stabilizing algorithm, SSLEBFS, which elects a leader and which
constructs a BFS tree rooted at that leader. This algorithm outputs variables P.parent , the
pointer to the parent of P in the BFS tree, P.leader , the ID of the elected leader, and P.level ,
the distance from P to the leader. Any algorithm which meets those conditions can be used,
such as the one given in [6].

• A copy of SSBR which uses the outputs of SSLEBFS as inputs, and which also uses P.id for
Θ and the relation “<” for the order relation “≻.” The output of this module is the variable
P.minid , whose correct value is min {Q.id : w(P,Q) ≤ k}.

• A copy of SSBR which uses the outputs of SSLEBFS as inputs, and which uses P.minid
for Θ and the relation “>” for the order relation “≻.” Thus, the input variables of the third
module consist of the output variables of the first two modules. The output of this module
is the variable P.maxminid , whose correct value max {Q.minid : w(P,Q) ≤ k}, providing all
values of Q.minid are correct.
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• The algorithm SSCLUSTER given as Algorithm 4 below, which uses P.maxminid as its input
variable, and has output variables P.cl head , P.cl level , and P.cl parent .

Algorithm 3 is obtained by applying the Combine construction, given in Section 5, three times;
we first combine SSLEBFS with one copy of SSBR, we then combine that algorithm with a second
copy of SSBR, and finally combine that result with the algorithm SSCLUSTER. As specified in
Section 5, our construction requires that, when selected, a process is required to execute an action
of each module where that is possible.

Since each of the four modules is strongly fair and self-stabilizing, then K-CLUSTERING
is also strongly fair and self-stabilizing, by repeated application of Lemma 5.3. Eventually, the
configuration of SSLEBFS will stabilize. After that, the configuration of the first copy of SSBR
will stabilize, and after that the configuration of the second copy of SSBR will stabilize. Finally,
the configuration of SSCLUSTER will stabilize.

SSCLUSTER

P.id

P.idP.id

P.cl_head
P.cl_level
P.cl_parent

Variables
Local

SSBR

P.Max_Min_Id

>

Variables
Local

Layer
Application

Variables
Local

SSBR

P.Min_Id

<

P.leader
P.parent

P.levelVariables
Local

SSLEBFS

Figure 10: K-CLUSTERING is the combination of four strongly fair self-stabilizing algorithms.
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Algorithm 3: K-CLUSTERING (; cl head , cl level , cl parent)

1: for all P do

2: loop {forever}
3: if enabled to do so then

4: Execute an action of SSLEBFS (; parent , leader , level)
5: end if

6: if enabled to do so then

7: Execute an action of SSBR (parent , leader , level , id , <;minid)
8: end if

9: if enabled to do so then

10: Execute an action of SSBR (parent , leader , level ,minid , >;maxminid)
11: end if

12: if enabled to do so then

13: Execute an action of SSCLUSTER (maxminid ; cl head , cl level , cl parent)
14: end if

15: end loop

16: end for

6.1 The Module SSCLUSTER

Algorithm 4: SSCLUSTER (maxminid ; cl head , cl level , cl parent)

1: for all P do

2: loop {forever}
3: if P.maxminid = P.id then

4: if (P.cl level 6= 0 or P.cl head 6= P.id or P.cl parent 6= P ) then

5: P.cl level ← 0
6: P.cl head ← P.id

7: P.cl parent ← P

8: end if

9: else

10: if ∃Q ∈ NP : w(P, Q) + Q.cl level ≤ k then

11: level ← min {w(P, Q) + Q.cl level : Q ∈ NP }
12: head ← min {Q.cl head : Q ∈ NP

and w(P, Q) + Q.cl level = level}
13: parent ← min {Q ∈ NP : w(P, Q) + Q.cl level = level

and Q.cl head = head}
14: if (P.cl level 6= level or P.cl head 6= head or P.cl parent 6= parent)

then

15: P.cl level ← level

16: P.cl head ← head

17: P.cl parent ← parent

18: end if

19: else if P.cl level 6= k + 1 then

20: P.cl level ← k + 1
21: end if

22: end if

23: end loop

24: end for

Algorithm 4 updates variables P.cl level , P.cl head and P.cl parent . If P is a clusterhead, then
the variables get respectively values 0, P.id and P . Otherwise P.cl level gets the weight of the
shortest path from P to the closest clusterhead, P.cl head receives the ID of the closest clusterhead
(the lowest ID when ties need to be broken), and finally P.cl parent gets the neighbor of P that
is on the shortest path from P to its clusterhead.
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6.2 Proof of Correctness

In order to make use of Lemma 5.3, we must first prove that SSBR and SSCLUSTER have the
needed properties.

Lemma 6.1 SSBR is strongly fair and self-stabilizing.

Proof: We first prove that SSBR is strongly fair. Suppose that the input of SSBR does not change.
We need to prove that either SSBR stops executing, or that every process executes infinitely often.

If the input is correct, then, by Lemma 4.6(a), every process executes an action of SSBR
infinitely often.

If the input is incorrect, then, by Lemma 4.1, there is some process P which is not locally
correct. Then P will not execute any action of SSBR. By Lemma 4.4, there can be at most finitely
many remaining executions of actions of SSBR.

By Lemma 4.6(b), and the fact that the correct values of P.stable best are unique, SSBR is
self-stabilizing. �

Given an input configuration of SSCLUSTER, we define a process P to be a clusterhead if
P.maxminid = P.id . We define a correct input configuration of SSCLUSTER to be a configuration
where every process is within distance k of some clusterhead.

A legitimate configuration of SSCLUSTER is then defined to be a configuration where

1. The input configuration is correct.

2. If P is any process, then P.cl level is the distance to the nearest clusterhead.

3. If P is any process, then P.cl head is the ID of the nearest clusterhead. In case of a tie,
P.cl head is the smallest choice.

4. If P is a clusterhead, then P.cl parent = P . Otherwise, P.cl parent is the neighbor of P of
smallest ID that lies on a shortest path from P to P.cl head .

Note that, for any given correct input configuration, there is exactly one legitimate configura-
tion of SSCLUSTER.

Lemma 6.2 For any given input configuration, every execution of SSCLUSTER is finite.

Proof: Let e be an execution of SSCLUSTER. During this execution, the values of the input
variables of SSCLUSTER do not change, although they may not be correct. Our proof is by
contradiction; suppose that e is infinite.

Let B be the set of process that execute actions of SSCLUSTER only finitely many times
during e. Without loss of generality, each member of B executes no action of SSCLUSTER, since
we can start e at the first configuration after all executions of the members of B.

Case I: B = ∅.
Let L = min {P.cl level}, and let L = {P : P.cl level = L}. When a process P ∈ L executes

an action of SSCLUSTER, P.cl level must increase. Thus, after each member of L has executed
at least once, L must increase. Eventually, L = k + 1, which means that no process can execute,
contradiction.

Case II: B 6= ∅. For all P , let

Λ(P ) =

{

P.cl level if P ∈ B
min {w(P,Q) + Λ(Q) : Q ∈ NP } otherwise

Λ(P ) = min {k + 1,Λ(P )}

We claim that if P /∈ B and Q ∈ NP , and if eventually Q.cl level ≤ ℓ, then eventually P.cl level ≤
w(P,Q) + ℓ. Let γ be a configuration after which Q.level ≤ ℓ always holds. The next step where
P executes, P.cl level ≤ w(P,Q) + ℓ, and P.cl level can never decrease below that value.
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It follows that P.cl level ≤ Λ(P ) for all P , by strong induction on Λ(P ). If P ∈ B, the statement
holds trivially. Otherwise, there is some Q ∈ NP such that Λ(P ) = w(P,Q) + Λ(Q). By the in-
ductive hypothesis, eventually Q.level ≤ Λ(Q), and thus eventually P.cl level ≤ Λ(Q)+w(P,Q) =
Λ(P ).

Thus, without loss of generality, P.cl level ≤ Λ(P ) for all P and all configurations of e. We now

claim that eventually P.cl level ≥ Λ(P ) for all P . Let L =
{

P : P.cl level < Λ(P )
}

, and let

L = min {P.cl level : P ∈ L}. If L = ∅, the claim holds. Otherwise, L ≤ k. Every P ∈ L is
enabled to execute, and when it does execute, P.cl level will increase. Thus, eventually, L will
increase or L will become empty. Since L cannot exceed k, L will eventually be empty, and we
have proved the claim.

We can now assume that P.cl level = Λ(P ) for all P /∈ B at all configurations of e. Each P /∈ B
can then execute at most once, contradicting the infinitude of e. �

Lemma 6.3 SSCLUSTER is strongly fair and self-stabilizing.

Proof: SSCLUSTER is strongly fair by Lemma 6.2. We need only show that it is self-stabilizing.

Assume that the input configuration of SSCLUSTER is correct and never changes. Let A be the
set of clusterheads, namely {P : P.id = P.maxminid}. Since P.maxminid does not change, A is
fixed.

By Lemma 6.2, we can consider only the last configuration of SSCLUSTER, i.e., a configuration
γ where no process is enabled to execute an action of SSCLUSTER. We need only prove that γ is
legitimate.

By way of contradiction, assume that γ is not legitimate. Let Cl Level(P ), Cl Head(P ) and
Cl Parent(P ) be the correct values of P.cl level , P.cl head , and P.cl parent , i.e., the values those
variables must have in a legitimate configuration.

Case I: There is some process P such that P.cl level > Cl Level(P ). Choose that P which has the
smallest value of Cl Level(P ). If P ∈ A, then P is enabled to execute an action, contradiction.
Otherwise, let Q = Cl Parent(P ). Since Cl Level(Q) < Cl Level(P ), the value of Q.cl level is
correct, and hence P is enabled to execute, since w(P,Q) + Q.cl level < P.cl level , contradiction.

Case II: Case I does not hold, and there is some process P such that P.cl level < Cl Level(P ).
Choose that P which has the smallest value of P.cl level , and pick Q ∈ NP such that w(P,Q) +
Q.cl level is minimum. If w(P,Q) + Q.cl level ≤ P.cl level , then Q.cl level > Cl Level(Q) and
Q.cl level < P.cl level , contradiction. Otherwise, P is enabled to execute, contradiction.

Case III: P.cl level = Cl Level(P ) for all P , and there is some P for which either P.cl head 6=
Cl Head(P ) or P.cl parent 6= Cl Parent(P ). Pick such a P where P.cl level is minimum. If P is a
clusterhead, then P is enabled to execute, contradiction. Otherwise, letQ = {Q ∈ NP : P.level = w(P,Q) + Q.cl level
By our choice of P , we know that all variables of Q are correct for all Q ∈ Q. Thus, P will be
enabled to execute in order to correct its values, contradiction. �

Applying Lemma 5.3 twice, we have:

Lemma 6.4 Eventually P.minid = min {Q.id : w(P,Q) ≤ k} and P.maxminid = max {Q.minid : w(P,Q) ≤ k}
for all P .

We then obtain:

Lemma 6.5 Eventually, P.id = P.maxminid if and only if there is some process Q such that
Q.minid = P.id.

Lemma 6.5 is given in [7]. The proof is by contradiction. If Q.minid = P.id then w(P,Q) ≤ k
and P.maxminid ≥ Q.minid . If P.maxminid > Q.minid , then for some R, we have w(P,R) ≤ k
and R.minid > P.id , which contradicts the required correctness condition for R.minid .
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Let A = {P : P.id = P.maxminid}, the set of clusterheads. By Lemma 6.5, we know that
every process is within distance k of some member of A. By the correctness of SSCLUSTER,
and applying Lemma 5.3 once more, we know that K-CLUSTERING partitions the network into
cluster, where each process joins the nearest clusterhead. Thus, K-CLUSTERING is correct.

Applying Lemma 5.3 thrice, we have that K-CLUSTERING is self-stabilizing, and works under
the unfair daemon.

7 Theoretical bounds

7.1 Number of clusterheads

The algorithm can behave very badly compared to the optimal k-clustering, i.e., the clustering
with the lowest number of clusterheads. In fact, if OPTG is the optimal number of clusterheads
for a given graph G, K-CLUSTERING can return a solution with (n− 1)OPTG clusterheads. An
example of such a bad clustering is given on Figure 11: Figure 11a presents the initial graph,
and Figures 11b and 11c show the solution returned by our algorithm and the optimal solution,
processes with a doubled line are clusterheads, an arrow designates the parent.
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Figure 11: K-CLUSTERING worst case.

This problem arises because of the distribution of IDs. As our algorithm is comparison based,
its solution is constrained by the distribution of the IDs among the processes. Take the same
example as the one given on Figure 11a, but instead put the lowest ID, 1, on the central node. In
this case our algorithm would find the optimal solution.

7.2 Number of rounds

We now present two theoretical bounds on the number of rounds required for the algorithm to
return correct values.

7.2.1 The Chain Graph Gn,k

In Figure 12, we assume that n is even. The network is a chain, i.e., there are edges between Pi

and Pj if and only if |i− j| = 1. Edge weights are given as follows:

||Pi, Pi+1|| =
{

1 if i is odd
k if i is even

Lemma 1 If the algorithm runs on graph Gn,k, the convergence time is Θ(nk) rounds in the worst
case.
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Figure 12: The Graph Gn,k

Proof: For sake of simplicity, we suppose that the processes start in a clean state, i.e., all possible
errors have been corrected, and P.best = P.id , P.dist = 0 and P.span = min {w(P,Q) : Q ∈ NP },
note that in this graph for all Process P , P.span = 1. We only deal with the copy of SSBR in
charge of computing P.minid .

Initially, only Process n is able to execute lines 21, 22 and 24 due to the condition line 9, and
no other process is enabled. Thus, after one round, n.best = n − 1, n.dist = 1 and n.span = 2;
and no other process has changed its variables.

During the next k − 1 steps, only Processes n and n − 1 are enabled to alternatively execute
line 24 to update their span variable. n.span and (n − 1).span are only able to increase by 2 at
each step.

Once (n− 1).span > k, n− 1 is enabled to execute lines 21 and 22, and set (n− 1).best = n− 2
and (n− 1).dist = k. Then, Process n− 2 is enabled to execute lines 21, 22 and 24, which starts
a new cycle of k − 1 rounds between n− 2 and n− 3 to update span.

These update cycles are repeated until a cycle reaches process 2, which is the last cycle between
1 and 2: the processes can only be updated following a descending order on their IDs.

Overall, it requires (1 + (k − 1))× n/2 = kn/2 rounds to complete the execution of SSBR for
computing P.minid . Hence the Θ(nk) bound. �

7.2.2 The Random Graph Rn,k

Assuming n is even, we construct the graph Rn,k as follows.

• The nodes of Rn,k are the integers {1, . . . n}.

• Randomly partition the processes into pairs, which we call special pairs, in such a manner
that all such partitions are equally likely. If {i, j} is a special pair, we write partner(i) = j
and partner(j) = i. We say that i is superior if partner(i) < i; otherwise we say that i is
inferior .

• Rn,k is complete.

• For any nodes i and j 6= i, the weight of the edge between i and j is 1 if j = partner(i), and
k otherwise.

Figure 13 presents an example of such a graph.
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Figure 13: The Graph Rn,k.

Lemma 2 If the algorithm runs on graph Rn,k, the convergence time is O(n/2× k) rounds in the
worst case.
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Proof: Starting from a clean configuration where:

• i.status = READY

• i.best = i

• i.dist = 0

• i.span = 1

it takes n/2 steps for processes to have the following values:

• i.best = i if i is inferior, or partner(i) if i is superior

• i.dist = 0 if i is inferior, or 1 if i is superior

• i.span = 1 if i is inferior, or 2 if i is superior

(in fact not exactly n/2 steps, but n/2 executions of lines 21,22, 24, but even if these steps
do not occur consecutively, on the whole it will take n/2 steps for processes to pass through
this configuration), then only 2 processes will be able to update their span variable, due to the
condition P.dist + w(P,Q) > k which is not true for most of the processes (P.dist + w(P,Q) = k),
and Q.best ≥ P.best . Hence, only the special pair with the highest id can update, and only one
process is enabled at each step. And this until this special pair finds 1 as the best id , which takes
k steps. We repeat this for the next special pair having the second highest id , and so on and so
forth. . . Hence, as we have n/2 special pairs, on the whole it takes O(n/2× k) rounds. �

8 Simulations

We designed a simulator to evaluate the performance of our algorithm4. In order to verify the
results, a sequential version of the algorithm was run, and all simulation results compared to
the sequential version results. Thus, we made sure that the returned clustered graph was the
correct one. In order to detect when the algorithm becomes stable and has computed the correct
clustering, we compared, at each step, the current graph with the previous one; the result was
then output only if there was a difference. The stable result is the last graph output once the
algorithm has reached an upper bound on the number of rounds (we set this number at least two
orders of magnitude higher than the convergence time of the algorithm).

We only present in this section a few simulations results: on an example graph (see Figure 14),
and the results for graph Gn,k and Rn,k.

8.1 Effect of the k value

Example Figure 14 We ran the simulator on the weighted graph illustrated in Figure 14. For
each value of k, we ran 10 simulations starting from an arbitrary initial state where the value of
each variable of each process was randomly chosen, hence the processes do not start in a clean
state.

Figure 15 shows the number of clusterheads found for each run and each value of k. As the
algorithm returns exactly the same set of clusterheads whatever the initial condition, the results
for a given k are all the same. Note that the number of clusterheads decreases as k increases, and
even if the algorithm may not find the optimal solution, it gives a clustering far better than a
naive O(1) self-stabilizing algorithm which would consists in electing each process a clusterhead.
The figure shows that the number of clusterheads quickly decreases as k increases.

Figure 16 shows the number of rounds required to converge. This figure shows two kinds of
runs: with an unfair daemon that holds a random process until no other process is able to execute,
and with a fair daemon that selects every enabled process at every step. As can be seen, the
number of rounds is far lower than the theoretical bound O(nk), even with an unfair daemon.

4It can be found at http://graal.ens-lyon.fr/~bdepardo/down_files/k-clustering/k-clustering.bz2, the
file also contains all the platforms and the results.

http://graal.ens-lyon.fr/~bdepardo/down_files/k-clustering/k-clustering.bz2
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Figure 14: Example graph: number of nodes = 59, diameter = 282, radius = 163, weights
between 1 and 100.
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Figure 15: Number of clusterheads for graph Figure 14.

Random graphs We also generated 50 random graphs containing each 100 nodes, edges weight
varied between 1 and 100. Figure 17, and 18 present respectively the number of clusterheads, and
the number of rounds. As can be seen the number of rounds is far from the theoretical bound,
and the number of clusterheads quickly decreases. Each type of points on the graphs represent a
particular platform.
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Figure 16: Number of rounds with fairness and unfairness, for the graph represented in Figure 14.
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8.2 Complexity bounds

Graph Gn,k The number of clusterheads obtained for each instance of the graph is n− 1: every
node is elected clusterhead, apart from node n which connects itself to node n− 1.

Figure 19 presents the number of rounds obtained with and without unfairness for different
values of n, for k = 100. It can be observed that the number of rounds follows the theoretical
bound O(nk).

Graph Rn,k The number of clusterheads obtained for each instance of the graph is 1: every
node connects itself to the node of lowest ID: 1.

Figure 20 presents the number of rounds obtained with and without unfairness for different
values of n, for k = 100. It can be observed that the number of rounds follows the theoretical
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Figure 18: Random graphs: number of rounds.
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bound Ω(
√

nk).

9 Conclusion

In this article, we present a self-stabilizing asynchronous distributed algorithm for construction of
a k-dominating set, and hence a k-clustering, for a given k, for any weighted network. In contrast
with previous work which dealt with unweighted graphs, or weights on the nodes, our algorithm
deals with an arbitrary metric on the network, i.e., weights on the links, and hence, is able to take
into account more realistic communications’ cost. K-CLUSTERING is the combination of four
strongly fair self-stabilizing algorithms: SSLEBFS, SSBR and SSCLUSTER executes in O(nk)
rounds, and requires only O(log n+log k) space per process. We also gave conditions under which
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Figure 20: Number of rounds for graph Rn,k, represented in Figure 13.

the combination of self-stabilizing algorithms is also self-stabilizing.
In future work, we will attempt to improve the time complexity of the algorithm, and use the

message passing model, which is more realistic.
We also intend to explore the possibility of using k-clustering to design efficient deployment

algorithms for applications on a grid infrastructure. Such a clustering can help for example to
guaranty the latency experienced by messages in a network, e.g., in each k-cluster.
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