
HAL Id: ensl-00445343
https://ens-lyon.hal.science/ensl-00445343v2

Submitted on 14 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient and accurate computation of upper bounds of
approximation errors

Sylvain Chevillard, John Harrison, Mioara Maria Joldes, Christoph Lauter

To cite this version:
Sylvain Chevillard, John Harrison, Mioara Maria Joldes, Christoph Lauter. Efficient and accurate
computation of upper bounds of approximation errors. Theoretical Computer Science, 2011, 412 (16),
pp.1523-1543. �10.1016/j.tcs.2010.11.052�. �ensl-00445343v2�

https://ens-lyon.hal.science/ensl-00445343v2
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Efficient and accurate computation of

upper bounds of approximation errors

Sylvain Chevillard∗,
John Harrison∗∗,
Mioara Joldeş∗∗∗,
Christoph Lauter∗∗

∗INRIA, LORIA
Caramel Project-Team
BP 239, 54506 Vandœuvre-lès-Nancy Cedex, FRANCE

∗∗Intel Corporation
2111 NE 25th Avenue, M/S JF1-13, Hillsboro, OR, 97124, USA

∗∗∗École Normale Supérieure de Lyon, Arénaire
LIP (UMR 5668 CNRS - ENS Lyon - INRIA - UCBL)
46, allée d’Italie, 69364 Lyon Cedex 07, FRANCE

July 2010

Research Report No RR2010-2

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique :lip@ens-lyon.fr

Efficient and accurate computation of upper bounds of

approximation errors

Sylvain Chevillard∗, John Harrison∗∗, Mioara Joldeş∗∗∗, Christoph Lauter∗∗

∗INRIA, LORIA

Caramel Project-Team

BP 239, 54506 Vandœuvre-lès-Nancy Cedex, FRANCE

∗∗Intel Corporation

2111 NE 25th Avenue, M/S JF1-13, Hillsboro, OR, 97124, USA

∗∗∗École Normale Supérieure de Lyon, Arénaire

LIP (UMR 5668 CNRS - ENS Lyon - INRIA - UCBL)

46, allée d’Italie, 69364 Lyon Cedex 07, FRANCE

July 2010

Abstract

For purposes of actual evaluation, mathematical functions f are com-
monly replaced by approximation polynomials p. Examples include
floating-point implementations of elementary functions, quadrature or
more theoretical proof work involving transcendental functions.
Replacing f by p induces a relative error ε = p/f −1. In order to ensure
the validity of the use of p instead of f , the maximum error, i.e. the
supremum norm ‖ε‖∞ must be safely bounded above.
Numerical algorithms for supremum norms are efficient but cannot offer
the required safety. Previous validated approaches often require tedious
manual intervention. If they are automated, they have several draw-
backs, such as the lack of quality guarantees.
In this article a novel, automated supremum norm algorithm with a

priori quality is proposed. It focuses on the validation step and paves
the way for formally certified supremum norms.
Key elements are the use of intermediate approximation polynomials
with bounded approximation error and a non-negativity test based on a
sum-of-squares expression of polynomials.
The new algorithm was implemented in the Sollya tool. The article
includes experimental results on real-life examples.

Keywords: Supremum norm, Approximation error, Taylor models, Sum-of-squares,
Validation, Certification, Formal proof

Efficient and accurate computation of upper bounds of approximation errors 1

1 Introduction

Replacing functions by polynomials to ease computations is a widespread technique in math-
ematics. For instance, handbooks of mathematical functions [1] give not only classical prop-
erties of functions, but also convenient polynomial and rational approximations that can be
used to approximately evaluate them. These tabulated polynomials have proved to be very
useful in the everyday work of scientists.

Nowadays, computers are commonly used for computing numerical approximations of
functions. Elementary functions, such as exp, sin, arccos, erf, etc., are usually implemented
in libraries called libms. Such libraries are available on most systems and many numerical
programs depend on them. Examples include CRlibm, glibc, Sun∗ libmcr and the Intel R©

libm available with the Intel R© Professional Edition Compilers and other Intel R© Software
Products.

When writing handbooks as well as when implementing such functions in a libm, it is
important to rigorously bound the error between the polynomial approximation p and the
function f . In particular, regarding the development of libms, the IEEE 754-2008 standard [2]
recommends that the functions be correctly rounded.

Currently most libms offer strong guarantees: they are made with care and pass many
tests before being published. However, in the core of libms, the error between polynomial
approximations and functions is often only estimated with a numerical application such as
Maple that supports arbitrary precision computations. As good as this numerical estimation
could be, it is not a mathematical proof. As argued by the promoters of correctly rounded
transcendentals, if a library claims to provide correctly rounded results, its implementation
should be mathematically proven down to the smallest details, because necessary validation
cannot be achieved through mere testing [3].

Given f the function to be approximated and p the approximation polynomial used, the
approximation error is given by ε(x) = p(x)/f(x) − 1 or ε(x) = p(x) − f(x) depending on
whether the relative or absolute error is considered. This function is often very regular: in
Figure 1 the approximation error is plotted in a typical case when a minimax approximation
polynomial of degree 5 is used [4, Chapter 3].

A numerical algorithm tells us that the maximal absolute value of ε in this case (Figure 1)
is approximately 1.1385 · 10−6. But can we guarantee that this value is actually greater than
the real maximal error, i.e. an upper bound for the error due to the approximation of f by
p? This is the problem we address in this article. More precisely, we present an algorithm
for computing a tight interval r = [ℓ, u], such that ‖ε‖I∞ ∈ r. Here, ‖ε‖I∞ denotes the

infinity or supremum norm over the interval I, defined by ‖ε‖I∞ = supx∈I{|ε(x)|}. Although

several previous approaches exist for bounding ‖ε‖I∞, this problem does not have a completely
satisfying solution at the moment. In what follows we give an overview of all the features
needed for and achieved by our algorithm:

i. The algorithm is fully automated. In practice, a libm contains many functions. Each of
them contains one or more approximation polynomials whose error must be bounded.
It is frequent that new libms are developed when new hardware features are available.
So our problem should be solved as automatically as possible and should not rely on
manual computations.

∗Other names and brands may be claimed as the property of others.

2 S. Chevillard, J. Harrison, M. Joldeş, Ch. Lauter

Figure 1: Approximation error in a case typical for a libm

ii. The algorithm handles not only simple cases when f is a basic function (such as exp,
arcsin, tan, etc.) but also more complicated cases when f is obtained as a composition
of basic functions such as exp(1 + cos(x)2) for instance. Besides the obvious interest
of having an algorithm as general as possible, this is necessary even for implementing
simple functions in libms. Indeed it is usual to replace the function to be implemented f
by another one g in a so-called range reduction process [5, Chapter 11]. The value f(x) is
in fact computed from g(x). So, eventually, the function approximated by a polynomial
is g. This function is sometimes given as a composition of several basic functions.

In consequence, the algorithm should accept as input any function f defined by an
expression. The expression is made using basic functions such as exp or cos. The
precise list of basic functions is not important for our purpose: we can consider the list
of functions defined in software tools like Maple or Sollya [6] for instance. The only
requirement for basic functions is that they be differentiable up to a sufficiently high
order.

iii. The algorithm should be able to automatically handle a particular difficulty that fre-
quently arises when considering relative errors ε(x) = p(x)/f(x) − 1 in the process of
developing functions for libms: the problem of removable discontinuities. If the function
to be implemented f vanishes at a point x0 in the interval considered, in general, the
approximation polynomial is designed such that it vanishes also at the same point with
a multiplicity large enough. Hence, although f vanishes, ε may be defined by continuous
extension at such points x0, called removable discontinuities. For example, if p is a poly-
nomial of the form x q(x), the function p(x)/ sin(x) − 1 has a removable discontinuity
at x0 = 0. Our algorithm can handle removable discontinuities in all practical cases.

iv. The accuracy obtained for the supremum norm is controlled a priori by the user through

Efficient and accurate computation of upper bounds of approximation errors 3

a simple input parameter η. This parameter controls the relative tightness of r = [ℓ, u]:
this means that the algorithm ensures that eventually 0 ≤ u−ℓ

ℓ ≤ η. This parameter can
be chosen as small as desired by the user: if the interval r is returned, it is guaranteed to
contain ‖ε‖I∞ and to satisfy the required quality. In some rare cases, roughly speaking
if the function is too complicated, our algorithm will simply fail, but it never lies. In
our implementation all the computations performed are rigorous and a multiprecision
interval arithmetic library [7] is used. We have conducted many experiments challenging
our algorithm and in practice it never failed.

v. Since complicated algorithms are used, their implementation could contain some bugs.
Hence, beside the numerical result, the algorithm should return also a formal proof.
This proof can be automatically checked by a computer and gives a high guarantee
on the result. Currently, this formal proof is not complete, but generating a complete
formal proof is essentially just a matter of implementation.

1.1 Outline of the paper

In the next section, we explain the main ideas of previous approaches that partially fulfilled
these goals and analyze their deficiencies. In Section 3, our algorithm is presented. It provides
all the features presented above. As we will see, the algorithm relies on automatically comput-
ing an intermediate polynomial: Section 4 discusses several existing methods that can be used
for computing this intermediate polynomial and we compare their practical results. These
methods are not able to handle removable discontinuities; however, we managed to adapt one
of the methods for solving this issue. Our modified method is presented in Section 4.4. In
Section 5, we explain how a formal proof can be generated by the algorithm and checked by
the HOL Light proof checker ∗. Finally, in Section 6 we show how our new algorithm behaves
on real-life examples and compare its results with the ones given by previous approaches.

2 Previous work

2.1 Numerical methods for supremum norms

First, one can consider a simple numerical computation of the supremum norm. In fact, we can
reduce our problem to searching for extrema of the error function. These extrema are usually
found by searching for the zeros of the derivative of the error function. Well-known numerical
algorithms like bisection, Newton’s algorithm or the secant algorithm can be used [8]. These
techniques offer a good and fast estimation of the needed bound, and implementations are
available in most numerical software tools, like Maple or Matlab.

Roughly speaking, all the numerical techniques finish by exhibiting a point x, more or
less near to a point x⋆ where ε has a global extremum. Moreover, the convergence of these
techniques is generally very fast (quadratic in the case of Newton’s algorithm [8]). Improving
the accuracy of x with respect to x⋆ directly improves the accuracy of ε(x) as an approximation
of the global optimum.

Moreover, it is possible to get a safe lower bound ℓ on |ε(x)| by evaluating |ε| over the point
interval [x, x] with interval arithmetic. This bound can be made arbitrarily tight by increasing

∗http://www.cl.cam.ac.uk/~jrh13/hol-light/

http://www.cl.cam.ac.uk/~jrh13/hol-light/

4 S. Chevillard, J. Harrison, M. Joldeş, Ch. Lauter

the working precision. This can be achieved using multiple precision interval arithmetic
libraries, like for example the MPFI Library [7].

Hence, we assume that a numerical procedure computeLowerBound is available that can
compute a rigorous lower bound ℓ ≤ ‖ε‖∞ with arbitrary precision. More formally, it takes
as input a parameter γ that heuristically controls the accuracy of ℓ. The internal parameters
of the numerical algorithm (e.g. the number of steps in Newton’s iteration, the precision
used for the computations, etc.) are heuristically adjusted in order to be fairly confident that
the relative error between ℓ and ‖ε‖∞ is less than γ. However one cannot verify the actual
accuracy obtained. Hence such methods do not provide any mean of computing a tight upper

bound, and are not sufficient in our case.

2.2 Rigorous global optimization methods using interval arithmetic

It is important to remark that obtaining a tight upper bound for ‖ε‖∞ is equivalent to
rigorously solving a univariate global optimization problem. This question has already been
extensively studied in the literature [9, 10, 11]. These methods are based on a general interval
branch-and-bound algorithm, involving an exhaustive search over the initial interval. This
interval is subdivided recursively (“branching”), and those subintervals that cannot possibly
contain global optima are rejected. The rejection tests are based on using interval arithmetic
for bounding the image of a function. Many variants for accelerating the rejection process
have been implemented. They usually exploit information about derivatives (most commonly
first and second derivatives) of the function. One example is the Interval Newton method [12]
used for rigorously enclosing all the zeros of a univariate function.

Dependency problem for approximation errors While the above-mentioned methods
can be successfully used in general, when trying to solve our problem, one is faced with the
so-called“dependency phenomenon” [13]. Roughly speaking, it is due to the fact that multiple
occurrences of the same variable are not exploited by interval arithmetic. The computations
are performed “blindly”, taking into account only the range of a variable independently for
each occurrence. In our case, the dependency phenomenon stems from the subtraction present
in the approximation error function ε = p− f . In short, when using interval arithmetic, the
correlation between f and p is lost. This means that although f and p have very close values,
interval arithmetic can not benefit from this fact and will compute an enclosure of ε as the
difference of two separate interval enclosures for f and p over the given interval. Even if
we could obtain exact enclosures for both f and p over the interval considered, the interval
difference would be affected by overestimation. It can be shown (see e.g. Section 3.2.4 of [14])
that in order to obtain a small overestimation for its image, we need to evaluate ε over intervals
of the size of ‖ε‖∞. In some specific cases used in the process of obtaining correctly rounded
functions, this is around 2−120. This means that a regular global optimization algorithm
would have to subdivide the initial interval into an unfeasible number of narrow intervals (for
example, if the initial interval is [0, 1], 2120 intervals have to be obtained) before the actual
algorithm is able to suppress some that do not contain the global optima.

In fact, in [15] authors of this article tried to use a similar recursive technique, but they
observed that the derivative of the error, the second derivative of the error and so on and so
forth are all prone to the same phenomenon of very high overestimation. That is why, for
higher degree of p (higher than 10) the number of splittings needed to eliminate the correlation
problem is still unfeasible.

Efficient and accurate computation of upper bounds of approximation errors 5

In conclusion, rigorous global optimization algorithms based only on recursive interval
subdivision and interval evaluation for the error function and its derivatives are not suitable
in our case.

2.3 Methods that evade the dependency phenomenon

In order to bypass the high dependency problem present in ε = p− f , we have to write p− f
differently, so that we can avoid the decorrelation between f and p. For this, one widespread
technique in the literature [16, 13, 17, 18] consists in replacing the function f by another
polynomial T that approximates it and for which a bound on the error f − T is not too
difficult to obtain. While choosing the new approximation polynomial T , we have several
advantages.

First, we can consider particular polynomials for which the error bound is known or it
is not too difficult to compute. One such polynomial approximation can be obtained by a
Taylor series expansion of f , supposing that it is differentiable up to a sufficient order. If f
behaves sufficiently well, this eventually gives a good enough approximation of f to be used
instead of f in the supremum norm.

Second, we remove the decorrelation effect between f and p, by transforming it into a
cancellation phenomenon between the coefficients of T and those of p. Increasing the precision
used is sufficient for dealing with such a cancellation [18].

Approaches that follow this idea have been developed in the past fifteen years [19, 16, 15,
20, 18]. In the following we analyze them based on the above-mentioned key features for our
algorithm.

Krämer needed to bound approximation errors while he was developing the FI LIB li-
brary [19]. His method was mostly manual: bounds were computed case by case and proofs
were made on paper. As explained above, from our point of view, this is a drawback.

In [16] and more recently in [20], one of the authors of the present paper proposed ap-
proaches for validating bounds on approximation errors with a formal proof checker. This
method presents an important advantage compared to other techniques concerning the safety
of the results: the proofs of Krämer were made by hand, which is error-prone; likewise, the
implementation of an automatic algorithm could contain bugs. In contrast, a formal proof
can be checked by a computer and gives a high guarantee. The methods presented in [16]
and [20] mainly use the same techniques as Krämer: in particular, the formal proof is written
by hand. This is safer than in [19], since the proof can be automatically checked, but not
completely satisfying: we would like the proof to be automatically produced by the algorithm.

Recently in [15, 18], authors of the present article tried to automate the computation
of an upper bound on ‖ε‖∞. It did not seem obvious how to automate the technique used
in [19, 16, 20], while correctly handling the particular difficulty of removable discontinuities.
The algorithm presented in [15] was a first attempt. The idea was to enhance interval arith-
metic [21], such that it could correctly handle expressions exhibiting removable discontinuities.
As mentioned in Section 2.2 this algorithm does not really take into account the particular
nature of ε and has mainly the same drawbacks as the generic global optimization techniques.

The second attempt, presented in [18], was more suitable but not completely satisfying.
This approach is based on Taylor forms [13, 17]. Generally speaking, Taylor forms represent
an automatic way of providing both a Taylor polynomial T and a bound for the error between
f and T . In [18] automatic differentiation is used both for computing the coefficients of T
and for obtaining an interval bound ∆ for the Taylor remainder, using Lagrange’s formula for

6 S. Chevillard, J. Harrison, M. Joldeş, Ch. Lauter

the remainder. This technique for obtaining the couple (T,∆) was available since Moore [21].
In [18] it is then used as a building block in a more complex algorithm for computing supremum
norms of error functions. This algorithm is able to handle complicated examples quickly and
accurately. However, two limitations were spotted by the authors. One is that there is no a

priori control of the accuracy obtained for the supremum norm. In fact, the algorithm uses a
polynomial T , of a heuristically determined degree, such that the remainder bound obtained
is less than a “hidden” parameter, which is heuristically set by the user. This means in fact,
that the approach is not completely automatic. Another limitation of this algorithm is that
no formal proof is provided. This is mainly due to the combination of several techniques that
are not currently available in formal proof checkers, like techniques for rigorously isolating
the zeros of a polynomial or automatic differentiation.

Another way of computing automatically a Taylor form was introduced by Berz and his
group [17] under the name of“Taylor models”and used for problems that seemed intractable by
interval arithmetic. Although Taylor models proved to have many applications, the available
software implementations are scarce. The best known, which however is not easily available,
is COSY [22], written in FORTRAN by Berz and his group. Although highly optimized
and used for rigorous global optimization problems in [23, 24] and articles referenced therein,
currently, for our specific problem, COSY has several major drawbacks. First, it does not
provide multiple precision arithmetic, and thus fails to solve the cancellation problem men-
tioned. Second, it does not provide any a priori control of the accuracy obtained for the
global optimum. Third, it does not deal with the problem of functions that have removable
discontinuities.

3 Computing a safe and guaranteed supremum norm

3.1 Computing a validated supremum norm vs. validating a computed

supremum norm

As we have seen, the various previously proposed algorithms for supremum norm evaluation
have the following point in common: they use validated techniques for computing a rigorous
upper bound u ≥ ‖ε‖∞. In contrast, our method consists in computing a presumed upper
bound with a fast heuristic technique and then only validating this upper bound.

Moreover, we saw in Section 2.1, that it is easy to implement a procedure computeLowerBound
that allows us to compute a rigorous (and presumably accurate) lower bound ℓ ≤ ‖ε‖∞. If
one considers u as an approximate value of the exact norm ‖ε‖∞, it is possible to bound the
relative error between u and the exact norm by means of ℓ:

∣∣∣∣
u− ‖ε‖∞
‖ε‖∞

∣∣∣∣ ≤
∣∣∣∣
u− ℓ

ℓ

∣∣∣∣ .

This is usually used as an a posteriori check that the computed bound u satisfies given quality
requirements on the supremum norm. Otherwise, the validated techniques can be repeated
with changed parameters in the hope of obtaining a more tightly bounded result. As already
discussed, the exact relationship between these parameters and the accuracy of the result is
generally unknown [15, 18]. In contrast, our method ensures by construction that the quantity
|(u− ℓ)/ℓ| is smaller than a bound η given by the user.

Efficient and accurate computation of upper bounds of approximation errors 7

3.2 Scheme of the algorithm

The principle of our algorithm is the following:

1. Compute a sufficiently accurate lower bound ℓ of ‖ε‖∞.

2. Consider a value u slightly greater than ℓ, so that most likely u is an upper bound of
‖ε‖∞.

3. Validate that u is actually an upper bound:

(a) Compute a very good approximation polynomial T ≃ f , such that the error be-
tween them is bounded by a given value δ.

(b) Use the triangle inequality: rigorously bound the error between p and T and use
this bound together with δ to prove that u is indeed a rigorous bound for the error
between p and f .

In the following, we will explain our algorithm more formally. We remark that the compu-
tational part and the validation part are completely distinct. This is particularly interesting
if a formal proof is to be generated: whatever methods are used for computing ℓ and u, the
only things that must be formally proved are a triangle inequality, a rigorous bound on the
error between T and f , and a rigorous bound on the error between p and T .

3.3 Validating an upper bound on ‖ε‖∞ for absolute error problems ε = p−f

Let us first consider the absolute error case. The relative error case is quite similar in nature
but slightly more intricate technically. It will be described in Section 3.5. Our method is
summed up in Algorithm 3.1.

Algorithm: supremumNormAbsolute1

Input: p, f , I, η
Output: ℓ, u such that ℓ ≤ ‖p− f‖I∞ ≤ u and |(u− ℓ)/ℓ| ≤ η

ℓ← computeLowerBound(p − f, I, η/32);2

m′ ← ℓ (1 + η/2); u← ℓ (1 + 31 η/32); δ ← 15 ℓ η/32;3

T ← findMinimalPoly(f, I, δ);4

s1 ← m′ − (p− T); s2 ← m′ − (T − p);5

if showPositivity(s1, I) ∧ showPositivity(s2, I) then return (ℓ, u);6

else return ⊥ ; /* Numerically obtained bound ℓ not accurate enough */7

Algorithm 3.1: Complete supremum norm algorithm for ‖ε‖∞ = ‖p− f‖∞

We first run computeLowerBound with γ = η/32. Roughly speaking, it means that we
compute the supremum norm with 5 guard bits. These extra bits will be used as a headroom
allowing for roughness when validating that u is an upper bound. There is no particular need
to choose the value 1/32: generally speaking, we could choose β1 η where 0 < β1 < 1 is an
arbitrary constant. We let m := ℓ (1 + η/32). If our hypothesis about the accuracy of ℓ is
right, we thus have ‖ε‖∞ ≤ m.

8 S. Chevillard, J. Harrison, M. Joldeş, Ch. Lauter

We define u := ℓ (1 + 31 η/32). Trivially (u − ℓ)/ℓ ≤ η; we only have to validate that
‖ε‖∞ ≤ u.

We introduce an intermediate polynomial T . The triangle inequality gives

‖p− f‖∞ ≤ ‖p− T‖∞ + ‖T − f‖∞ . (1)

We can choose the polynomial T as close as we want to f . More precisely, we will describe
in Section 4 a procedure findPolyWithGivenError that rigorously computes T such that
‖T − f‖∞ ≤ δ, given f and δ.

We need a value m′ such that we are fairly confident that ‖p− T‖∞ ≤ m′. If this inequality
is true, it will be easy to check it afterwards: it suffices to check that the two polynomials
s1 = m′−(p−T) and s2 = m′−(T−p) are positive on the whole domain I under consideration.
There is a wide literature on proving positivity of polynomials. For the certification through
formal proofs, a perfectly adapted technique is to rewrite the polynomials si as a sum of
squares. This will be explained in detail in Section 5. If we do not need a formal proof, other
techniques may be more relevant. For instance, it suffices to exhibit one point where the
polynomials si are positive and to prove that they do not vanish in I: this can be performed
using traditional polynomial real roots counting techniques, such as Sturm sequences or the
Descartes test [25]. In our current implementation, the user can choose between proving the
positivity with a Sturm sequence, or computing a formal certificate using a decomposition as
a sum of squares.

Clearly, if δ is small enough, T is very close to f and we have ‖p− T‖∞ ≃ ‖p− f‖∞.
Hence m′ will be chosen slightly greater than m. More formally, we use again the triangle
inequality: ‖p− T‖∞ ≤ ‖p− f‖∞ + ‖f − T‖∞, hence we can choose m′ = m + δ.

Putting this information into (1), we have ‖p− f‖∞ ≤ m′ + δ ≤ m+2δ. This allows us to
quantify how small δ must be: we can take δ = ℓ µ η where µ is a positive parameter satisfying
β1 + 2µ ≤ 1. We conveniently choose µ = 15/32: hence m′ simplifies in m′ = ℓ (1 + η/2).

3.4 Case of failure of the algorithm

It is important to remark that the inequality ‖p− T‖∞ ≤ m + δ relies on the hypothesis
‖p− f‖∞ ≤ m. This hypothesis might actually be wrong because the accuracy provided by
the numerical procedure computeLowerBound is only heuristic. In such a case, the algorithm
will fail to prove the positivity of s1 or s2.

However, our algorithm never lies, i.e. if it returns an interval [ℓ, u], this range is proved
to contain the supremum norm and to satisfy the quality requirement η.

There is another possible case of failure: the procedure findPolyWithGivenError might
fail to return an approximation polynomial T satisfying the requirement ‖T − f‖∞ ≤ δ. We
will explain why in Section 4.

In practice, we never encountered cases of failure. Nevertheless, if such a case happens, it
is always possible to bypass the problem: if the algorithm fails because of computeLowerBound
it suffices to run it again with γ ≪ η/32, in the hope of obtaining at least the five desired
guard bits. If the algorithm fails because of findPolyWithGivenError, it suffices in general
to split I into two (or more) subintervals and handle each subinterval separately.

3.5 Relative error problems ε = p/f − 1 without removable discontinuities

In order to ease the issue with relative approximation error functions ε = p/f −1, let us start
with the assumption that f does not vanish in the interval I under consideration for ‖ε‖I∞.

Efficient and accurate computation of upper bounds of approximation errors 9

That assumption actually implies that p/f − 1 does not have any removable discontinuity.
We will eliminate this assumption in Section 3.6.

Algorithm: supremumNormRelative1

Input: p, f , I, η
Output: ℓ, u such that ℓ ≤ ‖p/f − 1‖I∞ ≤ u and |(u− ℓ)/ℓ| ≤ η

J ← f(I); if 0 ∈ J then return ⊥ else F ← min{| inf J |, | sup J |};2

ℓ← computeLowerBound(p − f, I, η/32);3

m′ ← ℓ (1 + η/2); u← ℓ (1 + 31 η/32); δ ← 15 ℓ η/32
(

1
1+u

) (
F

1+15 η/32

)
;

4

T ← findMinimalPoly(f, I, δ);5

s← (T (inf I)); s1 ← s m′ T − (p− T); s2 ← s m′ T − (T − p);6

if showPositivity(s1, I) ∧ showPositivity(s2, I) then return (ℓ, u);7

else return ⊥ ; /* Numerically obtained bound ℓ not accurate enough */8

Algorithm 3.2: Complete supremum norm algorithm for ‖ε‖∞ = ‖p/f − 1‖∞

Since f does not vanish and is continuous on the compact domain I, infI |f | 6= 0. In
general, a simple interval evaluation of f over I gives an interval J that does not contain 0.
In this case F = min{| inf J |, | sup J |} is a rigorous non-trivial lower bound on |f |. Such a
bound will prove useful in the following. In the case when J actually contains zero, it suffices
to split the interval I. However we never had to split I in our experiments. The accuracy
of F with respect to the exact value infI |f | is not really important: it only influences the
definition of δ, forcing it to be smaller than it needs to be. As a result, the degree of the
intermediate polynomial T might be slightly greater than required.

We work by analogy with the absolute error case. As before, we define m := ℓ (1 + β1 η),
m′ := ℓ (1+(β1 +µ) η) and u := ℓ (1+(β1 +2µ) η). As before, we want to choose δ in order to
ensure that

∥∥ p
T − 1

∥∥
∞

be smaller than m′. For this purpose, we use the convenient following
triangle inequality:

∥∥∥ p

T
− 1
∥∥∥
∞
≤

∥∥∥∥
p

f
− 1

∥∥∥∥
∞

+

∥∥∥∥
p

f

∥∥∥∥
∞

∥∥∥∥
1

T

∥∥∥∥
∞

‖T − f‖∞ (2)

If the hypothesis on the accuracy of ℓ is correct,
∥∥∥ p

f

∥∥∥
∞

is bounded by 1 + u. Moreover, T

is close to f , so ‖1/T‖∞ can be bounded by something a bit larger than 1/F . This lets us
define δ as

δ := ℓ µ η

(
1

1 + u

) (
F

1 + µ η

)
. (3)

We have ‖1/T‖∞ ≤ (1 + µ η)/F .

Proof. We remark that ℓ/(1 + u) ≤ 1, hence we have δ ≤ F
(

µ η
1+µ η

)
. Now,

∀x ∈ I, |T (x)| ≥ |f(x)| − |T (x)− f(x)| ≥ F − δ ≥
F

1 + µ η
.

This concludes the proof.

10 S. Chevillard, J. Harrison, M. Joldeş, Ch. Lauter

Using this lemma, and provided that the hypothesis ‖p/f − 1‖∞ ≤ m is correct, we see
that Equation (2) implies ‖p/T − 1‖∞ ≤ m′. Our algorithm simply validates this inequality.
As before, this reduces to checking the positivity of two polynomials. Indeed, the previous
lemma shows, as a side effect, that T does not vanish in the interval I. Let us denote by
s ∈ {−1, 1} its sign on I. Thus |p/T − 1| ≤ m′ is equivalent to |p − T | ≤ s m′ T. Defining
s1 = s m′ T − (p−T) and s2 = s m′ T − (T − p), we just have to show the positivity of s1 and
s2.

In order to conclude, it remains to show that ‖p/T − 1‖∞ ≤ m′ implies ‖p/f − 1‖∞ ≤ u.
For this purpose, we use Equation (2) where the roles of f and T are inverted:

∥∥∥∥
p

f
− 1

∥∥∥∥
∞

≤
∥∥∥ p

T
− 1
∥∥∥
∞

+
∥∥∥ p

T

∥∥∥
∞

∥∥∥∥
1

f

∥∥∥∥
∞

‖f − T‖∞ .

In this equation, ‖p/T − 1‖∞ is bounded by m′, ‖p/T‖∞ is bounded by 1 + m′ ≤ 1 + u,
‖1/f‖∞ is bounded by 1/F and ‖f − T‖∞ is bounded by δ. Using the expression of δ given
by Equation (3), we finally have ‖p/f − 1‖∞ ≤ m′ + ℓ µ η ≤ u.

3.6 Handling removable discontinuities

We now consider the case when f vanishes over I. Several situations are possible:

• The zeros of f are exact floating-point numbers and the relative error ε = p/f − 1 can
be extended and remains bounded on the whole interval I by continuity. As seen in the
introduction, the matter is not purely theoretical but quite common in practice. This
is the case that we address in the following.

• The function f vanishes at some point z that is not exactly representable but ε remains
reasonably bounded if restricted to floating-point numbers. In this case, it is reasonable
to consider the closest floating-point values to z: z < z < z. It suffices to compute the
supremum norm of ε separately over the intervals [inf I, z] and [z, sup I]. Hence, this
case does not need to be specifically addressed by our algorithm.

• The relative error is not defined at some point z and takes very large values in the
neighborhood of z, even when restricted to floating-point numbers. This case does
not appear in practice: indeed we supposed that p was constructed for being a good
approximation of f on the interval I. In consequence, we do not consider as a problem
the fact that our algorithm fails in such a situation.

From now on, we concentrate on the first item: hence we suppose that ε can be extended
by continuity on the whole interval I and that the zeros of f are exact floating-point numbers.
The following heuristic is quite common in manual supremum norm computations [15]: as p
is a polynomial, it can have only a finite number of zeros zi with orders ki. In order for ε
to be extended by continuity, the zeros of f must be amongst the zi. This means that it is
possible to determine a list of s presumed floating-point zeros zi of f and to transform the
relative approximation error function as ε = q/g − 1 where q(x) = p(x)

(x−z0)k0 ... (x−zs−1)
ks−1

and

g(x) = f(x)

(x−z0)
k0 ... (x−zs−1)

ks−1
.

In this transformation, two types of rewritings are used. On the one hand, q is computed
by long division using exact, rational arithmetic. The remainder being zero indicates whether

Efficient and accurate computation of upper bounds of approximation errors 11

the presumed zeros of f are actual zeros of p, as expected. If the remainder is not zero, the
heuristic fails; otherwise q is a polynomial. In contrast, the division defining g is performed
symbolically, i.e. an expression representing g is constructed.

With the transformation performed, q is a polynomial and g is presumably a function not
vanishing on I. These new functions are hence fed into Algorithm 3.2.

As a matter of course, g might actually still vanish on I as the zeros of f are only
numerically determined: this does not compromise the safety of our algorithm. In the case
when g does vanish, Algorithm 3.2 will fail while trying to compute F . This indicates the
limits of our heuristic which, in practice, just works fine. See Section 6 for details on examples
stemming from practice.

We remark that the heuristic algorithm just discussed actually only moves the problem
elsewhere: into the function g for which an intermediate polynomial T must eventually be
computed. This is not an issue. The expression defining f may anyway have removable
discontinuities. This can even happen for supremum norms of absolute approximation error
functions. An example would be f(x) = sin x

log(1+x) approximated by p(x) = 1 + x/2 on an
interval I containing 0. We will address in Section 4.4 the problem of computing an interme-
diate approximation polynomial T and a finite bound δ when the expression of f contains a
removable discontinuity.

4 Obtaining the intermediate polynomial T and its remainder

In what follows, we detail the procedure findPolyWithGivenError needed in the algo-
rithms 3.1 and 3.2. Given a function f , a domain I and a bound δ, it computes an interme-
diate polynomial T such that ‖T − f‖∞ ≤ δ. We denote by n the degree of the intermediate
polynomial T and by R = f − T the approximation error.

In the following, we will in fact focus on procedures findPoly(f, I, n) that, given n, return
a polynomial T of degree n and an interval bound ∆ rigorously enclosing R(I): ∆ ⊇ R(I).
It is important to note that the polynomial T will eventually be used to prove polynomial
inequalities in a formal proof checker. In such an environment, the cost of computations
depends strongly on the degree of the polynomials involved. So we want the degree n to be
as small as possible. A simple bisection strategy over n, as described in Figure Algorithm 4.1,
allows us to implement findPolyWithGivenError using the procedure findPoly.

Two factors influence the quality of ∆: first, how well T approximates f over I, i.e. how
small ‖R‖∞ is, and second, how much overestimation will be introduced in ∆ when rigorously
bounding R over I.

In that respect, we present several approaches to implement findPoly, classified as follows:

• Methods that separately compute a polynomial T and afterwards a bound ∆:

– The interpolation polynomial method that computes a near-optimal approximation
(i.e. tries to minimize ‖R‖∞) and then computes ∆ using automatic differentiation.

– Methods based on Taylor expansions where ‖R‖∞ is larger, but ∆ is computed
with less overestimation.

• The Taylor models method that simultaneously computes the polynomial T along with
a bound ∆.

12 S. Chevillard, J. Harrison, M. Joldeş, Ch. Lauter

Algorithm: findPolyWithGivenError1

Input: f , I, δ
Output: T such that ‖T − f‖I∞ ≤ δ while trying to minimize the degree of T
n← 1;2

do3

(T, ∆try)← findPoly(f, I, n); n← 2n;4

while ∆try 6⊆
[
−δ; δ

]
;5

n← n/2; nmin ← n/2; nmax ← n;6

while nmin + 1 < nmax do7

n← ⌊(nmin + nmax)/2⌋; (T, ∆try)← findPoly(f, I, n);8

if ∆try ⊆
[
−δ; δ

]
then nmax ← n else nmin ← n ;9

end10

(T, ∆try)← findPoly(f, I, nmax);11

return T ;12

Algorithm 4.1: Find a polynomial T such that ‖T − f‖∞ ≤ δ with n as small as
possible.

We have tested all these methods. In our experiments, we could not find one clearly
dominating the others by tightness of the obtained bound ∆. Taylor models often give
relatively accurate bounds, so they might be preferred in practice. However, this is just a
remark based on a few experiments and it probably should not be considered as a universal
statement.

In what follows, we present the algorithms as if all the operations could be performed
exactly, without rounding errors. This is only for the sake of simplicity. In practice, it is easy
to implement them using interval arithmetic in arbitrary precision: the real values are replaced
by narrow intervals enclosing them. By increasing the precision, the width of these narrow
intervals can be arbitrarily reduced. The resulting polynomial T is hence a polynomial with
almost point-interval coefficients. Then T is converted into a polynomial with floating-point
coefficients plus a rigorous (and narrow) interval bound.

4.1 Computing T before bounding the error

4.1.1 Using an interpolation polynomial and automatic differentiation

Interpolation polynomials are a good choice for T : first they are easy to compute; the reader
can find techniques in any book on numerical analysis. Second, it is well-known (see e.g. [4])
that when using suitable interpolation points, a near-optimal polynomial approximation is
obtained. Roughly speaking, this means that for such an approximation, ‖R‖∞ is almost
as small as possible. See e.g. [4] for an effective measure of this property. Finally, we can
rigorously bound R using the following formula [4]: if T interpolates f at points x0, . . . , xn ∈
I, the error R satisfies

∀x ∈ I, ∃ ξ ∈ I, R(x) =
f (n+1)(ξ)

(n + 1)!

n∏

i=0

(x− xi), (4)

Efficient and accurate computation of upper bounds of approximation errors 13

where f (n+1) denotes the (n + 1)-st derivative of f .

When bounding R using (4), the only difficulty is to bound f (n+1)(ξ) for ξ ∈ I.

This can be achieved using a technique often called automatic differentiation [26, 27, 21]∗,
differentiation arithmetic [27], algorithmic differentiation [28] or Taylor arithmetic [26]. It
allows for evaluating the first n derivatives of f at a point x0 without doing any symbolic
differentiation.

The general idea of this technique is to replace any function g by an array G = [g0, . . . , gn]
where gi = g(i)(x0)/i!. It is easy to see that, given two arrays U and V (corresponding to two
functions u and v), the array corresponding to w = u + v is simply given by ∀i, wi = ui + vi.
Using Leibniz’ formula, the array corresponding to w = u v is given by ∀i, wi =

∑i
k=0 uk vi−k.

Also, there exist formulas [21, 26] for computing W from U where w = exp(u), w = sin(u),
w = arctan(u), etc. Hence, given any function f represented by an expression, there exists
a straightforward recursive procedure that uses the above-mentioned rules for computing the
array F .

As a matter of fact, manipulating these arrays is nothing but manipulating truncated
formal series. Fast algorithms exist for multiplying, composing or inverting formal series [29,
30]. However, they are not mandatory for our purpose since we intend to deal with degrees
n not larger than a few hundreds.

For bounding f (n+1)(ξ) when ξ ∈ I, it suffices to apply the same automatic differentiation
algorithm using interval arithmetic and replacing x0 by I. Unfortunately, due to the depen-

dency phenomenon (see Section 2.2), the bound obtained for f (n+1)(I), and hence ∆, can be
highly overestimated. This implies that we may lose all the benefit of using an interpolation
polynomial, although the actual bound ‖R‖∞ is almost optimal.

4.1.2 Using a Taylor polynomial

The remark above suggests that it could be interesting to use a polynomial T with worse actual
approximation quality, i.e. a larger ‖R‖∞, but for which the computation of the bound ∆ is
less prone to overestimation. Consider a point x0 ∈ I. We suppose that for each x in I, f(x)
is the sum of its Taylor series:

∀x ∈ I, f(x) =

(
n∑

i=0

f (i)(x0)

i!
(x− x0)

i

)

︸ ︷︷ ︸
T (x)

+

(
+∞∑

i=n+1

f (i)(x0)

i!
(x− x0)

i

)

︸ ︷︷ ︸
R(x)

. (5)

Technically, this means that the function is analytic on a complex disc D containing I and
centered on x0 in the complex plane [31].

The functions we are concerned with are analytic on the whole complex plane, except
maybe at a given list of points, their singularities. In practice, the singularities are often far
enough from the interval I that the hypothesis holds. When singularities are too close to I,
it is not possible to find a disc centered in x0, containing I and avoiding all the singularities.
In this case, it suffices in general to split I into subintervals and reason on each subinterval
separately.

∗More precisely, we should say that it is inspired by automatic differentiation, since automatic differentiation
is usually a code-transformation process, intended to deal with functions of several variables.

14 S. Chevillard, J. Harrison, M. Joldeş, Ch. Lauter

Computing the Taylor polynomial T itself is easy: the coefficients can efficiently be com-
puted using automatic differentiation. So, the main difficulty relies in computing a bound for
R.

One solution could be to use the classical Lagrange formula. Indeed, this is a special
case of formula (4): hence it also requires one to bound f (n+1)(I) and it leads to exactly
the same problem of overestimation as before, but without the advantages exhibited by the
interpolation polynomials.

Another, more promising, technique to bound R starts with the observation that in equa-
tion (5), R is expressed as a series. If we can find values M and d such that we can prove
that

∀i > n,

∣∣∣∣∣
f (i)(x0)

i!

∣∣∣∣∣ ≤
M

di
:= bi (6)

we can obviously bound R with

∀x ∈ I, |R(x)| =

∣∣∣∣∣

+∞∑

i=n+1

f (i)(x0)

i!
(x− x0)

i

∣∣∣∣∣ ≤
+∞∑

i=n+1

bi |x− x0|
i . (7)

Here,
∑+∞

i=n+1 bi |x−x0|
i is a majorizing series of R. Since it is geometric, it is easy to bound:

if γ := max
x∈I

|x− x0|

d
< 1, it holds that ∀x ∈ I, |R(x)| ≤

M γn+1

1− γ
.

Of course the principle of majorizing series is not limited to geometric series: bi can take
other forms than M/di, provided that the series

∑+∞
i=n+1 bi |x − x0|

i can easily be bounded.
Neher and Eble proposed a software tool called ACETAF [32] for automatically computing
suitable majorizing series. ACETAF proposes several techniques, all based on a fundamental
theorem of complex analysis called Cauchy’s estimate. We refer to [32] for the details on this
subject.

The methods used in ACETAF depend on many parameters that, at least currently, need
to be heuristically adjusted by hand. With the parameters well adjusted, we experimentally
observed that the computed bound ∆ was a fairly tight enclosure of the actual bound R(I).
Due to this reduced overestimation, we frequently obtained better rigorous bounds with this
method compared to the one presented in Section 4.1.1, where a near-optimal polynomial
approximation was used.

However, without adjustment, very poor bounds are computed by ACETAF. Hence,
though promising, this method cannot straightforwardly be used for designing a completely
automatic algorithm. This is a major drawback in our case.

Furthermore, these methods need the hypothesis that the function f is analytic on a given
complex disc D to be verified beforehand. If this hypothesis is not fulfilled, they may return
a completely incorrect finite bound ∆. One typical such case occurs when f has a singularity
in the interior of D, but |f | remains bounded over the contour ∂D [32]. As we already said,
the hypothesis of analyticity of f can be considered as practically always true. However, in
our context, it is not sufficient to believe that the function satisfies this hypothesis, but we
have to prove it automatically, and if possible formally. ACETAF includes an algorithm for
checking the analyticity of a function over a disc, but it seems to be only heuristic and thus
not suitable for our purpose.

Efficient and accurate computation of upper bounds of approximation errors 15

As an alternative to methods based on Cauchy’s estimate, Mezzarobba and Salvy show
in [33] how to compute an accurate majorizing series and its bound, for the special class of
D-finite functions, also called differentially finite or holonomic. A function is D-finite when
it is a solution of a linear differential equation with polynomial coefficients. This class is large
(it contains, e.g., exp, sin, arctan, Bessel functions, etc.), but not all commonly used functions
are D-finite: for instance tan is not. More generally, the set of D-finite functions is not closed
under composition. This is a serious limitation in our case, as we aim for an automatic and
more general approach.

4.2 Simultaneously computing T and ∆

Both techniques presented so far consist in two separate steps: first we compute the poly-
nomial T and afterwards we rigorously bound the approximation error by ∆. Simultaneous
computation of both T and ∆ is also possible.

Such a technique has been promoted by Berz and Makino [34, 17] under the name of Taylor

models. More precisely, given a function f over an interval I, this method simultaneously
computes a polynomial Tf (usually, the Taylor polynomial of f , with approximate coefficients)
and an interval bound ∆f such that ∀x ∈ I, f(x)− Tf (x) ∈∆f . The method applies to any
function given by an expression; there is no parameter to manually adjust.

Taylor models do not require the function to be analytic. Indeed, if the function has a
singularity in the complex plane close to the interval I, Taylor models are likely to compute
a very bad bound ∆. However, this bound remains rigorous in any case. In contrast, the
methods described in the previous section were based on the fact the the series converges to
f : hence to use them it was necessary to check the analyticity beforehand. We stress it again:
in general f is analytic, but automatically proving it may be challenging.

Taylor models are heavily inspired by automatic differentiation. As we have seen, auto-
matic differentiation allows one to compute the first n derivatives of a function by applying
simple rules recursively on the structure of f . Following the same idea, Taylor models com-
pute the couple (T, ∆f) by applying simple rules recursively on the structure of f . Taylor
models can be added, multiplied, inverted, composed, etc., as with automatic differentiation.

Indeed, the computation of the coefficients of Tf with Taylor models is completely similar
to their computation by automatic differentiation. However, the bound ∆f computed with
Taylor models is usually much tighter than the one obtained when evaluating the Lagrange
remainder with automatic differentiation.

To understand this phenomenon, let us consider the Taylor expansion of a composite
function w = h ◦ u and, in particular, its Lagrange remainder part:

∀x ∈ I, ∃ ξ ∈ I, (h ◦ u)(x) =

(
n∑

i=0

(h ◦ u)(i)(x0)

i!
(x− x0)

i

)
+

(h ◦ u)(n+1)(ξ)

(n + 1)!
(x− x0)

n+1

︸ ︷︷ ︸
Lagrange remainder

.

When bounding this remainder with automatic differentiation, an interval enclosure J of
(h◦u)(n+1)(I)/(n+1)! is computed. This interval J is obtained by performing many operations
involving enclosures of all the u(i)(I)/i!. These enclosures are themselves obtained by recursive
calls. Due to the dependency phenomenon, these values are already overestimated and this
overestimation increases at each step of the recursion.

16 S. Chevillard, J. Harrison, M. Joldeş, Ch. Lauter

In contrast, in the case of Taylor models, (h◦u)(x) is seen as the basic function h evaluated
at point u(x). Hence its Taylor expansion at u(x0) is

w(x) = h(u(x)) =
n∑

i=0

h(i)(u(x0))

i!
(u(x)− u(x0))

i

︸ ︷︷ ︸
=: S(x)

+
h(n+1)(u(ξ))

(n + 1)!
(u(x)− u(x0))

n+1. (8)

In this formula, the only derivatives involved are the derivatives of h which is a basic function
(such as exp, sin, arctan, etc.): fairly simple formulas exist for the derivatives of such functions
and evaluating them by interval arithmetic does not lead to serious overestimation. In the
sum S(x), (u(x)− u(x0))

i is recursively replaced by a Taylor model (Ti, ∆i) representing it.
Then, the parts corresponding to the Ti contribute to the computation of Tw, while the
parts corresponding to the ∆i contribute to the remainder. If the ∆i are not too much
overestimated, the final remainder ∆w is not too much overestimated either. In conclusion,
the overestimation does not grow too much during the recursion process.

That subtle algorithmic trick is the key in Taylor models. Otherwise, only technical details
are to be settled. A wide literature exists and we refer the reader to e.g. [17] or [35, Chapter
5.1] for proofs and details. In practice, several optimizations and variants have some impact
on performance. However, even a straightforward out-of-the box implementation of Taylor
models gives satisfying results. In practice the bound computed with Taylor models is much
less overestimated than a bound computed by automatic differentiation. The techniques
presented in Section 4.1.2 often give a tighter estimation of the remainder than Taylor models
but the gap is generally not large.

4.3 Practical comparison of the different methods

Table 1 shows the quality of some bounds obtained by the methods that we have presented.
The function f , the interval I and the degree n of T are given in the first column. The inter-
polation was performed at Chebyshev points (see [4]) and the corresponding approximation
error R was bounded using automatic differentiation with interval arithmetic as explained in
Section 4.1.1. This leads to an enclosure ∆, the maximum absolute value of which is shown
in the second column. The third column is a numerical estimation of ‖R‖∞.

The Taylor polynomial was developed in the midpoint of I. The resulting interval bound
was computed using ACETAF as presented in Section 4.1.2. The result is reported in the
fourth column of the table. The sixth column of the table is a numerical estimation of ‖R‖∞.

The fifth column corresponds to the bound given by Taylor models.
ACETAF actually proposes four different methods, with more or fewer parameters to be

adjusted by hand. To limit the search space, we only show the results obtained with the
first method in ACETAF, which actually has one parameter. This is somehow unfair because
the other methods may give more accurate bounds. In our experiments, we adjusted this
parameter by hand, in order to minimize the width of ∆. As can be seen in Table 1, even
this first simple method gives results often as accurate as Taylor models, or even better.

We tried to make the examples representative for several situations. The first example is
a basic function which is analytic on the whole complex plane. There is almost no overesti-
mation in this case, whatever method we use. The second is also a basic function but it has
singularities in the complex plane. However, in this example, the interval I is relatively far
from the singularities. All the methods present a relatively small overestimation. The third

Efficient and accurate computation of upper bounds of approximation errors 17

example is the same function but over a wider interval: so the singularities are closer and
Taylor polynomials are not very good approximations. The fourth and fifth example are com-
posite functions on fairly wide intervals, which challenges the methods. The overestimation
in the interpolation method becomes very large while it stays reasonable with ACETAF and
Taylor models.

In each row, the method that leads to the tightest bound is set in bold. No method is
better than the others in all circumstances. However, Taylor models seem to offer a good
compromise, in particular for composite functions.

f(x), I, n Interpolation Exact bound ACETAF TM Exact bound

sin(x), [3, 4], 10 1.19e−14 1.13e−14 6.55e−11 1.22e−11 1.16e−11

arctan(x), [−0.25, 0.25], 15 7.89e−15 7.95e−17 1.00e−9 2.58e−10 3.24e−12

arctan(x), [−0.9, 0.9], 15 5.10e−3 1.76e−8 6.46 1.67e2 5.70e−3

exp(1/ cos(x)), [0, 1], 14 0.11 6.10e−7 9.17e−2 9.06e−3 2.59e−3
exp(x)

log(2+x) cos(x)
, [0, 1], 15 0.18 2.68e−9 1.76e−3 1.18e−3 3.38e−5

Table 1: Examples of bounds obtained by several methods

4.4 The problem of removable discontinuities

In Section 3.6, we solved the problem of computing supremum norms for functions with
removable discontinuities, provided that the algorithm findPolyWithGivenError is able to
handle such functions.

Classical Taylor models cannot handle such removable discontinuities: a Taylor model for
u/v = u · 1/v is obtained by computing a Taylor model for 1/v. If v has a zero in the interval
I, the remainder bound becomes infinite. In the sequel, we propose a novel modification to
Taylor models that permits us to perform the division.

Consider an expression of the form u/v. We suppose that a numerical heuristic has already
found a point z0 where u and v seem to vanish simultaneously. If there are several zeros of v
in the interval, we split it into subintervals. So we will presume that z0 is the unique zero of v
in the interval. We additionally assume that z0 is exactly representable as a floating-point
number. We already explained in Section 3.6 that this hypothesis is fairly reasonable in the
practice of floating-point code development. From a theoretical point of view, this hypothesis
can be considered as very restrictive and as a drawback of our method. However, without more
symbolic techniques, handling non-representable removable discontinuities seems hopeless.

The numerical procedure that found z0 might have missed a zero of v. This is not a
problem: in this case, our method returns a remainder bound that is infinite, useless but
perfectly rigorous (as classical Taylor models would do, anyway).

Our method is based on the following idea: represent u and v with Taylor expansions
centered on z0 and cancel out the leading part (x − z0)

k in both expressions. For example,
take z0 = 0, k = 1 and

sinx

log(1 + x)
=

x − x3/6 + x5/120 + . . .

x − x2/2 + x3/3 − x4/4 + . . .
=

1 − x2/6 + x4/120 + . . .

1 − x/2 + x2/3 − x3/4 + . . .
.

Once (x − z0)
k has been factored and simplified, the denominator of the division does not

vanish anymore, thus the division can be performed using the usual division of Taylor models.

18 S. Chevillard, J. Harrison, M. Joldeş, Ch. Lauter

The first difficulty encountered when trying to automate this scheme is that we need to
be sure that the leading coefficients of u and v are exactly zero: it is not sufficient to approx-
imately compute them. A classical solution to this problem is to represent the coefficients
by narrow enclosing intervals instead of floating-point numbers. Interval arithmetic is used
throughout the computations, which ensures that the true coefficients actually lie in the cor-
responding narrow intervals. For basic functions, we know which coefficients are exactly zero,
so we can replace them by the point-interval [0, 0]. This point interval has a nice property: it
propagates well during the computations, since any interval multiplied by [0, 0] leads to [0, 0]
itself. So, in practice, the property of being exactly zero is well propagated when composing
functions: hence we can expect that for any reasonably simple functions u and v vanishing in
z0, the leading coefficients of their Taylor expansion will be [0, 0] from which we can surely
deduce that the true coefficients are exactly 0.

The second difficulty is that, in fact, we do not compute series: we use Taylor models, i.e.
truncated series together with a bound on the remainder. If we use classical Taylor models,
the function u/v will be replaced by something of the form

Tu + ∆u

Tv + ∆v

. (9)

Hence, even if both Tu and Tv have a common factor (x − z0)
k, we cannot divide both the

numerator and denominator by (x−z0)
k because the division will not simplify in the bounds.

As a matter of fact, if Tu is the Taylor polynomial of degree n of a function u in z0,
we know that the remainder is of the form Ru = (x − z0)

n+1 R̃u. The usual Taylor models
propagate an enclosure ∆u of Ru(I) through the computation. Instead, we can propagate an

enclosure ∆u of R̃u(I). In this case, Equation (10) becomes

Tu + (x− z0)
n+1 ∆u

Tv + (x− z0)n+1 ∆v

, (10)

and it becomes possible to cancel out the term (x− z0)
k from the numerator and the denom-

inator.
This leads to the following definition. We note that in this definition, z0 itself is replaced

by a narrow interval enclosing it. This is convenient when composing our modified Taylor
models. Of course, since we assume that z0 is a floating-point number, we can replace it by
the point-interval [z0, z0].

[modified Taylor models] A modified Taylor model of degree n consists of:

• an interval (usually a point-interval) z0 representing the expansion point;

• a list of (usually narrow) interval coefficients a0, . . . , an;

• an interval ∆ representing a bound on the (scaled) remainder.

A modified Taylor model represents a function f over I when

∀ξ0 ∈ z0,∃α0 ∈ a0, . . . , ∃αn ∈ an,∀x ∈ I, ∃δ ∈∆, f(x) =

(
n∑

i=0

αi (x− ξ0)
i

)
+(x−ξ0)

n+1 δ.

The novelty in our modified Taylor models does not merely rely on the fact that the
coefficients of the polynomial are represented with narrow intervals. The main difference

Efficient and accurate computation of upper bounds of approximation errors 19

relies in the relative remainder bound in which the term (x− z0)
n+1 is kept factored out. The

remainder actually vanishes when evaluating a modified Taylor model at x = z0 —something
that never happens for a classical Taylor model. This is exactly what permits removable
discontinuities to be handled.

The arithmetical operations on Taylor models (addition, negation, multiplication) easily
translate to modified Taylor models, provided that the involved models have the same degree
and are developed around the same interval z0. If necessary, it is easy to convert a model of
degree n into a model of lower degree n′. It is also worth mentioning that a model around
an interval z0 is also a valid model around any z

′

0
⊆ z0. The composition of Taylor models

of same degree is also a natural generalization of the classical composition of Taylor models,
provided that straightforward compatibility conditions are satisfied by the expansion points.
Only the division rule is modified as follows: first, a numerical heuristic is applied to determine
the point z0 where u and v simultaneously vanish, along with the order k of this zero. Second,
modified models of order n + k of u and v in z0 are recursively computed. After a check that
the leading k coefficients really are point intervals [0, 0], the leading terms are cancelled and a
Taylor model of degree n for u/v is obtained through inversion and multiplication the classical
way. If this check fails, no cancellation is performed, which leads to a Taylor model with an
infinite remainder bound.

As a matter of course, it is easy to convert a modified Taylor model to a classical one by
multiplying the remainder bound ∆ by (I − z0)

n+1 using interval arithmetic. We observed
that the final bound is slightly more overestimated than the one obtained with classical Taylor
models. However, the difference in tightness stayed fairly small in the examples we tried.

We implemented these modified Taylor models in the Sollya software tool and used them
for handling functions with removable discontinuities. The experimental results will be dis-
cussed in Section 6.

5 Certification and formal proof

Our approach is distinguished from many others in the literature in that we aim to give a vali-
dated and guaranteed error bound, rather than merely one ‘with high probability’ or ‘modulo
rounding error’. Nevertheless, since both the underlying mathematics and the actual imple-
mentations are fairly involved, the reliability of our results, judged against the very highest
standards of rigor, can still be questioned by a determined skeptic. The most satisfying way
of dealing with such skepticism is to use our algorithms to generate a complete formal proof
that can be verified by a highly reliable proof-checking program. This is doubly attractive
because such proof checkers are now often used for verifying floating-point hardware and soft-
ware [16, 36, 37, 38, 39, 40, 41, 42]. In such cases bounds on approximation errors often arise
as key lemmas in a larger formal proof, so an integrated way of handling them is desirable.

There is a substantial literature on using proof checkers to verify the results of various
logical and mathematical decision procedures [43]. In some cases, a direct approach seems
necessary, where the algorithm is expressed logically inside the theorem prover, formally
proved correct and ‘executed’ in a mathematically precise way via logical inference. In many
cases, however, it is possible to organize the main algorithm so that it generates some kind of
‘certificate’ that can be formally checked, i.e. used to generate a formal proof, without any
formalization of the process that was used to generate it. This can often be both simpler and
more efficient than the direct approach. (In fact, the basic observation that ‘result checking’

20 S. Chevillard, J. Harrison, M. Joldeş, Ch. Lauter

can be more productive than ‘proving correctness’ has been emphasized by Blum [44] and
appears in many other contexts such as computational geometry [45].) The two main phases
of our approach illustrate this dichotomy:

• In order to bound the difference |f − T | between the function f and its Taylor series
T , there seems to be no shortcut beyond formalizing the theory underlying the Taylor
models inside the theorem prover and instantiating it for the particular cases used.

• Bounding the difference between the Taylor series T and the polynomial p that we are
interested in reduces to polynomial nonnegativity on an interval, and this admits several
potential methods of certification, with ‘sum-of-squares’ techniques being perhaps the
most convenient.

We consider each of these in turn.

5.1 Formalizing Taylor models

Fully formalizing this part inside a theorem prover is still work in progress. For several basic
functions such as sin, versions of Taylor’s theorem with specific, computable bounds on the
remainder have been formalized in HOL Light, and set up so that formally proven bounds
for any specific interval can be obtained automatically. For example, in this interaction
example from [40], the user requests a Taylor series for the cosine function such that the
absolute error for |x| ≤ 2−2 is less than 2−35. The theorem prover not only returns the series
1− x2/2 + x4/24− x6/720 + x8/40320 but also a theorem, formally proven from basic logical
axioms, that indeed the desired error bound holds: ∀x, |x| ≤ 2−2 ⇒ | cos(x) − (1 − x2/2 +
x4/24− x6/720 + x8/40320)| ≤ 2−35.

#MCLAURIN_COS_POLY_RULE 2 35;;

it : thm =

|- ∀x. abs x <= inv (&2 pow 2)

⇒ abs(cos x - poly [&1; &0; --&1 / &2; &0; &1 / &24; &0;

--&1 / &720; &0; &1 / &40320] x)

<= inv(&2 pow 35)

However, this is limited to a small repertoire of basic functions expanded about specific
points, in isolation, often with restrictions on the intervals considered. Much more work
of the same kind would be needed to formalize the general Taylor models framework we
have described in this paper, which can handle a wider range of functions, expanded about
arbitrary points and nested in complex ways. This is certainly feasible, and related work has
been reported [46, 47], but much remains to be done, and performing the whole operation
inside a formal checker appears to be very time-consuming.

5.2 Formalizing polynomial nonnegativity

Several approaches to formally proving polynomial nonnegativity have been reported, in-
cluding a formalization of Sturm’s theorem [16] and recursive isolation of roots of successive
derivatives [40]. Many of these, as well as others that could be amenable to formalization
[48], have the drawback of requiring extensive computation of cases. An appealing idea

Efficient and accurate computation of upper bounds of approximation errors 21

for avoiding this is to generate certificates involving sum-of-squares (SOS) decompositions.
In order to prove that a polynomial p(x) is everywhere nonnegative, a SOS decomposition
p(x) =

∑k
i=1 aisi(x)2 for rational ai > 0 is an excellent certificate: it can be used to generate

an almost trivial formal proof, mainly involving the verification of an algebraic identity. For
the more refined assertions of nonnegativity over an interval [a, b], slightly more elaborate
‘Positivstellensatz’ certificates involving sums of squares and multiplication by b− x or x− a
work well.

For general multivariate polynomials, Parrilo [49] pioneered the approach of generating
such certificates using semidefinite programming (SDP). However, the main high-performance
SDP solvers involve complicated nonlinear algorithms implemented in floating-point arith-
metic. While they can invariably be used to find approximate SOS decompositions, it can be
problematic to get exact rational decompositions, particularly if the original coefficients have
many significant bits and the polynomial has relatively low variation. Unfortunately these are
just the kinds of problems we are concerned with. But if we restrict ourselves to univariate

polynomials, which still covers our present application, more direct methods can be based
only on complex root-finding, which is easier to perform in high precision. In what follows
we correct an earlier description of such an algorithm [20] and extend it to the generation of
full Positivstellensatz certificates.

The basic idea is simple. Suppose that a polynomial p(x) with rational coefficients is
everywhere nonnegative. Roots always occur in conjugate pairs, and any real roots must have
even multiplicity, otherwise the polynomial would cross the x-axis instead of just touching it.
Thus, if the roots are aj ± ibj , we can imagine writing the polynomial as:

p(x) = l · [(x− [a1 + ib1])(x− [a2 + ib2]) · · · (x− [am + ibm])] ·

[(x− [a1 − ib1])(x− [a2 − ib2]) · · · (x− [am − ibm])]

= l(q(x) + ir(x))(q(x)− ir(x))

= lq(x)2 + lr(x)2.

This well-known proof that any nonnegative polynomial can be expressed as a sum of two
squares with arbitrary real coefficients can be adapted to give an exact rational decomposition
algorithm, compensating for the inevitably inexact representation of the roots aj ± ibj . This
is done by finding a small initial perturbation of the polynomial that is still nonnegative.
The complex roots can then be located sufficiently accurately using the excellent arbitrary-
precision complex root finder in PARI/GP∗, which implements a variant of an algorithm due
to Schönhage [50].

5.2.1 Squarefree decomposition

Since the main part of the algorithm introduces inaccuracies that can be made arbitrarily
small but not eliminated completely, it is problematic if the polynomial is ever exactly zero.
However, if the polynomial touches the x-axis at x = a, there must be a root x − a of even
multiplicity, say p(x) = (x− a)2kp∗(x). We can factor out all such roots by a fairly standard
squarefree decomposition algorithm that uses only exact rational arithmetic and does not
introduce any inaccuracy. The modified polynomial p∗(x) can then be used in the next stage
of the algorithm and the resulting terms in the SOS decomposition multiplied appropriately

∗http://pari.math.u-bordeaux.fr/

http://pari.math.u-bordeaux.fr/

22 S. Chevillard, J. Harrison, M. Joldeş, Ch. Lauter

by the (x−a)k. So suppose, hypothetically, that the initial polynomial p(x) has degree n and
splits as

p(x) = c
∏

k

(x− ak)
mk .

We use the standard technique of taking the greatest common divisor of a polynomial and
its own derivative to separate out the repeated roots, applying it recursively to obtain the
polynomials ri(x) where r0(x) = p(x) and then ri+1 = gcd(ri(x), r′i(x)) for each 0 ≤ i ≤ n−1,
so

ri(x) = c
∏

k

(x− ak)
max(mk−i,0).

Note that each mk ≤ n, so ri(x) = c for each i ≥ n. Now for each 1 ≤ i ≤ n + 1, let
li(x) = ri−1(x)/ri(x), so

li(x) =
∏

k

(x− ak)
(if mk≥i then 1 else 0),

and then similarly for each 1 ≤ i ≤ n let fi(x) = li(x)/li+1(x), so that

fi(x) =
∏

k

(x− ak)
(if mk=i then 1 else 0).

We have now separated the polynomial into the components fi(x) where the basic factors
(x− ak) appear with multiplicity i, and we can then extract a maximal ‘squarable’ factor by

s(x) =
∏

1≤i≤n

fi(x)⌊i/2⌋.

We can then obtain a new polynomial p∗(x) = p(x)/s(x)2 without repeated roots, for the
next step, and subsequently multiply each term inside the SOS decomposition by s(x).

5.2.2 Perturbation

From now on, thanks to the previous step, we can assume that our polynomial is strictly
positive definite, i.e. ∀x ∈ R, p(x) > 0. Since all polynomials of odd degree have a real
root, the degree of the polynomial (and the original polynomial before the removal of squared
part) must be even, say deg(p) = n = 2m, and the leading coefficient of p(x) =

∑n
i=0 aixi

must also be positive, an > 0. Since p(x) is strictly positive, there must be an ε > 0 such
that the perturbed polynomial pε(x) = p(x)− ε(1 + x2 + ... + x2m) is also (strictly) positive.
For provided ε < an, this is certainly positive for sufficiently large x, say |x| > R, since the
highest term of the difference p(x)− ε(1 + x2 + ... + x2m) will eventually dominate. And on
the compact set |x| ≤ R we can just also choose ε < inf |x|≤R p(x)/ sup|x|≤R(1+x2 + ...+x2m).

To find such an ε algorithmically we just need to test if a polynomial has real roots, which
we can easily do in PARI/GP using Sturm’s method; we can then search for a suitable ε by
choosing a convenient starting value and repeatedly dividing by 2 until our goal is reached;
we actually divide by 2 again to leave a little margin of safety. (Of course, there are more
efficient ways of doing this.) We have been tacitly assuming that the initial polynomial is

indeed nonnegative, but if it is not, that fact can be detected at this stage by checking the
ε = 0 case, ensuring that p(x) has no roots and that p(c) > 0 for any convenient value like
c = 0.

Efficient and accurate computation of upper bounds of approximation errors 23

5.2.3 Approximate SOS of perturbed polynomial

We now use the basic ‘sum of two real squares’ idea to obtain an approximate SOS decompo-
sition of the perturbed polynomial pε(x), just by using approximations of the roots. Recall
from the discussion above that with exact knowledge of the roots aj ± ibj of pε(x), we could
obtain a SOS decomposition with two terms. Assuming l is the leading coefficient of pε(x)
we would have pε(x) = ls(x)2 + lt(x)2. Using only approximate knowledge of the roots as
obtained by PARI/GP, we obtain instead pε(x) = ls(x)2 + lt(x)2 +u(x) where the coefficients
of the remainder u(x) can be made as small as we wish. We determine how small this needs
to be in order to make the next step below work correctly, and select the accuracy of the
root-finding accordingly.

5.2.4 Absorption of remainder term

We now have p(x) = ls(x)2 + lt(x)2 + ε(1 + x2 + ... + x2m) + u(x), so it will suffice to express
ε(1+x2+...+x2m)+u(x) as a sum of squares. Note that the degree of u is < 2m by construction
(though the procedure to be outlined would work with minor variations even if it were exactly
2m). Let us say u(x) = a0 + a1x + . . . + a2m−1x

2m−1. Note that x = (x + 1/2)2 − (x2 + 1/4)
and −x = (x− 1/2)2 − (x2 + 1/4), and so for any c ≥ 0:

cx2k+1 = c(xk+1 + xk/2)2 − c(x2k+2 + x2k/4),

−cx2k+1 = c(xk+1 − xk/2)2 − c(x2k+2 + x2k/4).

Consequently we can rewrite the odd-degree terms of u as

a2k+1x
2k+1 = |a2k+1|(x

k+1 + sgn(a2k+1)xk/2)2 − |a2k+1|(x
2k+2 + x2k/4)

and so:

ε(1 + x2 + ... + x2m) + u =
∑m−1

k=0 |a2k+1|(x
k+1 + sgn(a2k+1)xk/2)2+∑m

k=0(ε + a2k − |a2k−1| − |a2k+1|/4)x2k,

where by convention a−1 = a2m+1 = 0. This already gives us the required SOS representation,
provided ε ≥ |a2k+1|/4 − a2k + |a2k−1| for each k, and we can ensure this by computing the
approximate SOS sufficiently accurately.

5.2.5 Finding Positivstellensatz certificates

By a well-known trick, we can reduce a problem of the form ∀x ∈ [a, b], 0 ≤ p(x), where p(x)
is a univariate polynomial, to the unrestricted polynomial nonnegativity problem ∀y ∈ R, 0 ≤

q(y) by the change of variable x = a+by2

1+y2 and clearing denominators:

q(y) = (1 + y2)deg(p)p

(
a + by2

1 + y2

)
.

To see that this change of variables works, note that as y ranges over the whole real line,
y2 ranges over the nonnegative reals and so x = (a+ by2)/(1+ y2) ranges over a ≤ x < b, and
although we do not attain the upper limit b, the two problems ∀x, a ≤ x ≤ b⇒ 0 ≤ p(x) and
∀x, a ≤ x < b⇒ 0 ≤ p(x) are equivalent, since p(x) is a continuous function.

24 S. Chevillard, J. Harrison, M. Joldeş, Ch. Lauter

If we now use the algorithm from the previous subsections to obtain a SOS decomposition
q(y) =

∑
i cisi(y)2 for nonnegative rational numbers ci, it is useful to be able to transform back

to a Positivstellensatz certificate [49] for the nonnegativity on [a, b] of the original polynomial
p(x). So suppose we have

q(y) = (1 + y2)deg(p)p

(
a + by2

1 + y2

)
=
∑

i

cisi(y)2.

Let us separate each si(y) into the terms of even and odd degree si(y) = ri(y
2) + yti(y

2),
giving us the decomposition

q(y) =
∑

i

ci(ri(y
2)2 + y2ti(y

2)2 + 2yri(y
2)ti(y

2)).

However, note that by construction q(y) is an even polynomial, and so by comparing the
odd terms on both sides we see that

∑
i yri(y

2)ti(y
2) = 0. By using this, we obtain the simpler

decomposition arising by removing all those terms:

q(y) =
∑

i

ci ri(y
2)2 + ci y

2 ti(y
2)2.

Inverting the change of variable we get y2 = x−a
b−x and 1+y2 = b−a

b−x . Therefore we have, writing
d = deg(p),

(
b− a

b− x

)d

p(x) =
∑

i

ciri

(
x− a

b− x

)2

+ ci
x− a

b− x
ti

(
x− a

b− x

)2

,

and so

p(x) =
∑

i

ci

(b− a)d
(b− x)dri

(
x− a

b− x

)2

+
ci

(b− a)d
(x− a)(b− x)d−1ti

(
x− a

b− x

)2

.

We can now absorb the additional powers of b − x into the squared terms to clear their
denominators and turn them into polynomials. We distinguish two cases, according to whether
d = deg(p) is even or odd. If d is even, we have

p(x) =
∑

i
ci

(b−a)d

[
(b− x)

d

2 ri

(
x−a
b−x

)]2
+ (x− a)(b− x)

∑
i

ci

(b−a)d

[
(b− x)

d

2
−1ti

(
x−a
b−x

)]2
.

while if d is odd, we have

p(x) = (b− x)
∑

i
ci

(b−a)d

[
(b− x)

d−1
2 ri

(
x−a
b−x

)]2
+ (x− a)

∑
i

ci

(b−a)d

[
(b− x)

d−1
2 ti

(
x−a
b−x

)]2
.

In either case, this gives a certificate that makes clear the nonnegativity of p(x) on the
interval [a, b], since it constructs p(x) via sums and products from squared polynomials, non-
negative constants and the expressions x− a and b− x in a simple and uniform way.

Efficient and accurate computation of upper bounds of approximation errors 25

6 Experimental results

We have implemented our novel algorithm for validated supremum norms in the Sollya soft-
ware tool∗. The Sum-of-Square decomposition necessary for the certification step has been
implemented using the PARI/GP software tool†. The formal certification step has been per-
formed using the HOL light theorem prover‡.

During the computation step before formal verification, the positivity of difference polyno-
mials s1 and s2 (see Section 3) is shown using an interval arithmetic based implementation of
the Sturm Sequence algorithm [51]. The implementation has a fall-back to rational arithmetic
if interval arithmetic fails to give an unambiguous answer because the enclosure is not suffi-
ciently tight [15]. In the examples presented, this fall-back has never been invoked. However,
beside this method, other well known techniques exist [25].

The intermediate polynomial T has been computed using Taylor models. Our implemen-
tation supports both absolute and relative remainder bounds. Relative remainder bounds are
used by the algorithm only when strictly necessary, i.e. when a removable discontinuity is
detected (see Section 4.4). Our implementation of Taylor models also contains some optimiza-
tions for computing tighter remainder bounds found in literature [46]. We did not explicitly
discuss those optimizations in this article for the sake of brevity.

We have compared the implementation of our novel supremum norm algorithm on 10
examples with implementations of the following existing algorithms discussed in Section 2:

• A pure numerical algorithm for supremum norms available in the Sollya tool through the
command dirtyinfnorm [6]. The algorithm mainly samples the zeros of the derivative
of the approximation error function ε and refines them with a Newton iteration. We
will refer to this algorithm as Ref1. As a matter of course, this algorithm does not offer
the guarantees we address in this article. Its purpose is only to give reference timings
corresponding to the kind of algorithms commonly used to compute supremum norms.

• A rigorous, interval arithmetic based supremum norm available through the Sollya com-
mand infnorm [6]. The algorithm performs a trivial bisection until interval arithmetic
shows that the derivative of the approximation error function ε no longer contains any
zero or some threshold is reached. The algorithm is published in [15]. We will refer to
this algorithm as Ref2. We were not able to obtain a result in reasonable time (less
than 10 minutes) using this algorithm for some instances. The cases are marked “N/A”
below.

• A rigorous supremum norm algorithm based on automatic differentiation and rigorous
bounds of the zeros of a polynomial. The algorithm is published in [18]. It gives an
a posteriori error. We will refer to this algorithm as Ref3.

We will refer to the implementation of our new supremum norm algorithm as Supnorm. We
made sure all algorithms computed a result with comparable final accuracy. This required
choosing suitable parameters by hand for algorithms Ref2 and Ref3. The time required for
this manual adaptation is not accounted for but, of course, it exceeds the computation time
by a huge factor. Our novel algorithm achieves this automatically by its a priori accuracy
control.

∗http://sollya.gforge.inria.fr/
†http://pari.math.u-bordeaux.fr/
‡http://www.cl.cam.ac.uk/~jrh13/hol-light/

http://sollya.gforge.inria.fr/
http://pari.math.u-bordeaux.fr/
http://www.cl.cam.ac.uk/~jrh13/hol-light/

26 S. Chevillard, J. Harrison, M. Joldeş, Ch. Lauter

We used the example instances for supremum norm computations published in [18]. They
are summed up in Table 2. In this table, the“mode” indicates whether the absolute or relative
error between p and f was considered. In the “quality” column we compute − log2(η) which
gives a measure of the number of correct bits obtained for ‖ε‖∞.

More precisely, we can classify the examples as follows:

• The two first examples are somehow “toy” examples also presented in [15].

• The third example is a polynomial taken from the source code of CRlibm. It is the
typical problem that developers of libms address. The degree of p is 22, which is quite
high in this domain.

• In examples 4 through 10, p is the minimax polynomial, i.e. the polynomial p of a
given degree that minimizes the supremum norm of the error. These examples involve
more or less complicated functions over intervals of various width. Examples 7 and 9
should be considered as quite hard for our algorithm since the interval [a, b] has width 1:
this is wide when using Taylor polynomials and it requires a high degree. Example 10
shows that our algorithm is also able to manage removable discontinuities inside the
function f .

The complete definition of the examples as well as our implementation of the algorithms is
available with the research report version of this article at

http://prunel.ccsd.cnrs.fr/ensl-00445343/.

No f [a, b] deg(p) mode quality

− log
2
η

#1 exp(x)− 1 [−0.25, 0.25] 5 rel. 37.6

#2 log
2
(1 + x) [−2−9, 2−9] 7 rel. 83.3

#3† arcsin(x + m) [a3, b3] 22 rel. 15.9

#4 cos(x) [−0.5, 0.25] 15 rel. 19.5

#5 exp(x) [−0.125, 0.125] 25 rel. 42.3

#6 sin(x) [−0.5, 0.5] 9 abs. 21.5

#7 exp(cos2 x + 1) [1, 2] 15 rel. 25.5

#8 tan(x) [0.25, 0.5] 10 rel. 26.0

#9 x2.5 [1, 2] 7 rel. 15.5

#10 sin(x)/(exp(x)− 1) [−2−3, 2−3] 15 abs. 15.5

Table 2: Definition of our examples

The implementation of both the novel supremum norm algorithm and the three reference
algorithms is based on the Sollya tool. That tool was compiled using gcc version 4.3.2.
The timings were performed on an Intel R© CoreTM i7-975 based system clocked at 3.33 GHz
running Redhat∗ Fedora 10 x64 Linux 2.6.27.21. Table 3 presents the results of our algorithm.
In this table the interval [ℓ, u] computed by our algorithm is represented with the first common
leading digits to ℓ and u, followed by brackets that give the actual enclosure. For instance
1.234[5−7] actually represents the interval [1.2345, 1.2347]. Table 4 gives the timings that we
obtained.

∗Other names and brands may be claimed as the property of others.

http://prunel.ccsd.cnrs.fr/ensl-00445343/

Efficient and accurate computation of upper bounds of approximation errors 27

No deg(p) deg(T) ‖ε‖∞ ∈ [ℓ, u]

#1 5 13 0.98349131972[2−7]e−7

#2 7 17 0.2150606332322520014062770[4−7]e−21

#3 22 32 0.25592[3−8]e−34

#4 15 22 0.23083[7−9]e−24

#5 25 34 0.244473007268[5−7]e−57

#6 9 17 0.118837[0−2]e−13

#7 15 44 0.30893006[2−9]e−13

#8 10 22 0.35428[6−8]e−13

#9 7 20 0.2182[5−7]e−8

#10 15 27 0.6908[7−9]e−20

Table 3: Degree of the intermediate polynomial T chosen by Supnorm, and computed enclosure
of ‖ε‖∞

No Ref1 Ref2 Ref3 Supnorm SOS

time (ms) time (ms) time (ms) time (ms) time (ms)

not rigorous rigorous

#1 14 2190 121 42 1631

#2 41 N/A 913 103 11436

#3 270 N/A 1803 364 42735

#4 93 N/A 1009 139 8631

#5 337 N/A 2887 443 155265

#6 13 3657 140 39 2600

#7 180 N/A 3220 747 81527

#8 47 66565 362 94 5919

#9 27 5109 315 73 3839

#10 43 N/A N/A 168 8061

Table 4: Timing of several algorithms

28 S. Chevillard, J. Harrison, M. Joldeş, Ch. Lauter

The implementation of our novel algorithm, compared with the other validated supremum
algorithms Ref2 and Ref3, exhibits the best performance. As a matter of course, counterex-
amples can be constructed but are hard to find.

We note that with our new supremum norm algorithm, the overhead of using a validated
technique for supremum norms of approximation error functions with respect to an unsafe,
numerical technique Ref1 drops to a factor around 3 to 5. This positive effect is reinforced
by the fact that the absolute execution times for our supremum norm algorithm are less than
1 second in most cases. Hence supremum norm validation needs no longer be a one time -
one shot overnight task as previous work suggests [15].

Even certification in a formal proof checker comes into reach with our supremum norm al-
gorithm. In the last column of Table 4, we give the execution times for the post-computational
rewriting of the difference polynomials si as a sum of squares.

If even though the execution times for sum-of-squares decomposition may seem high com-
pared to the actual supremum norm computation times, they are quite reasonable, since our
implementation is still not at all optimized. Moreover, most of the time, the final certifica-
tion step, requiring the computation of a sum-of-squares decomposition is run only once per
supremum norm instance in practice. Hence the time needed for computing this certificate is
not critical.

7 Conclusion

Each time a transcendental function f is approximated using a polynomial p, there is a need
to determine the maximum error induced by this approximation. Several domains where
such a bound for the error is needed are: floating-point implementation of elementary func-
tions, some cases of validated quadrature as well as in more theoretical proof work, involving
transcendental functions.

Computing a rigorous upper bound on the supremum norm of an approximation error
function ε has long been considered a difficult task. While fast numerical algorithms exist,
there was a lack of a validated algorithm. Expecting certified results was out of sight. Several
previous proposals in the literature had many drawbacks. The computational time was too
high, hence not permitting one to tackle complicated cases involving composite functions
or high degree approximation polynomials. Moreover, the quality of the supremum norm’s
output was difficult to control. This was due either to the unknown influence of parameters
or simply because the techniques required too much manual work.

The supremum norm algorithm proposed in this article solves most of the problems. It is
able to compute, in a validated way, a rigorous upper bound for the supremum norm of an
approximation error function —in both absolute and relative error cases— with an a priori

quality. Execution time, measured on real-life examples, is more than encouraging. There is
no longer an important overhead in computing a validated supremum norm instead of a mere
floating-point approximation without any bound on its error. In fact, the overhead factor is
between 3 and 5 only and the absolute execution time is often less than 1 second on a current
machine.

The algorithm presented is based on two important validation steps: the computation of
an intermediate polynomial T with a validated bound for the remainder and the proof that

†Values for example #3: m = 770422123864867 · 2−50, a3 = −205674681606191 · 2−53, b3 =
205674681606835 · 2−53

Efficient and accurate computation of upper bounds of approximation errors 29

some polynomials si are non-negative. In this article, several ways of automatically computing
an intermediate polynomial with a remainder bound were revised. Special attention was given
to how non-negativity of a polynomial could be shown rewriting it as a sum of squares. This
technique already permits us not only to validate a non-negativity result but actually to
certify it by formally proving it in a formal proof checker.

One point in certification is still outstanding: certification of the intermediate polynomial’s
remainder bound in a formal proof checker. The algorithms for Taylor models, revised in this
article and implemented in a validated way, will have to be “ported” to the environment of a
formal proof checker. Previous works like [46] are encouraging and the task does not seem to
be technically difficult, the algorithms being well understood. The challenge is in the sheer
number of base remainder bounds to be formally proved for all basic functions. Even given
general “collateral” proofs in the field of analysis, there would be extensive case-by-case work
for each of the basic functions considered. However, we will continue to work on this point in
the future.

Another small issue in the proposed validated supremum norm algorithm also needs to be
addressed and understood. As detailed in Section 3, the algorithm consists of two steps: first,
a numerical computation of a potential upper bound and second, a validation of this upper
bound. A detailed timing analysis shows that the first step often takes more than half of the
execution time. On the one hand, this observation is encouraging as it means that computing a
validated result for a supremum norm is not much more expensive than computing a numerical
approximation. On the other hand, this means that our hypothesis that a lower bound for a
supremum norm could be found in negligible time has to be reconsidered. Future work should
address that point, finding a way to start with a very rough and quickly available lower bound
approximation that gets refined in the course of alternating computation and validation.

Acknowledgments

The authors would like to thank Nicolas Brisebarre, Martin Berz, Guillaume Hanrot, Joris
van der Hoeven, Kyoko Makino, Frédéric Messine, Ned Nedialkov and Markus Neher for their
precious advice and help. They also wish to thank the anonymous referees who made many
very accurate remarks and gave fruitful advice for improving this article.

References

[1] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Dover, 1965.

[2] IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic, IEEE Std 754
TM

-
2008.

[3] F. de Dinechin, C. Q. Lauter, G. Melquiond, Assisted verification of elementary func-
tions using Gappa, in: Proceedings of the 21st Annual ACM Symposium on Applied
Computing - MCMS Track, Vol. 2, ACM, 2006, pp. 1318–1322.

[4] E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, 1966.

30 S. Chevillard, J. Harrison, M. Joldeş, Ch. Lauter

[5] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond,
N. Revol, D. Stehlé, S. Torres, Handbook of Floating-Point Arithmetic, Birkhauser
Boston, 2009.

[6] S. Chevillard, C. Lauter, M. Joldes, Users’ manual for the Sollya tool, Release 2.0,
https://gforge.inria.fr/frs/download.php/26860/sollya.pdf (April 2010).

[7] N. Revol, F. Rouillier, The MPFI library, http://gforge.inria.fr/projects/mpfi/.

[8] W. Press, B. Flannery, S. Teukolsky, W. Vetterling, Numerical Recipes in C, The Art of
Scientific Computing, 2nd edition, Cambridge University Press, 1992.

[9] F. Messine, Méthodes d’optimisation globale basées sur l’analyse d’intervalle pour la
résolution de problèmes avec contraintes, Ph.D. thesis, INP de Toulouse (1997).

[10] R. B. Kearfott, Rigorous Global Search: Continuous Problems, Kluwer, Dordrecht,
Netherlands, 1996.

[11] E. Hansen, Global Optimization using Interval Analysis, Marcel Dekker, 1992.

[12] N. Revol, Interval Newton Iteration in Multiple Precision for the Univariate Case, Nu-
merical Algorithms 34 (2) (2003) 417–426.

[13] A. Neumaier, Taylor forms – use and limits, Reliable Computing 9 (1) (2003) 43–79.

[14] S. Chevillard, Évaluation efficace de fonctions numériques. Outils et exemples, Ph.D.
thesis, École Normale Supérieure de Lyon, Lyon, France (2009).

[15] S. Chevillard, C. Lauter, A certified infinite norm for the implementation of elementary
functions, in: Proc. of the 7th International Conference on Quality Software, 2007, pp.
153–160.

[16] J. Harrison, Floating point verification in HOL light: the exponential func-
tion, Technical Report 428, University of Cambridge Computer Laboratory,
http://www.cl.cam.ac.uk/users/jrh/papers/tang.ps.gz (1997).

[17] K. Makino, M. Berz, Taylor models and other validated functional inclusion meth-
ods, International Journal of Pure and Applied Mathematics 4 (4) (2003) 379–456,
http://bt.pa.msu.edu/pub/papers/TMIJPAM03/TMIJPAM03.pdf.

[18] S. Chevillard, M. Joldes, C. Lauter, Certified and fast computation of supremum norms
of approximation errors, in: 19th IEEE SYMPOSIUM on Computer Arithmetic, 2009,
pp. 169–176.

[19] W. Krämer, Sichere und genaue Abschätzung des Approximationsfehlers bei rationalen
Approximationen, Tech. Rep. 3/1996, Institut für angewandte Mathematik, Universität
Karlsruhe (Mar. 1996).

[20] J. Harrison, Verifying nonlinear real formulas via sums of squares, in: Proc. of the 20th
International Conference on Theorem Proving in Higher Order Logics, TPHOLs 2007,
Springer-Verlag, 2007, pp. 102–118.

https://gforge.inria.fr/frs/download.php/26860/sollya.pdf
http://gforge.inria.fr/projects/mpfi/
http://www.cl.cam.ac.uk/users/jrh/papers/tang.ps.gz
http://bt.pa.msu.edu/pub/papers/TMIJPAM03/TMIJPAM03.pdf

Efficient and accurate computation of upper bounds of approximation errors 31

[21] R. E. Moore, Methods and Applications of Interval Analysis, Society for Industrial and
Applied Mathematics, 1979.

[22] M. Berz, K. Makino, COSY INFINITY Version 9.0, http://cosyinfinity.org.

[23] M. Berz, K. Makino, Rigorous global search using taylor models, in: SNC ’09: Proceed-
ings of the 2009 conference on Symbolic numeric computation, ACM, New York, NY,
USA, 2009, pp. 11–20.

[24] M. Berz, K. Makino, Y.-K. Kim, Long-term stability of the Tevatron by verified global
optimization, Nuclear Instruments and Methods in Physics Research Section A: Accel-
erators, Spectrometers, Detectors and Associated Equipment 558 (1) (2006) 1–10, pro-
ceedings of the 8th International Computational Accelerator Physics Conference - ICAP
2004.

[25] F. Rouillier, P. Zimmermann, Efficient isolation of polynomial’s real roots, Journal of
Computational and Applied Mathematics 162 (1) (2004) 33–50.

[26] C. Bendsten, O. Stauning, TADIFF, a Flexible C++ Package for Automatic Differ-
entiation Using Taylor Series, Tech. Rep. IMM-REP-1997-07, Technical University of
Denmark (April 1997).

[27] L. B. Rall, The arithmetic of differentiation, Mathematics Magazine 59 (5) (1986) 275–
282.

[28] A. Griewank, Evaluating Derivatives: Principles and Techniques of Algorithmic Differ-
entiation, no. 19 in Frontiers in Appl. Math., SIAM, Philadelphia, PA, 2000.

[29] R. P. Brent, H. T. Kung, O
(
(n log n)3/2

)
algorithms for composition and reversion of

power series, in: J. F. Traub (Ed.), Analytic Computational Complexity, Academic Press,
New York, 1975, pp. 217–225.

[30] R. P. Brent, H. T. Kung, Fast Algorithms for Manipulating Formal Power Series, Journal
of the ACM 25 (4) (1978) 581–595.

[31] L. V. Ahlfors, Complex analysis. An introduction to the theory of analytic functions of
one complex variable., 3rd Edition, McGraw-Hill New York, 1979.

[32] I. Eble, M. Neher, ACETAF: A Software Package for Computing Validated Bounds for
Taylor Coefficients of Analytic Functions, ACM Transactions on Mathematical Software
29 (3) (2003) 263–286.

[33] M. Mezzarobba, B. Salvy, Effective Bounds for P-Recursive Sequences, Tech. Rep.
abs/0904.2452, arXiv (2009).

[34] K. Makino, Rigorous analysis of nonlinear motion in particle accelerators, Ph.D. thesis,
Michigan State University, East Lansing, Michigan, USA (1998).

[35] R. Zumkeller, Global optimization in type theory, Ph.D. thesis, École Polytechnique
(2008).

http://cosyinfinity.org

32 S. Chevillard, J. Harrison, M. Joldeş, Ch. Lauter

[36] J. S. Moore, T. Lynch, M. Kaufmann, A mechanically checked proof of the correctness
of the kernel of the AMD5K86 floating-point division program, IEEE Transactions on
Computers 47 (1998) 913–926.

[37] D. Russinoff, A mechanically checked proof of IEEE compliance of a register-transfer-
level specification of the AMD-K7 floating-point multiplication, division, and square root
instructions, LMS Journal of Computation and Mathematics 1 (1998) 148–200, available
on the Web at http://www.russinoff.com/papers/k7-div-sqrt.html.

[38] J. O’Leary, X. Zhao, R. Gerth, C.-J. H. Seger, Formally ver-
ifying IEEE compliance of floating-point hardware, Intel Tech-
nology Journal 1999-Q1 (1999) 1–14, available on the Web at
http://download.intel.com/technology/itj/q11999/pdf/floating_point.pdf.

[39] R. Kaivola, M. D. Aagaard, Divider circuit verification with model checking and theorem
proving, in: M. Aagaard, J. Harrison (Eds.), Theorem Proving in Higher Order Logics:
13th International Conference, TPHOLs 2000, Vol. 1869 of Lecture Notes in Computer
Science, Springer-Verlag, 2000, pp. 338–355.

[40] J. Harrison, Formal verification of floating point trigonometric functions, in: W. A. Hunt,
S. D. Johnson (Eds.), Formal Methods in Computer-Aided Design: Third International
Conference FMCAD 2000, Vol. 1954 of Lecture Notes in Computer Science, Springer-
Verlag, 2000, pp. 217–233.

[41] C. Jacobi, Formal verification of a fully IEEE compliant floating point
unit, Ph.D. thesis, University of the Saarland, available on the Web at
http://engr.smu.edu/~seidel/research/diss-jacobi.ps.gz (2002).

[42] S. Boldo, Preuves formelles en arithmétiques à virgule flot-
tante, Ph.D. thesis, ENS Lyon, available on the Web at
http://www.ens-lyon.fr/LIP/Pub/Rapports/PhD/PhD2004/PhD2004-05.pdf (2004).

[43] R. J. Boulton, Efficiency in a fully-expansive theorem prover, Technical Report 337,
University of Cambridge Computer Laboratory, UK, (Ph.D. thesis) (1994).

[44] M. Blum, Program result checking: A new approach to making programs more reliable,
in: Automata, Languages and Programming, 20th International Colloquium, ICALP93,
Proceedings, Vol. 700 of Lecture Notes in Computer Science, Springer-Verlag, 1993, pp.
1–14.

[45] K. Mehlhorn, S. Neher, M. Seel, R. Seidel, T. Schilz, S. Schirra, C. Uhrig, Checking
geometric programs or verification of geometric structures, in: Proceedings of the 12th
Annual Symposium on Computational Geometry (FCRC’96), Association for Computing
Machinery, Philadelphia, 1996, pp. 159–165.

[46] R. Zumkeller, Formal Global Optimization with Taylor Models, in: Proc. of the 4th
International Joint Conference on Automated Reasoning, 2008, pp. 408–422.

[47] F. Cháves, M. Daumas, A library of Taylor models for PVS automatic proof checker,
CoRR abs/cs/0602005.

http://www.russinoff.com/papers/k7-div-sqrt.html
http://download.intel.com/technology/itj/q11999/pdf/floating_point.pdf
http://engr.smu.edu/~seidel/research/diss-jacobi.ps.gz
http://www.ens-lyon.fr/LIP/Pub/Rapports/PhD/PhD2004/PhD2004-05.pdf

Efficient and accurate computation of upper bounds of approximation errors 33

[48] H. Ehlich, K. Zeller, Schwankung von Polynomen zwischen Gitterpunkten, Mathematis-
che Zeitschrift 86 (1) (1964) 41–44.

[49] P. A. Parrilo, Semidefinite programming relaxations for semialgebraic problems, Mathe-
matical Programming, Series B 96 (2003) 293–320.

[50] X. Gourdon, Combinatoire, algorithmique et géometrie des polynômes, Ph.D. thesis,
École Polytechnique, Paris, France (1996).

[51] M.-F. Roy, Basic algorithms in real algebraic geometry and their complexity: from
Sturm’s theorem to the existential theory of reals, Vol. 23 of Expositions in Mathematics,
de Gruyter, 1996, in F. Broglia (Ed.), Lectures in Real Geometry.

	1 Introduction
	1.1 Outline of the paper

	2 Previous work
	2.1 Numerical methods for supremum norms
	2.2 Rigorous global optimization methods using interval arithmetic
	2.3 Methods that evade the dependency phenomenon

	3 Computing a safe and guaranteed supremum norm
	3.1 Computing a validated supremum norm vs. validating a computed supremum norm
	3.2 Scheme of the algorithm
	3.3 Validating an upper bound on for absolute error problems = p - f
	3.4 Case of failure of the algorithm
	3.5 Relative error problems = p/f - 1 without removable discontinuities
	3.6 Handling removable discontinuities

	4 Obtaining the intermediate polynomial T and its remainder
	4.1 Computing T before bounding the error
	4.1.1 Using an interpolation polynomial and automatic differentiation
	4.1.2 Using a Taylor polynomial

	4.2 Simultaneously computing T and
	4.3 Practical comparison of the different methods
	4.4 The problem of removable discontinuities

	5 Certification and formal proof
	5.1 Formalizing Taylor models
	5.2 Formalizing polynomial nonnegativity
	5.2.1 Squarefree decomposition
	5.2.2 Perturbation
	5.2.3 Approximate SOS of perturbed polynomial
	5.2.4 Absorption of remainder term
	5.2.5 Finding Positivstellensatz certificates

	6 Experimental results
	7 Conclusion

