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Abstract

The resultant of a square system of homogeneous polynomials is a polynomial
in their coefficients which vanishes whenever the system has a solution. Canny gave
an algorithm running in polynomial space to compute it but no lower bound was
known.

We investigate the complexity of the associated decision problem and give a
hardness result: Testing the resultant for zero lies in the class Arthur −Merlin and
is NP-hard. We give a randomized reduction and a deterministic reduction for NP-
hardness. The latter can be seen as a derandomization result.
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1 Introduction

Given two univariate polynomials, their Sylvester matrix is a matrix built on the
coefficients of the polynomials which is singular iff the polynomials have a common
root. The determinant of the Sylvester matrix is known as the resultant of the
polynomials. The size of this matrix is the sum of the degrees of the polynomials.
Hence its determinant is easy to compute given the coefficients of the polynomials.
Generalizations of this notion to multivariate polynomials is not always possible.
The study of the possible generalizations comes within the scope of the theory of
elimination [37, 30, 14, 31, 34, 15]. This theory proves that the only case where a
unique polynomial can testify to the existence of a common root to the system is the
case of n homogeneous polynomials in n variables: The resultant of a square sys-
tem of homogeneous polynomials f1, . . . , fn ∈ K[x1, . . . , xn] is a polynomial in the
indeterminate coefficients of f1, . . . , fn which vanishes iff f1, . . . , fn have a nonzero
common root. The resultant of such a system is known as the multivariate resul-
tant in the literature. This captures the case of two univariate polynomials modulo
their homogeneization. Furthermore, in many cases a system of more than n homo-
geneous polynomials in n variables can be reduced to a system of n homogeneous
polynomials, so that the square case is an important one. This result is sometimes
known as Bertini’s theorem. In this paper, we focus on the multivariate resultant
which we simply refer to as the resultant.

The resultant has been extensively used to solve polynomial systems [28, 32, 8, 10]
and for the elimination of quantifiers in algebraically or real-closed fields [33, 18].
More recently, the multivariate resultant has been of interest in pure and applied
domains. For instance, the problem of robot motion planning is closely related to the
multivariate resultant [4, 5, 9], and more generally the multivariate resultant is used
in real algebraic geometry [6, 22]. Finally, in the domain of symbolic computation
progress has been made for finding explicit formulations for the resultant [11, 7, 21,
13, 3, 10, 19], see also [20].

This paper deals with the complexity of the multivariate resultant. Thus, we
study systems of n homogeneous multivariate polynomials in n variables for which
the roots are in projective space. That is, only non trivial (i.e. nonzero) roots are
considered. Canny [5] gave in 1987 a PSPACE algorithm to compute the resultant
in that case. To the authors’ knowledge, this is the best known upper bound and
no lower bound has ever been given1. The main result of this paper is a proof of
the NP-hardness of the associated decision problem. A tighter upper bound (the
decision problems lies in AM) is given as well.

The associated decision problem consist in deciding whether the resultant van-
ishes, and this actually is the problem of deciding whether the polynomials have a
common root. Thus this is a variant of the Hilbert’s Nullstellensatz problem.

Definition 1. The problem HNC is given f1, . . . , fs ∈ C[x1, . . . , xn], does there exist
a tuple ā ∈ Cn such that f1, . . . , fs vanish on ā?

If f1, . . . , fs are homogeneous polynomials and ā is required to be non trivial
(i.e., nonzero), this defines the problem H2NC. Further, if s = n, that is if there are
as many homogeneous polynomials as variables, this defines the problem H2N

�
C

.
Boolean versions of this problems, respectively denoted by HN, H2N and H2N

�, are

1Canny states in his PhD thesis [5] that the problem is NP-hard but no proof seems available in the
literature.
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defined by considering integer polynomials as inputs and asking for a complex (non
trivial in the last two cases) common root.

Testing the resultant for zero is the problem H2N
�, namely the square homoge-

neous Hilbert’s Nullstellensatz. We first show that the upper bound for the Hilbert’s
Nullstellensatz still holds for H2N

�.
We denote here by AM the class Arthur −Merlin, defined by interactive proofs

with public coins (see [2]).

Proposition 1. Under the Generalized Riemann Hypothesis, H2N
� is in the class

AM.

Proof. Koiran [23] proved that HN ∈ AM under the same hypothesis. Consider an
instance S of H2N

�, that is n homogeneous polynomials f1, . . . , fn ∈ Z[x1, . . . , xn].
The polynomials f1, . . . , fn can be viewed as elements of Z[x1, . . . , xn, y1, . . . , yn]
where y1, . . . , yn are new variables which do not appear in the fi. Let T be the system
containing all the fi and the new (non-homogeneous) polynomial

∑n

i=1 xiyi−1. This
is an instance of the problem HN. It remains to prove that S and T are equivalent.

Given a root (a1, . . . , an, b1, . . . , bn) of T , the new polynomial ensures that there
is at least one non-zero ai. So the (a1, . . . , an) is a non trivial root of S. Conversely,
suppose that S has a non trivial root (a1, . . . , an), and let i be such that ai 6= 0. Then
the tuple (a1, . . . , an, 0, . . . , 0, 1/ai, 0, . . . , 0) where 1/ai corresponds to the variable
yi is a root of T .

The remaining of the paper is devoted to prove the NP-hardness of H2N
�. The

reduction is done in several steps, from 3− SAT to H2N
�. The first steps actually

prove that H2N is NP-hard, which is an already known result [24]. The proof is
nevertheless given in Section 2 as the special form of the obtained system will be
useful in the last step of the reduction. Then Section 3 is dedicated to a fairly
simple randomized reduction between H2N and H2N

�. Section 4 is a deterministic
reduction, but the proof is more complex. This reduction can be viewed as a de-
randomization result. Furthermore, those two completely different reductions adopt
opposite viewpoints: In the randomized one, the instance of H2N is transformed into
a square system by decreasing the number of polynomials, while the deterministic
one proceeds by adding some new variables. In the last section, we present some
results on computing succintly represented determinants (that is, given by circuits),
namely these are PSPACE-complete to compute. This gives clues that Canny’s ap-
proach cannot be significantly improved without a very careful examination of the
structure of the matrices involved.

2 Preliminary work

In order to transform a 3− SAT instance into a system of polynomials, a formula
is expressed as a system of boolean equations to begin with. Toward this end, let
us define the problem Boolsys. The input is a system of boolean equations in the
variables X1, . . . , Xn, each equation being on the form Xi = True, Xi = ¬Xj , or
Xi = Xj ∨Xk. The question is the existence of a valid assignment for the system,
that is a assignment of the variables such that each equation is satisfied.

Lemma 1. Boolsys is NP-hard.
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Proof. There is an easy reduction from 3− SAT. Each clause l1 ∨ l2 ∨ l3 is replaced
by at most six equations. For example, a clause x∨ ȳ ∨ z where x, y, z are variables
is turned into the four following equations:















y′ = ¬y
X = x ∨ y′

Y = X ∨ z
Y = True

where y′, X and Y are fresh variables. There can be up to six equations if all
variables in the clause are negated.

It is straightforward to verify that the Boolsys instance that is created when
each clause is replaced by the corresponding equations is equivalent to the original
formula.

Lemma 2. H2N is NP-hard.

Proof. We consider an instance I of Boolsys with n variables X1, . . . , Xn and create
an instance J of H2N with n + 1 variables x0, x1, . . . , xn. The variable x0 has to be
seen as a fresh one while for each i > 0, xi corresponds to Xi.

The new instance J contains the polynomial x2
0 − x2

i for each i, so that the xi

can only have the values x0 and −x0. Now every equation of the Boolsys system is
turned into a polynomial in H2N in the following manner:

• Xi = True is turned into (xi + x0)
2 = 0;

• Xi = ¬Xj is turned into (xi + xj)
2 = 0;

• Xi = Xj ∨Xk is turned into (xi + x0)
2 − (xj + x0) · (xk + x0) = 0.

The equivalence between I and J is now proved. If (a0, . . . , an) is a root of
J , it must verify a0 = ±ai for each i. Furthermore, by homogeneity, the value of
a0 can be fixed for the sequel. To prove the equivalence, it is sufficient to prove
that every equation of Boolsys is satisfied by an assignment of its variables iff the
corresponding polynomial in H2N vanishes at (a0, . . . , an) where ai = −a0 if Xi is
true and ai = a0 if Xi is false.

This property is clear for the equation Xi = True. The equation Xi = ¬Xj is
satisfied iff Xi and Xj have not the same value, so iff (ai+aj) = 0. Now Xi = Xj∨Xk

is satisfied iff Xi is true and at least one amongst Xj and Xk also, or Xi, Xj and
Xk are false. And the corresponding equation holds iff (ai + a0) = 0 and one among
(aj + a0) and (ak + a0) is zero, or those three sums equal 2a0.

The next two sections are devoted to two different reductions from H2N to H2N
�.

The first one is a randomized reduction, while the second one is deterministic. In the
deterministic reduction, the starting problem is not exactly H2N. One must actually
use the form of the system that was built in the previous proof. In the sequel, such
a system where the polynomials x2

0 − x2
i appear for every i, and where the other

polynomials are of one of the three forms (xi +xj)
2, (xi +xj)

2 or (xi + xj)
2− (xi +

x0) · (xk + x0) is denoted by C−Boolsys. This problem actually is a translation of
Boolsys in the language of the field C.
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3 Randomized reduction

The aim of this section is to give a quite simple reduction from H2N to H2N
�. In view

of the previous reduction, a reduction from H2N restricted to degree-2 polynomials
is sufficient to prove the NP-hardness of H2N

�. In the sequel, we give a reduction in
this restricted case, although it could be easily extended to the more general case.
This reduction is a randomized one: There exists a probabilistic Turing Machine
which turns any instance of H2N into an instance of H2N

� which is equivalent with
probability at least 2/3. For more on this kind of reduction, see [2, §7.6].

In the problem H2N, the instance consists in s homogeneous polynomials in n+1
variables. If s < n + 1, an equivalent square system is obtained by duplicating the
last polynomial n + 1 − s times. In the sequel, we assume s > n + 1. The natural
idea in order to decrease the number of polynomials is to define the instance of H2N

�

as a set of n + 1 linear combinations of the s polynomials of H2N. In [26, §4.4], a
condition on the existence of (possibly trivial) roots for non necessarily homogeneous
polynomials is studied. The following special case of this result will be useful for
the reduction:

Lemma 3. Let f1, . . . , fs ∈ Z[x0, . . . , xn] be polynomials of degree at most 2 without
a common root. There exists a non zero polynomial F ∈ C[Z1,1, . . . , Zn+1,s] of
degree at most 3n+1 such that F (ᾱ) 6= 0 for ᾱ = (α1,1, . . . , αn+1,s) implies that the
polynomials gi =

∑s

j=1 αijfj (1 ≤ i ≤ n + 1) have no common root.

The following lemma is the core of the randomized reduction:

Lemma 4. Let f1, . . . , fs ∈ Z[x0, . . . , xn] be homogeneous polynomials of degree 2,
and let f = (f1, . . . , fs). Let g = (g1, . . . , gn+1) be a random function defined in
the following manner: Pick s · (n + 1) integers αij (1 ≤ i ≤ n + 1, 1 ≤ j ≤ s)
independently at random with uniform distribution in {0, . . . , 3n+2}, and for all i,
let gi =

∑s

j=1 αijfj. Then,

(i) if f has a non trivial root, then Pr [ g has a non trivial root ] = 1;

(ii) if f has no non trivial root, then Pr [ g has no non trivial root ] ≥ 2/3.

Proof. The first point is clear, every root of f being a root of g. Let us prove the
second point.

Suppose that f has no non trivial root, and consider a non trivial tuple
(a0, . . . , an). One at least of the ai is non zero, say a0. Consider the n-tuple
(ã1, . . . , ãn) defined by ãi = ai/a0. As the fj and the gi are homogeneous,

(a0, . . . , an) is a root iff (1, ã1, . . . , ãn) is. One can also define f̃j ∈ Z[x1, . . . , xn]

by f̃j(x1, . . . , xn) = fj(1, x1, . . . , xn), and the same for the gi. Then, (ã1, . . . , ãn) is

a root of f̃j iff (a0, . . . , an) is a (non trivial) root of fj , and the same holds for the gi.

Furthermore, g̃i =
∑

i αij f̃j. Thus, Lemma 3 proves the existence of a polynomial
F ∈ C[ᾱ] with degree at most 3n+1 such that F (ᾱ) 6= 0 implies that the g̃i have no
common root. In particular, if F (ᾱ) 6= 0, then (ã1, . . . , ãn) is not a common root of
the g̃i, and (a0, . . . , an) is not a common root of the gi. As this is valid for all non
trivial (a0, . . . , an), then F (ᾱ) 6= 0 implies that the gi have no non trivial common
root.

Then, applying Schwartz-Zippel lemma [29] to F shows that with probability at
least 2/3, the gi have no non trivial common root.
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In summary, if a new system of (n+1) homogeneous polynomials g1, . . . , gn+1 in
(n + 1) variables is defined by random linear combinations of the s original polyno-
mials f1, . . . , fs, then with probability at least 2/3, the fj have a non trivial common
root iff the gi have one. This proves the following:

Theorem 1. The problem H2N
� is NP-hard under randomized reduction.

4 Deterministic reduction

In this section, we give a deterministic reduction from C−Boolsys to H2N
�, the

problem of deciding whether a square system of homogeneous polynomials has a
non trivial root.

The idea of the reduction is to add some new variables and to slightly change the
existing polynomials without adding any new one in order to get a square system.
This has to be done carefully in order to avoid the situation where the new system
has a non trivial root consisting in a trivial part for the old variables and a non
trivial one for the new variables. The method is based on the Jacobian matrix of
the system. In the following definition, as in the sequel of the section, x̄ represents
a vector (x0, . . . , xn).

Definition 2. Let f be a function from Cn+1 to Cs defined by

f :







x0

...
xn






7→











f1(x̄)
f2(x̄)

...
fs(x̄)











.

The Jacobian matrix of f is defined by

(Jf )ij =
∂fi

∂xj

for 1 ≤ i ≤ s and 0 ≤ j ≤ n.
Furthermore, Jf (ᾱ) represents the Jacobian matrix of f taken at the point ᾱ.

The Jacobian matrix has the following interesting property:

Lemma 5. Let f be a homogeneous polynomial function with n + 1 variables and s
components. If (a0, . . . , an) is a non trivial root of f , then the rank of Jf (ā) is at
most n.

Proof. As the system is homogeneous, there exists a root iff there exists a line of
roots. For every i, this line lies in the algebraic set Ei defined by fi(x̄) = 0. So for
every i the line lies in the tangent space to Ei. Now if a vector X belongs to this
line, then Jf (ā) ·X = (0, . . . , 0)t. As a result, Jf (ā) has rank not greater than n.

For the purpose of the reduction, a kind of converse of that lemma is necessary.
Unfortunately, this is not true in a general case. Nevertheless, in the case of the
problem C−Boolsys, the systems that appear have some nice properties. Let us
recall the polynomials in such a system:

• x2
0 − x2

i , for each i > 0;
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• (xi + x0)
2, coming from Xi = True in Boolsys;

• (xi + xj)
2, coming from Xi = ¬Xj ;

• (xi + x0)
2 − (xj + x0) · (xk + x0), coming from Xi = Xj ∨Xk.

In the sequel, f denotes a instance of the problem C−Boolsys, that is a system
with those four kinds of polynomials. A converse of the previous lemma is now
proved:

Lemma 6. Let f be an instance of C−Boolsys, and let ā be a non zero (n+1)-tuple
such that for each i > 0, a2

i = a2
0. Then

(i) the rank of Jf (ā) is at least n;

(ii) the rank of Jf (ā) is equal to n iff ā is a non trivial root of f .

Proof. The first point is trivial. The system contains n polynomials of the form
x2

0 − x2
i , and the condition on the ai implies that every ai is nonzero. So the

n× (n + 1) matrix












a0 −a1 0 . . . 0

a0 0 −a2

. . .
...

...
...

. . .
. . . 0

a0 0 . . . 0 −an













is a submatrix of 1
2
Jf (ā), and is clearly of rank n.

Without loss of generality, the n rows above are considered as the n first rows
of 1

2
Jf (ā). The second point may be expressed as follows: ā is a non trivial root of

f iff every row among the last ones is a linear combination of the n first ones. To
prove that, something stronger is actually proved, namely that each polynomial of
f (but the n first ones) vanishes at ā iff the corresponding row in Jf (ā) is a linear
combination of the n first rows. There exist three kinds of rows among the lowest
ones, corresponding to the three kinds of polynomials different from x2

0 − x2
i . Each

one is now separately studied to prove the desired property.
The first kind of row corresponds to a polynomial (xi + x0)

2. The row in Jf (ā)
has the form

(2(a0 + ai), 0, . . . , 0, 2(a0 + ai), 0, . . . , 0),

where the nonzero coefficients are the first one and the (i+1)-th one. Given the form
of the n first rows, this row can be a linear combination of them iff it is proportional
to the i-th one. Hence it is even sufficient to know whether the submatrix of 1

2
Jf (ā)

(

a0 −ai

a0 + ai a0 + ai

)

is singular. As its determinant is (a0 + ai)
2, it is clear that this matrix is singular

iff the polynomial vanishes at ā.
The same method works for the second kind of polynomials, (xi + xj)

2. It is
sufficient to study the submatrix of 1

2
Jf (ā)





a0 −ai 0
a0 0 −aj

0 ai + aj ai + aj



 .
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Its determinant is equal to a0 · (ai + aj)
2, and as a0 is nonzero, the equivalence is

clear.
The last kind of polynomials is of the form (xi +x0)

2− (xj +x0) · (xk +x0). The
studied matrix in this case is the submatrix of Jf (ā)









2a0 −2ai 0 0
2a0 0 −2aj 0
2a0 0 0 −2ak

2ai − aj − ak 2(ai + a0) −ak − a0 −aj − a0









.

Its determinant is equal to

8
(

2ajak · (ai + a0)
2 − ai · (aj + ak)(aj + a0)(ak + a0)

)

.

Hence, the matrix is singular iff

2ajak · (ai + a0)
2 = ai · (aj + ak)(aj + a0)(ak + a0). (1)

The left-hand side of (1) is zero iff ai = −a0. Moreover, the sum aj + ak is zero iff
aj = −ak, and as a2

j = a2
k = a2

0 the sum is zero iff aj + a0 or ak + a0 is also zero.
So, the right-hand side of (1) is zero iff aj = −a0 or ak = −a0.

Furthermore, both sides are nonzero iff a0 = ai = aj = ak, and in that case,
2ajak = ai · (aj + ak). Hence, (1) holds iff (ai + a0)

2 = (aj + a0) · (ak + a0), i.e. iff
(a0, ai, aj , ak) is a root of the polynomial.

This proves the lemma.

All the ingredients which are needed for the reduction have been proved. We
now state our main theorem and prove it:

Theorem 2. H2N
� is NP-hard.

Proof. The problem C−Boolsys defined in Section 2 is reduced to H2N
�. Let f be

an instance of C−Boolsys. The vector-valued function f has n + 1 variables and s
components. The n first components are still fi(x̄) = x2

0 − x2
i , i = 1, . . . , n. Each

remaining component is of the form (xi + x0)
2, (xi + xj)

2 or (xi + x0)
2 − (xj + x0) ·

(xk + x0). The instance f is reduced to an instance g : Cs → Cs of H2N
�. The

variables are denoted by x0, . . . , xn and y1, . . . , ys−n−1. The components of g are
defined as follows:

g(x̄, ȳ) =







































f1(x̄)
...

fn(x̄)
fn+1(x̄) +5y2

1

fn+2(x̄) −y2
1 +5y2

2

...
fn+i(x̄) −y2

i−1 +5y2
i

...
fs−1(x̄)−y2

s−n−2+5y2
s−n−1

fs(x̄) −y2
s−n−1






































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It remains to prove that the reduction is valid, that is f has a non trivial root iff
g does. Clearly, if f(a0, . . . , an) = 0̄, then g(a0, . . . , an, 0, . . . , 0) = 0̄. Let us prove
the converse: if f has no non trivial root, then neither does g. Let (ā, b̄) be a non
zero tuple and let us prove that g(ā, b̄) 6= 0̄.

We begin with a few remarks. If b̄ = 0̄, then g(ā, 0̄) = f(ā), so g(ā, 0̄) = 0̄
implies ā = 0̄, and (ā, b̄) is the trivial tuple. Moreover, if ā = 0̄, it is easy to see that
g(0̄, b̄) = 0̄ implies b̄ = 0̄. Furthermore, if ā does not satisfy a2

0 = · · · = a2
n, then

g(ā, b̄) 6= 0̄. In the sequel, (ā, b̄) is supposed to verify a2
0 = · · · = a2

n 6= 0, and b̄ 6= 0̄.
To begin with, all the components of b are supposed to be nonzero.

Consider the Jacobian matrix of g at the point (ā, b̄), denoted by Jg(ā, b̄). The
first (n + 1) columns of Jg(ā, b̄) form Jf (ā), the Jacobian matrix of f at ā. As
f(ā) 6= 0̄, Lemma 6 states that Jf (ā) has maximal rank. It is now proved that
Jg(ā, b̄) has also maximal rank, and hence Lemma 5 ensures that g(ā, b̄) 6= 0̄. The
Jacobian matrix of g is

Jg(ā, b̄) =



























2a0 −2a1 0 · · · 0
...

. . .
...

...
2a0 −2an 0 · · · 0

10b1

M −2b1

. . .

. . . 10bs−n−1

−2bs−n−1



























.

The submatrix M contains three kinds of rows R, R′ and R′′ for the three kinds of
polynomials (xi + x0)

2, (xi + xj)
2 and (xi + x0)

2 − (xj + x0) · (xk + x0) appearing
as components of f . Most coefficients of the rows are equal to 0. As we have seen
in the proof of Lemma 6, R and R′ have each two nonzero coefficients, while R′′ has
four:

• R1 = 2(x0 + xi) and Ri+1 = 2(x0 + xi);

• R′

i+1 = R′

j+1 = 2(xi + xj);

• R′′

1 = 2xi−xj−xk, R′′

i+1 = 2(xi +x0), R′′

j+1 = −xk−x0 and R′′

k+1 = −xj−x0.

Each of the (n + 1) first columns of Jg(ā, b̄) can be seen as an integer column
multiplied by 2a0. Similarly, by dividing the last s − n − 1 columns of Jg(ā, b̄)
respectively by 2b1, . . . , 2bs−n−1 integer columns are obtained. So the rank of Jg(ā, b̄)
is the same as the rank of the integer matrix obtained by dividing each column
by an appropriate value. The rank does not change either if we apply a circular
permutation to the (n + 1) first columns so that the the first column becomes the
(n + 1)-th, the second becomes the first, and so on. Hence, the rank of Jg(ā, b̄) is
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equal to the rank of the matrix

J =



























±1 1 0 · · · 0
. . .

...
...

...
±1 1 0 · · · 0

5

M1 −1
. . .

. . . 5
−1



























,

where the rows of M1 have 1-norm bounded by 4.
To prove that J has maximal rank, its determinant is computed. The following

operation does not change the determinant:

Cn+1 ← Cn+1 +

n
∑

i=1

±Ci, (2)

where Ci is the i-th column of J . If the ±1 in the sum are well chosen, the n first
coefficients of Cn+1 vanish. The matrix we obtain is partitioned into four blocks
where the top left block is a diagonal made of ±1 and the top right block is zero. The
last column of M1, modified by the operation (2), is denoted by (c0, . . . , cs−n−1)

t.
The determinant of J is then equal, up to sign, to the determinant of the matrix













c0 5
... −1

. . .
...

. . . 5
cs−n−1 −1













.

For 0 ≤ i ≤ s − n − 1, |ci| ≤ 4 as the 1-norms of the rows of M1 are also bounded
by 4. Furthermore, if all ci vanish, then JF (ā) is rank-deficient, which contradicts
the hypothesis. The determinant of the above matrix can be shown to be equal to
(−1)s−n−1 ·(c0+5c1+52c2+· · ·+5s−n−1cs−n−1). For each i, let c+

i = max{ci, 0} and
c−i = max{−ci, 0}. Then ci = c+

i − c−i , and 0 ≤ c+
i , c−i ≤ 4. Now the determinant

is zero iff
∑

i 5ic+
i =

∑

i 5ic−i . By the unicity of base-5 representation, this means
that for all i, c+

i = c−i , and so ci = 0, which is a contradiction.
As soon as no bi vanishes, Jg(ā, b̄) has maximal rank and by Lemma 5, g(ā, b̄) 6= 0̄.

Suppose now that some bi vanish. Without loss of generality, one can suppose that
the non-zero components of b̄ are b1, . . . , bk. Consider the function g̃(x̄, y1, . . . , yk) =
g(x̄, y1, . . . , yk, 0̄). The Jacobian matrix of g̃ at the point (ā, b1, . . . , bk) is formed by
the (n + k + 1) first rows of Jg(ā, b̄) which have been proved linearly independent.
Lemma 5 also applies to g̃, and g̃(ā, b1, . . . , bk) = g(ā, b̄) 6= 0.

This result can be seen as a derandomization result as a simpler randomized
reduction exists. In the previous proof, the function g is defined by adding to each
fi, n + 1 ≤ i ≤ s, a term of the form

∑s−n−1

j=1 αijy
2
j , where the matrix (αij)ij is a

bidiagonal matrix (αii = 5 and αi,i+1 = −1 for 1 ≤ i ≤ s− n− 1). If we replace it
by the matrix of indeterminates (αij)ij , it is easy to check that the determinant is
a nonzero polynomial in the αij . Hence it is sufficient to use Schartz-Zippel Lemma
to conclude that if the αij are randomly chosen (in an appropriate interval), the
determinant does not vanish.
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5 Final remarks

The upper and lower bounds on H2N
� are in a sense “close” to each other. Indeed,

NP = Σ1P ⊆ AM ⊆ Π2P, that is AM lies between the first and the second level
of the polynomial hierarchy. Furthermore, “under plausible complexity conjectures,
AM = NP” [2, p157]. Improving the lower bound may be challenging as the proof
of Proposition 1 shows that this would imply the same bound for the Hilbert’s
Nullstellensatz.

Computing a multivariate resultant is as least as hard as testing it for zero.
Therefore, the lower bound applies for computing the resultant. Nevertheless, there
remains a big gap between Canny’s PSPACE upper bound and our NP lower bound.
We decreased the gap for the decision problem, and it may be possible to decrease
it for the function. Indeed, Canny’s algorithm uses determinant of Macaulay matri-
ces (which are generalizations of the Sylvester matrix to multivariate polynomials).
Those matrices have an exponential dimension but admit a succinct representa-
tion (in the sense of [16]). One can prove that computing the determinant of a
general succinctly represented matrix is FPSPACE-complete (and even testing for
zero is PSPACE-complete) [17]. This corresponds to an exponential blow up of
the complexity with regards to the classically described determinant. The deci-
sion problem is indeed C=L-complete [1] and computing its value is GapL-complete
[35, 38, 36, 12]. Moreover, at the “PSPACE level”, #PSPACE = FPSPACE [27],
and therefore C=PSPACE = PSPACE and GapPSPACE = FPSPACE (with obvious
definitions of these classes with analogy to C=L and GapL).

This may indicate that in order to improve Canny’s algorithm one has to use some
very specific properties of the Macaulay matrices. Another interesting question is to
characterize the complexity of the resultant within Valiant’s algebraic framework.
Indeed, it is proved in [25] that the Macaulay matrices form a VPSPACE family
of polynomials. Finally, it would be interesting to know whether the randomized
reduction of Theorem 1 can be derandomized.
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