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Abstract

During any composite computation there is a constant need for rounding intermediate results
before they can participate in further processing. Recently a class of number representations denoted
RN-Codings were introduced, allowing an un-biased rounding-to-nearest to take place by a simple
truncation, with the property that problems with double-roundings are avoided. In this paper we first
investigate a particular encoding of the binary representation. This encoding is generalized to any radix
and digit set; however radix complement representations for even values of the radix turn out to be
particularly feasible. The encoding is essentially an ordinary radix complement representation with an
appended round-bit, but still allowing rounding to nearest by truncation and thus avoiding problems
with double-roundings. Conversions from radix complement to these round-to-nearest representations
can be performed in constant time, whereas conversion the other way in general takes at least
logarithmic time. Not only is rounding-to-nearest a constant time operation, but so is also sign
inversion, both of which are at best log-time operations on ordinary 2’s complement representations.
Addition and multiplication on such fixed-point representations are first analyzed and defined in such
a way that rounding information can be carried along in a meaningful way, at minimal cost. The
analysis is carried through for a compact (canonical) encoding using 2’s complement representation,
supplied with a round-bit. Based on the fixed-point encoding it is shown possible to define floating
point representations, and a sketch of the implementation of an FPU is presented.

I. Introduction

In a recent paper [KM05] a class of number representations denoted RN-Codings were intro-
duced, the “RN” standing for “round to nearest”, as these radix-β, signed-digit representations
have the property that truncation yields rounding to the nearest representable value. They are
based on a generalization of the observation that certain radix representations are known to
posses this property, e.g., the balanced ternary (β = 3) system over the digit set {−1, 0, 1}.
Another such representation is obtained by performing the original Booth-recoding [Boo51] on
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a 2’s complement number into the digit set {−1, 0, 1}, where it is well-known that the non-
zero digits of the recoded number alternate in sign. To distinguish between situations where
we are not concerned with the actual encoding of a value, we shall here use the notation RN-
representation.

We shall in Section II from [KM05] cite some of the definitions and properties of the general
RN-Codings/representations. However, we will in particular explore the binary representation,
e.g., as obtained by the Booth recoding; the rounding by truncation property, including the
feature that the effect of one rounding followed by another rounding yields the same result, as
would be obtained by a single rounding to the same precision as the last.

Section III analyzes conversions between RN-representations and 2’s complement representa-
tions. Conversion from the latter to the former is performed by the Booth algorithm, yielding
a signed-digit/borrow-save representation in a straightforward encoding, which for an n-digit
word requires 2n bits. It is then realized that n + 1 bits are sufficient, providing a simpler
alternative encoding consisting of the bits of the truncated 2’s complement encoding, with a
round-bit appended, termed the canonical encoding. Despite being based on a 2’s complement
encoding, it is observed that sign-inversion (negation) is a constant time operation on this
canonical encoding. Conversion the other way, from RN-representation in this encoding into
2’s complement representation (essentially adding in the round-bit) is realizable by a parallel
prefix structure. Section IV generalizes the canonical representation to other radices and digit
sets, showing that for even values of the radix the encodings employing radix-complement
representations are particularly feasible.

Section V then analyzes possible implementations of addition and multiplication on fixed-
point RN-represented numbers. [BM05] discussed implementations of these basic operations
based on the signed-digit representation of RN-coded numbers, whereas we here exploit the
canonical encoding, which seems to be more convenient. Since it turns that there are two possible
encodings of the result of an arithmetic operation, interpretations of the encodings as intervals
may be used to uniquely define sums and products in a consistent way. Section VI sketches how
a floating point RN-representation may be defined and the basic arithmetic operations of an
FPU may be realized. Then Section VII contains examples on some composite computations
where fast and optimal roundings are useful, and may come for free when RN-representation in
the canonical encoding is employed. Finally Section VIII concludes the paper.

II. Definitions and Basic Properties (cited from [KM05])

Definition 1 (RN-representations): Let β be an integer greater than or equal to 2. The digit
sequence D = dndn−1dn−2 · · · (with −β + 1 ≤ di ≤ β − 1) is an RN-representation in radix β of
x iff

1) x =
∑n
i=−∞ diβ

i (that is D is a radix-β representation of x);
2) for any j ≤ n, ∣

∣
∣
∣
∣
∣

j−1
∑

i=−∞

diβ
i

∣
∣
∣
∣
∣
∣

≤
1
2
βj,

that is, if the digit sequence is truncated to the right at any position j, the remaining
sequence is always the number (or one of the two members in case of a tie) of the form
dndn−1dn−2dn−3 . . . dj that is closest to x.

Hence, truncating the RN-representation of a number at any position is equivalent to rounding
it to the nearest.
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Although it is possible to deal with infinite representations, we shall first restrict our dis-
cussions to finite representations. The following observations on such RN-representations for
general β ≥ 2 are then easily found:

Theorem 2 (Characterizations of finite RN-representations):

• if β ≥ 3 is odd, then D = dmdm−1 · · · dℓ is an RN-representation iff

∀i,
−β + 1

2
≤ di ≤

β − 1
2

;

• if β ≥ 2 is even then D = dmdm−1 · · · dℓ is an RN-representation iff
1) all digits have absolute value less than or equal to β

2
;

2) if |di| =
β

2
, then the first non-zero digit that follows on the right has the opposite sign,

that is, the largest j < i such that dj 6= 0 satisfies di × dj < 0.
Observe that for odd β the system is non-redundant, whereas for β even the system is

redundant, in the sense that some non-zero numbers have two representations. In particular note
that for radix 2 the digit set is {−1, 0, 1}, known by the names of “signed-digit” or “borrow-save”,
but here restricted such that the non-zero digits have alternating signs.

Theorem 3 (Uniqueness of finite representations):

• if β is odd, then a finite RN-representation of x is unique;
• if β is even, then some numbers may have two finite representations. In that case, one has

its least significant nonzero digit equal to −β
2
, the other one has its least significant nonzero

digit equal to +β
2
.

Proof: If β is odd, the result is an immediate consequence of the fact that the digit set
is non-redundant. If β is even, then consider two different RN-representations representing the
same value x, and consider the largest position j (that is, of weight βj) such that these RN-
representations differ, when truncated to the right of position j. Let xa and xb be the values
represented by these digit strings. Obviously, xa − xb ∈ {−βj, 0, βj}. Now xa = xb would
contradict the way that j was chosen. Without loss of generality, then assume xb = xa + βj.
This implies x = xa + βj/2 = xb − βj/2, since the maximal absolute value of a digit is β/2.
Hence, the remaining digit strings (i.e., the parts that were truncated) are digit strings starting
from position j − 1, representing ±βj/2.

The only way of representing βj/2 by an RN-representation starting from position j − 1 is
(
β

2

)

0000 · · · 0.

This is seen as follows: if the digit at position j−1 of a number is less than or equal to β
2
−1,

then that number is less than or equal to

(
β

2
− 1
)

βj−1 +
(
β

2

) j−2
∑

i=ℓ

βi < βj/2,

since the largest allowed digit is β
2
. Also, the digit at position j − 1 of an RN-representation

cannot be larger than or equal to β
2

+ 1. This ends the proof for odd β.
If β is even, then a number whose finite representation (by an RN-representation) has its last

nonzero digit equal to β
2

has an alternative representation ending with −β
2

(just assume the last
two digits are d(β

2
): since the representation is an RN-representation, d < β

2
, hence if we replace

these two digits by (d+1)(−β
2
) we still have a valid RN-representation). This has an interesting
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consequence: truncating a number which is a tie will round either way, depending on which of
the two possible representations the number happens to have. Hence, there is no bias in the
rounding.

Note that this rounding rule is different from the “round-to-nearest-even” rule required by
the IEEE standard [IEE85]. Both roundings provide a “round-to-nearest” in the case of a tie,
but employ different rules when choosing which way to round. Also note that this rounding is
also deterministic, the direction of rounding only depends on how the value to be rounded was
derived, as the representation of the value is uniquely determined by the sequence of operations
leading to the value.

Example:

• In radix 7, with digits {−3,−2,−1, 0, 1, 2, 3}, all representations are RN-representations,
and no number has more than one representation;

• in radix 10 with digits {−5, . . . ,+5}, 15 has two RN-representations: 15 and 25.
Theorem 4 (Uniqueness of infinite representations): We now consider infinite representa-

tions, i.e., representations that do not ultimately terminate with an infinite sequence of zeros.
• if β is odd, then some numbers may have two infinite RN-representations. In that case, one

is eventually finishing with the infinite digit string
β−1

2
β−1

2
β−1

2
β−1

2
β−1

2
β−1

2
· · ·

and the other one is eventually finishing with the infinite digit string
−β+1

2
−β+1

2
−β+1

2
−β+1

2
−β+1

2
−β+1

2
· · · ;

• if β is even, then two different infinite RN-representations necessarily represent different
numbers. As a consequence, a number that is not an integer multiple of an integral (positive
or negative) power of β has a unique RN-representation.
Proof: If β is odd, the existence immediately comes from

1.−β+1
2
−β+1

2
−β+1

2
−β+1

2
· · · = 0.β−1

2
β−1

2
β−1

2
β−1

2
· · · = 1

2

Now, if for any β (odd or even) two different RN-representations represent the same number
x, then consider them truncated to the right of some position j, such that the obtained digit
strings differ. The obtained digit strings represent values xa and xb whose difference is ±βj (a
larger difference is impossible for obvious reasons).

First, consider the case where β is odd. From the definition of RN-representations, and
assuming xa < xb, we have x = xa + βj/2 = xb − βj/2. Since β is odd, the only way of
representing βj/2 is with the infinite digit string (that starts from position j − 1)

β−1
2
β−1

2
β−1

2
β−1

2
· · ·

the result immediately follows.
Now consider the case where β is even. Let us first show that xa = xb is impossible. From

Theorem 3, this would imply that one of the corresponding digit strings would terminate with
the digit sequence −β

2
00 · · · 00, and the other one with the digit string +β

2
00 · · · 00. But from

Theorem 2, this would imply that the remaining (truncated) terms are positive in the first case,
and negative in the second case, which would mean (since xa = xb implies that they are equal)
that they would both be zero, which is not compatible with the fact that the representations of x
are assumed infinite. Hence xa 6= xb. Assume xa < xb, which implies xb = xa+βj. We necessarily
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have x = xa+βj/2 = xb−βj/2. Although βj/2 has several possible representations in a “general”
signed-digit radix-β system, the only way of representing it with an RN-representation is to put
a digit β

2
at position j − 1, no infinite representation is possible.

Example:

• In radix 7, with digits {−3,−2,−1, 0, 1, 2, 3}, the number 3/2 has two infinite representa-
tions, namely 1.3333333333 · · · and 2.3333333333 · · ·

• in radix 10 with digits {−5, . . . ,+5}, the RN-representation of π is unique.
An important property of the RN-representation is that it avoids the double rounding problem

occurring with some rounding methods, e.g., with the standard IEEE round-to-nearest-even.
This may happen when the result of first rounding to a position j, followed by rounding to
position k, does not yield the same result as if directly rounding to position k. We repeat from
[KM05] the following result:

Observation 5 (Double rounding):
Let rni(x) be the function that rounds the value of x to nearest at position i by truncation.
Then for k > j, if x is represented in the RN-representation, then

rnk(x) = rnk(rnj(x))

III. Converting to and from Binary RN-Representation

A. Conversion from 2’s Complement to RN-Representation

Consider an input value x = −bm2m +
∑m−1
i=ℓ bi2

i in 2’s complement representation:

x ∼ bmbm−1 · · · bℓ+1bℓ

with bi ∈ {0, 1} and m > ℓ. Then the digit string

δmδm−1 · · · δℓ+1δℓ with δi ∈ {−1, 0, 1}

defined (by the Booth recoding [Boo51]) for i = ℓ, · · · ,m as

δi = bi−1 − bi (with bℓ−1 = 0 by convention) (1)

is an RN-representation of x with δi ∈ {−1, 0, 1}. That it represents the same value follows
trivially by observing that the converted string represents the value 2x− x. The alternation of
the signs of non-zero digits is easily seen by considering how strings of the form 011 · · · 10 and
100 · · · 01 are converted.

Thus the conversion can be performed in constant time. Actually, the digits of the 2’s com-
plement representation directly provides for an encoding of the converted digits as a tuple:
δi ∼ (bi−1, bi) for i = ℓ, · · · ,m where

−1 ∼ (0, 1)
0 ∼ (0, 0) or (1, 1)
1 ∼ (1, 0),

(2)

where the value of the digit is the difference between the first and the second component.
Example: Let x = 110100110010 be a sign-extended 2’s complement number and write the

digits of 2x above the digits of x:

2x 1 0 1 0 0 1 1 0 0 1 0 0

x 1 1 0 1 0 0 1 1 0 0 1 0

x in RN-representation 1̄ 1 1̄ 0 1 0 1̄ 0 1 1̄ 0
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where it is seen that in any column the two upper-most bits provide the encoding defined above
of the signed-digit below in the column. Since the digit in position m+1 will always be 0, there
is no need to include the most significant position otherwise found in the two top rows.

If x is non-zero and bk is the least significant non-zero bit of the 2’ complement representation
of x, then δk = −1, confirmed in the example, hence the last non-zero digit is always 1̄ and
thus unique. However, if an RN-represented number is truncated for rounding somewhere, the
resulting representation may have its last non-zero digit of value 1.

As mentioned in Theorem 3 there are exactly two finite binary RN-representations of any non-
zero binary number of the form a2k for integral a and k, but requiring a specific sign of the last
non-zero digit makes the representation unique. On the other hand without this requirement,
rounding by truncation makes the rounding unbiased in the tie-situation, by randomly rounding
up or down, depending on the sign of the last non-zero digit in the remaining digit string.

Example: Rounding the value of x in Example 1 by truncating off the two least significant
digits we obtain

rn2(2x) 1 0 1 0 0 1 1 0 0 1

rn2(x) 1 1 0 1 0 0 1 1 0 0

rn2(x) in RN-representation 1̄ 1 1̄ 0 1 0 1̄ 0 1

where it is noted that the bit of value 1 in the upper rightmost corner (in boldface) acts as a
round bit, assuring a round-up in cases there is a tie-situation as here.

The example shows that there is another very compact encoding of RN-represented numbers
derived directly from the 2’s complement representation, noting in the example that the upper
row need not be part of the encoding, except for the round-bit. We will denote it the canonical
encoding, and note that it is a kind of “carry-save” in the sense that it contains a bit not yet
added in. The same idea have previously been pursued in [NMLE00] in a floating-point setting,
denoted “packet-forwarding”.

Definition 6 (Binary canonical RN-encoding):
Let the number x be given in 2’s complement representation as the bit string bm · · · bℓ+1bℓ, such
that x = −bm2m +

∑m−1
i=ℓ bi2

i. Then the binary canonical encoding of the RN-representation of
x is defined as the pair

x ∼ (bmbm−1 · · · bℓ+1bℓ, r) where the round-bit is r = 0

and after truncation at position k, for m ≥ k > ℓ

rnk(x) ∼ (bmbm−1 · · · bk+1bk, r) with round-bit r = bk−1.

If (x, rx) is the binary canonical (2’s complement) RN-representation of X, then X = x+rxu,
from which it follows that

−X = −x− rxu = x̄+ u− rxu = x̄+ (1− rx)u = x̄+ r̄xu.

Observation 7: If (x, rx) is the canonical RN-representation of a value X, then (x̄, r̄x) is the
canonical RN-representation of −X, where x̄ is the 1’s complement of x. Hence negation of a
canonically encoded value is a constant time operation.

The signed-digit interpretation is available from the canonical encoding by pairing bits,
(bi−1, bi) using the encoding (2) for i > k and (r, bk), when truncated at position k.
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There are other equally compact encodings of RN-represented numbers, e.g., one could encode
the signed-digit string simply by the string of bits obtained as the absolute values of the digits,
together with say the sign of the most (or least) non-zero digit. Due to the alternating signs
of the non-zero digits, this is sufficient to reconstruct the actual digit values. However, this
encoding does not seem very convenient for arithmetic processing, as the correct signs will then
have to be distributed over the bit string.

B. Conversion from Signed-Digit RN-Representation to 2’s Complement

The example of converting 00000001̄ into its 2’s complement equivalent 11111111 shows that
it is not possible to perform this conversion in constant time, information may have to travel an
arbitrary distance to the left. Hence a conversion may in general take at least logarithmic time.
Since the RN-representation is a special case of the (redundant) signed-digit representation, this
conversion is fundamentally equivalent to an addition.

If an RN-represented number is in canonical encoding, conversion into ordinary 2’s comple-
ment representation may require a non-zero round-bit to be added in, it simply consists in
an incrementation, for which very efficient methods exists based on parallel prefix trees with
AND-gates as nodes.

IV. Canonical Representation, the General Case

The binary canonical representation of RN-representation is specified by x = (a, ra), which
is a pair of a number and a bit. We could decide to represent the value of a of that pair in
something else than binary, say using a higher radix β and/or a digit set different from the set
{0, . . . , β − 1}.

Definition 8 (Canonical encoding: general case): Let b be a number in radix β using the digit
set D, such that b =

∑m−1
i=ℓ biβ

i with bi ∈ D, and the rounding bit rb ∈ {0, 1}. The pair (b, rb)
then represents the value b+ urb, where u is the unit in the last place (u = βl).

The definition is very general, as the representation doesn’t necessarily allow rounding by
truncation. We must redefine the rounding operation so that we avoid problems with double-
roundings, basically by trying to convert the encoding into an RN-representation satisfying
Definition 1.

A. Even Radix

The definition seems to make particular sense when a (non-negative) number is represented in
an even radix with the regular digit-set {0, . . . , β − 1}. In that representation the link between
the canonical encoding and RN-representation is trivial enough, so that rounding-to-nearest can
be done by truncation of the value b in the pair (b, rb).

Consider an input value in radix-β with 0 ≤ di ≤ β − 1

(x, rx) = (dmdm−1dn−2 · · · dℓ, rx),

and define variables ck as

ck+1 =







1 if dk ≥
β

2

0 if dk <
β

2

(3)

With cℓ = rx the digits δk of an RN-representation can be obtained using

δk = dk + ck − βck+1.
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The conversion for an even radix and digit set {0, . . . , β− 1} into RN-representation gives us
a way to easily perform rounding-to-nearest by truncation of (x, rx) in the canonical encoding.
For k > ℓ:

rnk(x, rx) ∼ (dndn−1 . . . dk+1dk, r) with round-bit r =

{

1 if dk−1 ≥ β/2
0 if dk−1 < β/2

so in RN-representation the value can also be expressed by the digit string δnδn−1 . . . δk ∈
{−β

2
, · · · , β

2
}.

Example: With radix β = 10 and the regular digit-set {0, . . . , 9}, for the value 9.25451
represented by (9.25450, 1), we can truncate using the previous algorithm:

rn−3(9.25450, 1) = (9.254, 1), the rounding-bit being 1 because d−4 = 5 =⇒ c−3 = 1.

We only need to generate one carry (c−3) to obtain the rounding bit.
To confirm that the rounding is correct, we may represent the value in RN-representation, by

generating all the carries:

ck 1 0 1 0 1 0 1

dk 0 9 2 5 4 5 0
RN-representation 1 1̄ 3 5̄ 5 5̄ 1

With this RN-representation, truncating at position −3 gives:

ck 1 0 1 0 1

dk 0 9 2 5 4
RN-representation 1 1̄ 3 5̄ 5

corresponding to the previous canonical encoding (9.254, 1). Note that to represent the given
positive value, d1 was set to zero. Had the value been a (negative) 10’s complement represented
number, then d1 should by sign extension have been set to 9.

B. Other Representations

If we use other representations of b (say binary borrow-save, odd radices,...), the rounding
may take time O(log(n)):

Example: [Borrow-save:] When trying to round x in a general borrow-save representation
to the nearest integer, we have for any round bit rx ∈ {0, 1}:

borrow-save rounded
(11̄1̄0.00 . . . 01̄, rx) (11̄1̄1̄, 1)
(11̄1̄0.00 . . . 00, rx) (11̄1̄0, 0)

hence we may have to look arbitrarily far to the right when rounding the values.
However, borrow-save could be interesting, since addition then can be performed in O(1), instead
of O(log(n)) for binary canonical encoding using the regular digit-set {0, 1}. It is important to
recall that borrow-save isn’t an RN-representation, even though it uses the same digits. To have
an RN-representation, the non-zero digits must alternate in signs, and translating an arbitrary
number from borrow-save to RN-representation might take a O(log(n)) time.
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Example: [Odd radices:] When trying to round to the nearest integer, we have similarly:

radix 3 rounded
(10.11 . . . 12, rx) (10, 1)
(10.11 . . . 11, rx) (10, 0)

which means we may have to look arbitrarily far to the right when rounding the values. It is
due to the fact that the mid-point between two representable numbers needs to be represented
with an infinite number of digits. In general, odd radices do not seem convenient to use.

V. Performing Arithmetic Operations on Canonically Represented Values

The fundamental idea of the canonical radix-2 RN-representation is that it is a binary
representation of some value using the digit set {−1, 0, 1}, but such that non-zero digits al-
ternate in sign. We then introduced an encoding of such numbers, employing 2’s complement
representation, in the form (a, ra) representing the value

(2a+ rau)− a = a+ rau,

where u is the weight of the least significant position of a. Note that there is then no difference
between (a, 1) and (a+ u, 0), both being RN-representations of the same value:

∀a,V(a, 1) = V(a+ u, 0),

where we use the notation V(x, rx) to denote the value of an RN-represented number.

A. An Interval Interpretation

Considered as intervals as described below, the two representations (a, 1) and (a+u, 0) describe
different intervals. Since different representations of the same number can give different rounding
results when truncated, it is then important to choose carefully the representation of the result
when performing arithmetic operations like addition and multiplication. Hence when defining
the result it is essential to choose the encoding of it to reflect the domains of the operands.

Consider a value A to be rounded at some position of weight u where the round bit is 1,
shown in boldface:

... 0 1 1 ... 1 x ...
... 0 1 ... 1 1 x ...
... 1 0 ... 0

︸ ︷︷ ︸ ︸ ︷︷ ︸
a+ u −u

2
≤ t ≤ 0

... 0 1 x ...
... 0 1 x ...
... 1

︸ ︷︷ ︸ ︸ ︷︷ ︸
a+ u −u

2
≤ t ≤ 0

and similarly when the round bit is 0:

... 1 0 0 ... 0 x ...
... 1 0 ... 0 0 x ...
... 1̄ 0 ... 0

︸ ︷︷ ︸ ︸ ︷︷ ︸
a 0 ≤ t ≤ u

2

... 1 0 x ...
... 1 0 x ...
... 1̄

︸ ︷︷ ︸ ︸ ︷︷ ︸
a 0 ≤ t ≤ u

2

expressing bounds on the tail t thrown away during rounding by truncation. Observe that the
right-hand ends of the intervals are closed, corresponding to a possibly infinite sequence of units
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having been thrown away. We find that the value A before rounding into V(a, ra) must belong
to the interval:

A ∈







[

a ; a+ u
2

]

for ra = 0
[

a+ u
2

; a+ u
]

for ra = 1






=
[

a+ ra u2 ; a+ (1 + ra)u2
]

= I(a, ra). (4)

In the following we shall use I(a, ra) to denote the interval, the idea being to remember where
the real number was before rounding.

︸ ︷︷ ︸

(100,0)

100
100.1

101
101.1

110
110.1

111

︸ ︷︷ ︸

(100,1)

︸ ︷︷ ︸

(101,0)

︸ ︷︷ ︸

(101,1)

︸ ︷︷ ︸

(110,0)

︸ ︷︷ ︸

(110,1)

Fig. 1. Example of interpreting RN representations as intervals with u = 1

We may interpret the representations of an encoding as an interval of length u/2, as in Fig. 1.
In the figure, any number between 101 and 101.1 (for example 101.01), when rounded to the
nearest integer, will give the RN representation (101, 0). So we may say that (101, 0) represents
the interval [101; 101.1] and in particular

I(a, 1) =
[

a+ u
2

; a+ u
]

,

I(a+ u, 0) =
[

a+ u ; a+ 3u
2

]

.

Hence even though the two encodings represent the same value (a + u), when interpreting
them as intervals according to what could have been thrown away, the intervals are essentially
disjoint, except for sharing a single point. In general we may express the interval interpretation
as pictured in Fig. 2

✲

✻
a

✻
a+ u

2

✻
a+ u

✻
a+ 3u

2

✻
a+ 2u

[ ][ ][ ][ ]
I(a, 0) I(a, 1) I(a+ u, 0) I(a+ u, 1)

Fig. 2. Binary Canonical RN-representations as Intervals

We do not intend to define an interval arithmetic, but only require that the interval repre-
sentation of the result of an arithmetic operation ⊙ satisfies1

I(A⊙B) ⊆ I(A)⊙ I(B) = {a⊙ b|a ∈ A, b ∈ B}.

To simplify the discussion, we will in this section consider only fixed-point representations for
some fixed value of u. We will not discuss overflow problems, as we assume that we have enough
bits to represent the result in canonically encoded representation.

1Note that this is the reverse inclusion of that required for ordinary interval arithmetic
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B. Addition of RN-represented Values

Employing the value interpretation we have for addition:

V(a, ra) = a+ rau
+ V(b, rb) = b+ rbu

V(a, ra) + V(b, rb) = a+ b+ (ra + rb)u

The resulting value has two possible representations, depending on the rounding bit of the
result. To determine what the rounding bit of the result should be, we may look at the interval
interpretations of the two possible representations of the result, depending on he rounding bits
of the operands.

I(V(a, ra) + V(b, rb)) I(a, ra) + I(b, rb)

ra = rb = 0
I(a+ b− u, 1) =

[

a+ b− u
2

; a+ b
]

I(a+ b, 0) =
[

a+ b ; a+ b+ u
2

]
*
⊆

[a+ b ; a+ b+ u]
[a+ b ; a+ b+ u]

ra ⊕ rb = 1
I(a+ b, 1) =

[

a+ b+ u
2

; a+ b+ u
]

I(a+ b+ u, 0) =
[

a+ b+ u ; a+ b+ 3u
2

]






⊆
[

a+ b+ u
2

; a+ b+ 3u
2

]

ra = rb = 1
I(a+ b+ u, 1) =

[

a+ b+ 3u
2

; a+ b+ 2u
]

I(a+ b+ 2u, 0) =
[

a+ b+ 2u ; a+ b+ 5u
2

]
⊆
*

[a+ b+ u ; a+ b+ 2u]
[a+ b+ u ; a+ b+ 2u]

Since we want I(V(a, ra) + V(b, rb)) ⊆ I(a, ra) + I(b, rb), and (a, ra) + (0, 0) = (a, ra), and in
order to keep the addition symmetric, we define the addition of RN encoded numbers as follows.

Definition 9 (Addition of canonically encoded numbers): If u is the unit in the last place of
the operands, let:

(a, ra) + (b, rb) = ((a+ b+ (ra ∧ rb)u), ra ∨ rb)

Noticing that −(x, rx) = (x̄, r̄x), we observe that using this definition, (x, rx) − (x, rx) =
(−u, 1), with V(−u, 1) = 0. In fact, it is possible to define another addition on RN-encoded
numbers as (a, ra) +2 (b, rb) = ((a + b + (ra ∨ rb)u), ra ∧ rb). Using that alternative definition,
(x, rx) −2 (x, rx) = (0, 0), but the neutral element for addition is then (−u, 1), i.e. (x, rx) +2

(−u, 1) = (x, rx).
Example: Let us take two examples adding two numbers that were previously rounded to

the nearest integer.

Addition
not rounded

Addition on rounded
canonical representations

a1 01011.1110 (01011, 1)
b1 01001.1101 (01001, 1)
a1 + b1 010101.1011 (010101, 1)
a2 01011.1010 (01011, 1)
b2 01001.1001 (01001, 1)
a2 + b2 010101.0011 (010101, 1)

Using the definition above, rn0(a1 + b1) = rn0(a1) + rn0(b1) holds in the first case. Obviously,
since some information may be lost during rounding, there are cases like in the second example
where rn0(a2 + b2) 6= rn0(a2) + rn0(b2). Also note that due to that information loss, a2 + b2 is
not in I((a2, ra2

) + (b2, rb2))



12

When interpreted as an interval, I(x, rx) =
[

x+ rx u2 ; x+ (1 + rx)u2
]

then its “mirror image”

interval of negated values is −I(x, rx) =
[

x̄+ r̄x u2 ; x̄+ (1 + r̄x)u2
]

= I(x̄, r̄x). Thus consider for
subtraction

I ((a, ra)− (b, rb)) = I
(

(a, ra) + (b̄, r̄b)
)

= I(a+ b̄+ (ra ∨ r̄b)u, ra ∧ r̄b)

=
[

a+ b̄+ u(ra ∨ r̄b) + u
2
(ra ∧ r̄b) ; a+ b̄+ u(ra ∨ r̄b) + u

2
(1 + ra ∧ r̄b)

]

= a+ b̄+ u(ra ∨ r̄b) + u
2
(ra ∧ r̄b) +

[

0 ; u
2

]

= a− b+ u(ra − rb)− u2 (ra ∧ r̄b) +
[

0 ; u
2

]

= a− b+ u
2
(ra − rb)− u2 (r̄a ∧ rb) +

[

0 ; u
2

]

.

On the other hand,

I(a, ra)− I(b, rb) =
[

a+ u
2
ra ; a+ u

2
(1 + ra)

]

−
[

b+ u
2
rb ; b+ u

2
(1 + rb)

]

= a− b+ u
2
(ra − rb) +

[

−u
2

; u
2

]

,

hence for all points x ∈ I ((a, ra)− (b, rb)), x is in I(a, ra)− I(b, rb).
Hence subtraction of (x, rx) can be realized by addition of the bitwise inverted tuple (x̄, r̄x).

C. Multiplying Canonically Encoded RN-represented values

By definition we have for the value of the product

V(a, ra) = a+ rau
V(b, rb) = b+ rbu

V(a, ra)V(b, rb) = ab+ (arb + bra)u+ rarbu2,

noting that the unit of the result is u2, assuming that u ≤ 1. Considering the operands as
intervals we find using (4):

I(a, ra)× I(b, rb) =
[

a+ ra u2 ; a+ u
2
(1 + ra)

]

×
[

b+ u
2
rb ; b+ u

2
(1 + rb)

]

= a′b′ +







[

0 ; a′ + b′ + u
2

]

× u
2

for a > 0, b > 0
[a′ ; b′]× u

2
for a < 0, b > 0

[b′ ; a′]× u
2

for a > 0, b < 0
[

a′ + b′ + u
2

; 0
]

× u
2

for a < 0, b < 0

(5)

where a′ = a + ra u2 and b′ = b + rb u2 , and it is assumed that a and a′ share the same sign and
similarly for b and b′ (assumed satisfied if a 6= 0 and b 6= 0). But for a < 0 and b < 0, with
ra = rb = 0 we would expect the result (ab, 0) as interval I(ab, 0) = ab +

[

0 ; u
2

]

, to be in the
appropriate interval defined by (5), which is NOT the case!

However, since negation of canonical (2’s complement) RN-represented values can be obtained
by constant-time bit inversion, multiplication of such operands can be realized by multiplication
of the absolute values of the operands, the result being supplied with the correct sign by a
conditional inversion.
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Thus employing bit-wise inversions, multiplication in 2’s complement RN-representations
becomes equivalent to sign-magnitude multiplication, hence assuming that both operands are
non-negative, the “interval product” is

I(a, ra)× I(b, rb) =
[

a+ ra u2 ; a+ u
2
(1 + ra)

]

×
[

b+ rb u2 ; b+ u
2
(1 + rb)

]

=
[

(a+ ra u2 )(b+ rb u2 ) ; (a+ u
2
(1 + ra))(b+ u

2
(1 + rb))

]

= (a+ ra u2 )(b+ rb u2 ) +
[

0 ; (a+ ra u2 ) + (b+ rb u2 ) + u2

4

]

= ab+
[

arb + bra + rarb
2
u
]
u
2

+
[

0 ; a+ b+ (ra + rb + 1)u
2

]
u
2

(6)

=







ab +
[

0 ; a+ b+ u
2

]
u
2

for ra = rb = 0

ab+ au
2

+ [0 ; a+ b+ u] u
2

for ra = 0, rb = 1

ab+ bu
2

+ [0 ; a+ b+ u] u
2

for ra = 1, rb = 0

ab+ (a+ b+ u
2
)u

2
+
[

0 ; a+ b+ 3
2
u
]
u
2

for ra = rb = 1

It then follows that I ((ab+ (arb + bra)u, rarb) ⊆ I ((a, ra)× (b, rb)) with unit u2, since the
lefthand RN-representation corresponds to the interval

[

(ab+ (arb + bra)u) + (rarb)u
2

2
; (ab+ (arb + bra)u) + (1 + rarb)u

2

2

]

and its lower endpoint is greater than or equal to the lower endpoint from (6):

ab+ (arb + bra)u+ (rarb)u
2

2
≥ ab+ (arb + bra + rarb

2
u)u

2

together with the upper endpoint being smaller than or equal to that from (6):

ab+ (arb + bra)u+ (1 + rarb)u
2

2
≤ ab+ (arb + bra + rarb

2
u)u

2
+ (a+ b+ (ra + rb + 1)u

2
)u

2

both satisfied for a ≥ u, b ≥ u (i.e., non-zero) and all permissible values of ra, rb.
Definition 10 (Multiplication of canonically encoded numbers): If u is the unit in the last place,

with u ≤ 1, we define for non-negative operands:

(a, ra)× (b, rb) = (ab+ u(arb + bra), rarb) ,

and for general operands by appropriate sign inversions of the operands and result. If u < 1 the
unit is u2 < u and the result may often have to be rounded to unit u, which can be done by
truncation.

For an implementation some modifications to an unsigned multiplier will handle the ra and
rb round bits, we just have to calculate the double length product with two additional rows
consolidated into the partial product array. However, we shall not here go into the details of
the consolidation.

The multiplier (b + rbu) may also be recoded into radix 2 (actually it is already so when
interpreted as a signed-digit number) or into radix 4, and a term (bit) dira may be added in
the row below the row for the partial product dia, where di is the recoded i’th digit of the
multiplier. Hence only at the very bottom of the array of partial products will there be a need
for adding in an extra bit as a new row. The double length product can be returned as (p, rp),
noticing that the unit now is u′ = u2, but the result may have to be rounded, which by simple
truncation will define the rounded product as some (p′, r′p).
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Example: As an example with u = 1:

Not rounded Canonical Representation
a 01011.1110 (01011, 1)
b 01001.1101 (01001, 1)
a× b 01110100.10000110 (01110111, 1)

The multiplication in canonical representation was done according to the definition:

ab+ (arb + bra) = 01100011 + (01011 + 01001) = 01100011 + 010100 = 01110111,

where we note that (01110111, 1) corresponds to the interval:

[01110111.1 ; 01111000.0]

clearly a subset of the interval

[01011.1× 01001.1 ; 01100× 01010] = [01101101.01 ; 01111000.00].

It is obvious that rounding results in larger errors when performing multiplication.
Similarly, some other arithmetic operations like squaring, square root or even the evaluation

of “well behaved” transcendental functions may be defined and implemented, just considering
canonical RN-represented operands as 2’s complement values with a “carry-in” not yet absorbed,
possibly using interval interpretation to define the resulting round bit.

VI. Floating Point representations

For an implementation of a floating point arithmetic unit (FPU) it is necessary to define a
binary encoding, which we assume is based on the canonical 2’s complement for the encoding
of the significand part (say s encoded in p bits, 2’s complement), supplied with the round bit
(say rs) and an exponent (say e in some biased binary encoding). It then seems natural to pack
the three parts into a computer word (32, 64 or 128 bits) in the following order:

e s rs

with the round bit in immediate continuation of the significand part, thus simplifying the
rounding by truncation. As usual we will require the value being represented is in normalized
form, say such that the radix point is between the first and second bit of the significand field.
If the first bit is zero, the significand field then represents a fixed point value in the interval
1
2
≤ s < 1, if it is one then −1 ≤ s < −1

2
.

We shall now sketch how the fundamental operations may be implemented on such floating
point RN-representations, not going into details on overflow, underflow and exceptional values.

A. Multiplication

Since the exponents are handled separately, forming the product of the significands is precisely
as described previously for fixed point representations: sign-inverting negative operands, form-
ing the double-length product, normalizing and rounding it, and possibly negating the result,
supplying it with the proper sign.

Normalizing here may require a left shift, which is straight forward on the (positive) product
before rounding by truncation.
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B. Addition, the "far case"

Addition is traditionally now handled in an FPU as two cases, the “near case” dealing with
effective subtraction of operands whose exponents differ by no more than one. Here a significant
cancellation of leading digits may occur, and thus a variable amount of left-normalization is
required. We will deal with this case below

The remaining cases dealt with are the “far case”, where the result at most requires nor-
malization by a single right shift. Otherwise addition/subtraction takes place as for the similar
operation in IEEE, sign magnitude representation. There is no need in general to form the exact
sum/difference when there is a great difference in exponents.

C. Subtraction, the "near case"

After cancellation of leading digits there is a need to left normalize, so our problem here is
to consider what to shift in from the right. Thinking of the value as represented in signed digit,
binary value, obviously zeroes have to be shifted in.

In our encoding, say for a positive result (d, rd) we may have a 2’s complement bit pattern:

d ∼ 0 0 · · · 0 1 bk+2 · · · bp−1 and round bit rd

to be left normalized. Here the least significant digit is encoded as
{
rd
bp−1

}

.
It is then found that shifting in bits of value rd will precisely achieve the effect of shifting in

zeroes in the signed-digit interpretation:

2kd ∼ 0 1 bk+2 · · · bp−1rd · · · rd with round bit rd,

as seen from 2× (x, rx) = (x, rx) + (x, rx) = (2x+ rxu, rx).

D. Division

As for multiplication we assume that negative operands have been sign-inverted, and that
exponents are treated separately.

Employing our interval interpretation, we must require the result of division of (x, rx) by
(y, ry) to be in the interval:

[

x+ rx u2
y + (1 + ry)u2

;
x+ (1 + rx)u2
y + ry u2

]

.

After some algebraic manipulations it is found that the exact rational

q =
x+ rxu
y + ryu

belongs to that interval. Hence any standard division algorithm may be used to develop an
approximation to the value of q to (p+1)-bit precision, i.e., including the usual round bit where
the sign of the remainder may be used to determine if the exact result is just below or above
the found approximation.
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E. Discussion of Floating Point RN-Representations

As seen above it is feasible to define a floating point representation where the significand is
encoded in the binary canonical 2’s complement encoding, together with the round-bit appended
at the end of the encoding of the significand. An FPU implementation of the basic arithmetic
operations is feasible at about the same complexity as those based on the IEEE-754 standard
for binary floating point, with a possible slight overhead in multiplication due to extra terms
to be added, but since the round-to-nearest functionality is achieved at much less hardware
complexity, the arithmetic operations will generally be faster, by avoiding the usual log-time
rounding. The other (directed) roundings can also be realized at minimal cost.

Benefits are obtained through faster rounding and sign inversion (both constant time), but
the domain of representable values is not symmetric, as is the case when encoding the significand
in sign-magnitude representations.

VII. Applications in Signal Processing

Let us here think of the use of the fixed-point RN representation in high-speed digital signal
processing applications, although there are similar benefits in floating point.

Two particular applications needing frequent roundings come to mind: calculation of inner
products for filtering, and polynomial evaluations for approximation of standard functions. For
the latter application, a very efficient way of evaluating a polynomial is to apply the Horner
Scheme. Let f(x) =

∑n
i=0 aix

i be such a polynomial approximation, then f(x) is efficiently
evaluated as

f(x) = (· · · ((an) ∗ x+ an−1) ∗ x · · ·+ a1) ∗ x+ a0,

where to avoid a growth in operand lengths, roundings are needed in each cycle of the algorithm,
i.e., after each multiply-add operation. But here the round-bits can easily be absorbed in a
subsequent arithmetic operation, only at the very end a regular conversion may be needed, but
normally the result is to be used in some calculation, hence again a conversion may be avoided.

For inner product calculations, the most accurate result is obtained if accumulation is per-
formed in double precision, it will even be exact when performed in fixed-point arithmetic.
However, if double precision is not available it is essential that a fast and optimal rounding is
employed during accumulation of the product terms.

VIII. Conclusions and Discussion

We have analyzed a general class of number representations for which truncation of a digit
string yields the effect of rounding to nearest.

Concentrating on binary RN-represented operands, we have shown how a simple encoding,
based on the ordinary 2’s complement representation, allows trivial (constant time) conversion
from 2’s complement representation to the binary RN-representation. A simple parallel prefix
(log time) algorithm is needed for conversion the other way. We have demonstrated how operands
in this particular canonical encoding can be used at hardly any penalty in many standard cal-
culations, e.g., addition and multiplication, with negation even being a constant time operation,
which often simplifies the implementation of arithmetic algorithms.

The particular feature of the RN-representation, that rounding-to-nearest is obtained by
truncation, implies that repeated roundings ending in some precision yields the same result, as
if a single rounding to that precision was performed. In [Lee89] it was proposed to attach some
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state information (2 bits) to a rounded result, allowing subsequent roundings to be performed
in such a way, that multiple roundings yields the same result as a single rounding to the same
precision. It was shown that this property holds for any specific IEEE-754 [IEE85] rounding
mode, including in particular for the round-to-nearest-even mode. But these roundings may
still require log-time incrementations, which is avoided with the proposed RN-representation.

The fixed point encoding immediately allows for the definition of corresponding floating point
representations, which in a comparable hardware FPU implementations will be simpler and
faster than those of equivalent IEEE standard conforming implementation.

Thus in applications where many roundings are needed, and conformance to the IEEE-754
standard is not required, employing the RN-representation it is possible to avoid the penalty of
intermediate log-time roundings. Signal processing may be an application area where specialized
hardware (ASIC or FPGA) is often used anyway, and the RN-representation can provide faster
arithmetic with round to nearest operations at reduced area and delay.
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